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Abstract

In this deliverable we analyze the integration of non-visual information to cross-
validate the visual cues and to obtain a reliable description of the visual scene.
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1 Introduction

The main goal of this workpackage is the integration of additional information (e.g.
coming from the context) or other exteroceptive sources to obtain reliable cues. The
starting point on which we have worked, by adding external information, are the feature
maps obtained form the low-level vision system. In the previous deliverable D2.1 we
have addressed the problem of recurrent processing for low-level feature regularization.
A spatial regularization over a neighborhood resulted to be no crucial because low-level
features were reliable enough.

Deliverable 2.2 focuses on adaptation mechanisms that rely upon non-visual signals.
In the following section we will describe different approaches to combine visual informa-
tion and non-visual signals with adaptive and recurrent techniques:

1. The visual cues can be cross-validated using non-visual signals. The motion pa-
rameters of the car (T and Ω), provided by the University of Münster and HELLA,
can be used to compute structure from motion from a monocular image sequence.
It is possible to obtain depth maps to validate and integrate the depth estimation
from binocular disparity.

2. It is also possible to obtain a consistent description of the visual scene on a more
global scale. Important information, directly usable for the interpretation of the
scene, can be obtained from the linear description of optic flow fields and disparity
maps. The linear (affine) description can be obtained by using the recurrent linear
templates described in D2.1 and can be integrated with the motion parameters of
the car for the derivation of Structured Visual Events (SVEs, e.g., time-to-contact,
heading, orientation of surfaces).

The report is organized as follows:

- In Section 2 the patch-wise linear descriptors analyzed in D2.1 are summarized
and some improvements to the approach are described.

- In Section 3 an approach for cross-validating depth maps by the integration of non
visual signals is presented.

- In Section 4 the problem of motion interpretation by combining optic flow affine
description and non visual signals is analyzed.

2 Patch-wise linear descriptors of visual feature

maps

2.1 Basic principles

Kalman Filter is a powerful technique for real-time estimation of dynamic systems. The
filter is based on two different models: the process model, that describes the evolution over
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time of the state vector x(t), through the transition matrix Φ(t, t − 1) and the process
noise n2(t) whose autocorrelation matrix is Q2(t):

x(t) = Φ(t, t − 1)x(t − 1) + n2(t − 1) (1)

and the measurement model that relates the current measures y(t) to the current state
trough a measurement matrix C(t) and a measure noise n1(t) with autocorrelation matrix
Q1(t):

y(t) = C(t)x(t) + n1(t) (2)

The algorithm operates in two phases, the first is the prediction:

x̂−(t) = Φ(t, t − 1)x̂+(t − 1) (3)

K(t + 1, t) = Φ(t + 1, t)K(t)ΦT (t + 1, t) + Q1(n) (4)

where x̂−(t) is the a priori estiamte and K(t + 1, t) is its autocorrelation of the error and
x̂+(t) is the a posteriori estimate and K(t) is its autocorrelation of the error.

The second phase is the update:

α(t) = y(t) −C(t)x̂−(t) (5)

Σ(t) = C(t)K(t, t − 1)CT (t) + Q2(t) (6)

G(t) = Φ(t + 1, t)K(t, t − 1)CT (t)Σ−1(t) (7)

x̂(t) = Φ(t, t + 1)x̂+(t) (8)

K(t) = K(t, t − 1) − Φ(t, t + 1)G(t)C(t)K(t, t − 1) (9)

where α(t) is the innovation process, Σ(t) is the autocorrelation of the innovation
process and G(t) is the Kalman gain.

2.2 Generalizations and improvements

The patch-wise linear descriptors approach based on Kalman Filter, discussed in Deliver-
able 2.1, has been improved: a multiscale approach and a reliability measures have been
added in order to obtain more stable results.
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2.3 Multiscale

Spatial variations of the coefficients involve features of the scene at different resolution.
To properly analyze these features a multi-resolution analysis is necessary. It is possible
to follow two different approaches: (1) to analyze optic flow with patches of different
dimensions; (2) to analyze optic flow at different scales. A pyramidal approach has been
preferred to keep reasonable the computational load of the Kalman Filter. Figure 1
shows a frame from the sequence Town03, the associated optic flow and the divergence
map computed at different spatial scale (the patch size is constant). At a rough scale
the background has a constant divergence due to ego-motion, while on the pedestrian
a spatial variation of divergence emerges. The same analysis at a finest scale is noisier
because the considered neighborhood is too small.

Figure 1: First row: Frame from the Town03 sequence and the associated optic flow.
Second row: Divergence computed at different spatial scales, from left to right (coars
eto fine): the roughest scale (on the left) allows us to detect the spatial variation of
divergence on the pedestrian with respect with to the background, finer scales (on the
right) are noisier.

In the Appendix A comparison among the results obtained at different spatial scales
is shown.

2.4 Reliability measure

To obtain a reliability measure of the estimates, a confidence map, based on Normal-
ized Innovation Squared, has been added to the estimation process. The Normalized
Innovation Squared (NIS) measures the discrepancy between the input measures and the
Kalman estimates:

NIS = α(t)TS−1(t)α(t) (10)
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Figure 2: Estimation of the angular error. Where the angular error is large (red values)
the estimation of the measure error is increased. The estimation of measure error is done
independently in the different regions of the image.

NIS is chi-squared distributed with n × n degrees of freedom:

NIS < χ−1(p|n). (11)

Values that are less then a threshold (chosen with 0.95 percentile) are accepted. From
Eq. 10 it is evident that NIS depends on the covariance of the innovation S, that depends
on the estimate of the measure noise. The estimation of measure noise should be relative
to the magnitude of the measure, so we decided to use the mean angular error between
current frame n and previous frame n − 1 to tune the measure noise. Moreover, all
the parameters of the filter are adjusted independently in each patch, thus allowing a
maximum flexibility and adaptability during the filtering stage.

3 Cross-validation of depth maps by integration of

non visual signals

The known camera motion can be used to estimate depth from a monocular image se-
quences. Depth from motion can be used to cross-validate the binocular depth estimate.

A frame from a binocular image pair and the corresponding depth map, computed
with the phase-based algorithm using only non-visual cues, is shown in Figure 4. The aim
of this work is to combine the optic flow information (see Figure 6 and the car parameters
to integrate information where binocular depth map is less reliable (e.g. on the tree on
the foreground).

This approach has been described in [7], where a “classical” structure from motion
technique is improved by a predictive filtering stage. For many applications having an
on-line incremental estimate of depth is important. This could be achieved by using an
adaptive recurrent filter, such as the Kalman Filter.

6



DRIVSCO - Deliverable 2.2

Figure 3: Reliability mask computed in accordance with the chi-squared distribution of
NIS. The threshold has been chosen according to a 0.95 percentile.
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Figure 4: (a) Frame from a street sequence. (b) Depth map obtained with the phase-
based algorithm for disparity (using only non-visual cues).
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3.1 Structure from motion

If the camera motion is known, the motion of a 3D point in the scene is described by the
following equation:

dP

dt
= −T − Ω ×P (12)

If we consider an unitary focal length the projection of the point P = (X, Y, Z) onto
the image plane is given by:

x =
X

Z
y =

Y

Z
. (13)

By taking the derivatives of (x, y) with respect to the time we obtain the equation of
optic flow:

[

vx

vy

]

=
1

Z

[

−1 0 x

0 −1 y

]





Tx

Ty

Tz



 +

[

xy −(1 + x2) y

(1 + y2) −xy −x

]

+





Ωx

Ωy

Ωz



 . (14)

These equation relate the depth Z of the point to the camera motion T, Ω and the
optic flow. Thus, by combining the information of optic flow coming from the vision
front-end and the car motion information read from the can bus it is possible to obtain
an estimate of depth from a monocular sequence. By defining:

H =

[

tx
ty

]

=

[

−1 0 x

0 −1 y

]





Tx

Ty

Tz



 , (15)

a disparity measure can be obtained from the noisy optic flow by solving numerically the
following equation:

d = (HTP−1

m H)−1HTP−1

m v, (16)

where Pm is the covariance of the noise in the flow measurements.

3.2 Kalman Filter-based Algorithm.

It is possible to define a Kalman filter to integrate at each step new disparity measure-
ments (obtained with Eq. 16) with the predicted disparity map. The information about
the translation and rotation of the car are obtained from the data provided by Hella. It
is necessary to have a measure of optic flow (from the front-end) and of the associated
noise covariance. The translational components of velocity in the image plane (tx, ty)
are directly obtained from the motion of the car (Tx, Ty, Tz). At first we have assumed
that each value in the measured or predicted disparity map is not correlated with its
neighbors, so the state vector is composed by a single value of disparity for each pixel
and the Kalman Filter can proceed independently for each pixel in the image. Then it
is necessary to define the covariance matrix of the process noise Q2 and the covariance
matrix of the measure noise Q1. At each step an a-priori prediction of the disparity δ̂−(t)
is combined with the innovation process α(t) = δ(t) − δ̂−(t) through the Kalman Gain
G(t) to obtain the a-posteriori estimate of disparity δ̂+(t) = δ̂−(t) + G(t)α(t). Figure 5
shows the steps of the Kalman Filter.
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Figure 5: Integration of the car motion parameters to compute disparity with Kalman
Filter. The raw disparity (δ) is combined with the a priori estimation (δ̂−) to obtain the
a posteriori estimation (δ̂) after the Kalman filter update.

3.3 Results

In this section the results obtained with the described approach are analyzed. All the
results have been obtained starting from the sequence and the related optic flow map of
Fig. 6 (from the low-level vision front-end).

Figures 7 and 8 show a depth map obtained with the described approach. In Figure
7 there is no update according with the Kalman Filter equation, while Figure 8 shows
the results obtained by using the a posteriori estimate of the Kalman Filter. A constant
value of translation Tz has been considered, with a covariance Pm = 0.05, a measure noise
with autocorrelation 0.001 and a process noise with autocorrelation 0.008.

It is worth noting that it is necessary to warp the estimate of disparity according
to the optic flow information to continue the estimation process in the correct image
location in the following steps. Figure 9 shows the depth map if the estimated values are
not correctly warped: a “ghost” effect is visible especially on the tree on the foreground.

Figures 10 shows an other example of depth map obtained for a different road situa-
tion.

4 Motion interpretation by combining optic flow

affine description with non visual signals

In the literature there are many different approaches that aim to estimate rigid scene
structure and the relative 3D motion of a camera from an image sequence. All these
approaches start from the description of the models used for the camera imaging geometry,
the motion of the scene relative to the camera and the structure of rigid surfaces in the
scene.

9



DRIVSCO - Deliverable 2.2

Figure 6: (a) Frame from a street sequence. (b) Optic flow obtained with the phase-based
approach.

Figure 7: Depth map computed using the non visual signals together with visual infor-
mation (optic flow), without the Kalman Filter update.
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Figure 8: Depth map obtained from the a posteriori estimate of the depth map by using
the Kalman Filter update.

Figure 9: Depth map obtained without warping the estimates. It is possible to see a
“ghost” effect, especially evident on the tree on the right of the image.
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Figure 10: Depth map computed using the non visual signals together with visual in-
formation (optic flow) with a recurrent estimation in an other road situation (sequence
Tour03).

4.1 Basic principles

At a first approximation, and under proper conditions [6] [8], important information
about heading, time-to-collision and the 3D layout of the scene can be obtained by
looking at the spatial first-order differential properties of the motion field, and many
different approaches have been proposed in the literature to recover reliable estimates
of these differential properties. It is worth noting that a a complete solution for the
3D motion estimation using only a first-order approximation is not possible, without
considering additional information. Several approaches can be used to overcome the
problem: (1) to give a qualitative interpretation of the first-order approximation under
proper assumptions; (2) to solve for the interesting parameter by minimizing an error
function in different area of the patch [2]; (3) to use additional sources of information if
they are available.

In the context of the DRIVSCO project we have a source of information about non
visual signals that can be useful to integrate the visual information and to help to solve
the ill-posed problem.

4.2 First-order description of optic flow

Within any small image region, and under smooth change in viewpoint [5], an affine
model of image motion

[

ẋ

ẏ

]

=

[

c1 c2

c3 c4

]

·

[

x

y

]

+

[

c5

c6

]

(17)

is often sufficient to locally provide a good approximation of 3D rigid moving objects
and information about the 3D layout of the scene. The parameters ci have qualita-
tive interpretations in terms of the spatial variations of the associated velocity field
v(x, y) = [vx(x, y), vy(x, y)]. Formally, the parameters c5 and c6 represent the horizontal
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(v̄x) and vertical (v̄y) translational velocities in the image patch, respectively; whereas
the parameters c1, c2, c3, and c4 represent the values of the coefficients of the velocity
tensor:

L̄ = L|x0
=

[

∂vx

∂x
∂vx

∂y
∂vy

∂x

∂vy

∂y

]

x=x0

(18)

of a first-order Taylor expansion calculated around the image point x0 = (x0,y0):

[

vx

vy

]

=

[

L̄11 L̄12

L̄21 L̄22

]

·

[

x

y

]

+

[

v̄x

v̄y

]

. (19)

Equivalentely, the differential invariants of image motion can be related to algebraic
combinations of the affine coefficients:

divv = c1 + c4

curlv = c2 − c3

(defv) cos 2θ = c1 − c4

(defv) sin 2θ = c2 + c3

and they represent: an isotropic expansion specifying a change in scale, a 2D rigid rotation
specifying a change in orientation, and the components of a pure shear along the axis of
expansion described by the orientation θ, respectively.

If the viewer motion is known, divergence, curl and deformation are sufficient to
unambiguosly recover the surface orientation and the distance to the object (time to
collision) [3] [4]. The car motion is defined by its translational T = (Tx, Ty, Tz) and
rotational components Ω = (Ωx, Ωy, Ωz). Both can be recovered from the can bus of the
car. The viewing direction is defined by the vector Q. The component of translational
velocity parallel to the image plane scaled by depth Z is defined by:

A =
T − (T · Q)Q

Z
. (20)

The surface orientation is represented by the depth gradient, scaled by depth:

F = f∇(log Z) =
f∇Z

Z
(21)

The magnitude of the depth gradient is the tangent of the slant (σ) of the surface and
its direction corresponds to the tilt (τ) of the surface tangent plane.

|F| = tanσ (22)

6 F = τ (23)

The differential invariants can be rewritten using these quantities:
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divv =
2T · Q

Z
+ F · A

curlv = −2Ω · Q + |F · A|

defv = |F||A|.

From these equations and under proper conditions it is possible to recover important
information about the 3D shape of the scene without the knowledge of the motion pa-
rameters. For example in presence of a pure translation along the ray towards the surface
patch (|A| = 0) the divergence can give important information about the time to contact
tc:

tc =
Z

T · Q
(24)

Even without this assumption it is possible to recover useful information from the first-
order differential invariants. The information about time to collision can be expressed as
bounds:

2

divv + defv
≤ tc ≤

2

divv − defv
(25)

If we consider a pure translational motion perpendicular to the visual direction it will
result an image deformation with a magnitude which is determined by the slant of the
surface σ and with an axis depending on the tilt of the surface τ . It is worth noting
that divergence and deformation are unaffected by viewer rotations such as panning and
tilting of the cameras.

In the context of the DRIVSCO project we can use both non visual information
and estimates coming from the early-vision front-end in order to obtain more reliable
information.

4.3 Kalman Filter Implementation

To this goal the affine coefficients estimated with the recursive algorithm (see Deliverable
2.1 and Appendix A) can be used together with the known translational and rotational
values of the car to obtain information about time to collision and the slant of the surfaces
(see Figure 11)

If we are not in presence of pure translational motion and the rotational components
are known, the relationship between the divergence of optic flow and the time to collision
becomes [1]:

divv = −
2

tc
+

3xωy

f
+

3yωx

f
, (26)

and the two components of the depth gradient vector (see Eq. 21) F = (p, q) are
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related to the affine coefficients of the optic flow by:

c1 =
Tz

Z0

+
pTx

Z0

c2 = ωz +
qTx

Z0

c4 = −ωz +
pTy

Z0

c5 =
Tz

Z0

+
qTy

Z0

.

(27)

Figure 11 shows a schematic representation of the approach we have followed: optic
flow is analyzed with the Kalman-based patch-wise filter, from which it is possible to
recover the 6 coefficients of the affine description. Those coefficients can be combined
with the non-visual inputs leading to a motion interpretation (slant of the surface and
time-to-collision).

4.4 Results

We applied the recursive KF to the optic flows computed from real-world driving se-
quences recorded in different situations. The aim of the experimental analysis is to obtain
a description of motion in different multiple motion situations. A multiscale approach
has been followed to describe the linear properties at different image resolutions.

The green colormap in Figures 12 and 13 shows the information about TTC: lighter
green corresponds to higher values related to far objects or to forward moving objects.

The maps in Figures 14 and 15 show the information about the slant of the surfaces.
Green patches correspond to “horizontal” structures (e.g. the street) while “red” patches
represent standing objects (e.g. a wall).
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Figure 11: The optic flow coming from the low-level vision front-end is analyzed with
the recurrent patch-wise approach. The Kalman Filter estimate are continuosly adapted
as new measures of optic flow arrive. The resulting affine description is then combined
with the non visual inputs allowing us to obtain a 3D scene interpretation and to recover
Structural Visual Events (e.g. slant of the surfaces, time-to-collision).
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Figure 12: Map representing the time to collision. The truck is moving along the same
direction of the observer, and its TTC is higher than the one to the still objects at the
same depth

Figure 13: Map representing the time to collision. The van is moving along the same
direction of the observer, and its TTC is higher than the one to the still objects at the
same depth
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Figure 14: Higher-level feature maps obtained from ego-motion information. (a) Optic
flow. (b) Slanted surfaces present in the scene: reddish regions correspond to standing
objects aside of the road, greenish regions correspond to the road plane.

Figure 15: Higher-level feature maps obtained from ego-motion information using the
Brown Range Image Database. (a) Optic flow. (b) Slanted surfaces present in the scene:
reddish regions correspond to vertical planes (e.g. the blackboard), greenish regions
correspond to horizontal planes (e.g. the table).
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Appendix A

In this Appendix some comparisons between the results obtained with the patch-wise
approach at different spatial scales are shown. The multiscale approach is necessary to
analyze the features at different spatial scale. If we are interested in “global” features of
the scene, such as divergence to detect time-to-collision or the slant of the surfaces, it is
more convenient to work at a rough scale. In other situations (e.g. if we are interested in
features like edges) to work at a finer resolution is better. Figure 16 shows the variation
of the probability values in two different patches of the “motorway sequence” analyzed at
a proper spatial scale. The temporal behaviour of the probability values for the 4 models
is similar if we consider two patches belonging to the car.
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Figure 16: Patch-wise analysis computed at a coarse scale. In the image two adjacent
patches are highlighted and the temporal behaviour of the probability values for the 4
models are shown. The behaviour of the coefficients in the two patches is similar. It is
coherent with the fact that the two patches belong to the same object (the car).

If we use the patch-wise approach to analyze optic flow at a finer spatial scale we will
obtain unstable results due to the fact that the spatial neighborhood is too small. An
example of this behaviour can be seen in Figure 17

It is worth noting that if we work at a wrong scale even the temporal behaviour of
the estimated models could be unstable. Figures 18 and 19 show the differences in the
temporal behaviour for two patches at the same spatial location analyzed at different
resolutions.
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Figure 17: Patch-wise analysis computed at a fine scale. In the image two adjacent
patches are highlighted and the temporal behaviour of the probability values for the 4
models are shown. The behaviour of the coefficients in the two patches is different from
one patch to another even if the two patches belong to the same object (the car). This
is due to the fact that the patch is too small.
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Figure 18: Evolution in time of the four optic flow models in the same image patch at
a rough scale. The red square that localize the image patch is enlarged for the sake of
representation. We can observe through frames the behavior of each model for different
motion situations: at frame 2, the patch contains the motion of the background, only;
from frame 8 to frame 17, motion discontinuities appear in the models (e.g., kinetic
edges) in correspondence of the passage of the motorbike; at frame 21, the patch contain
the motion of the motorbike, only. The number on the top of each model indicates the
associated probability. By using a proper scale it is possible to detect slow changes in
the image motion and in the optic flow models.
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Figure 19: Evolution in time of the four optic flow models at a fine scale. The patch
location is the same of Figure 18. The red square that localize the image patch is
enlarged for the sake of representation. In this case the models do not represent correctly
the motion in the scene because the considered neighborhood is too small. The resulting
patches are noisy and do not correspond to the linear models we have defined.
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