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Abstract. The analog implementation of a phase-based tech-
nique for disparity estimation is discussed. This technique is
based on the convolution of images with Gabor filters. The
article shows that by replacing the Gaussian envelope with
other envelopes, the convolution operation is equivalent to
the solution of a system of differential equations, whose or-
der is related to the smoothness of the kernel. A detailed
comparison between the disparity estimates obtained using
these kernels and those obtained using the standard filter
is presented. The discretization of the model leads to lat-
tice networks in which the number of connections per node
required to perform convolution is limited to the first few
nearest neighbors. The short connection length makes these
filter suitable for analog VLSI implementation, for which
the number of connection per node is a crucial factor. Ex-
perimental measures on a prototype CMOS 17-node chip
validated the approach.
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1 Introduction

The capabilities of the human (or animal) visual system to
process sensory information are still beyond the power of
today’s computing machines even when perception is con-
sidered at the lowest levels. Although early vision processes
can be defined in term of mathematically well-defined pro-
cedures, their implementation is still hampered by the huge
amount of computing power needed to perform the math-
ematical procedures (filtering, correlations, matching, etc.).
However, recent technological advances, such as the devel-
opment of massive parallel computers and special-purpose
VLSI circuits, indicate that it will soon be possible to de-
velop real-time vision systems that combine different per-
ceptual modalities.

In particular, analog VLSI technology has reached a
point where it is realistic to imagine and project the con-
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struction of ”neuromorphic” computers in which computa-
tion is realized in the systems dynamics. In contrast to digital
system where computation is obtained by performing a well-
defined sequence of logical operations, analog computation
results as the output of the cooperative interaction of the
(electronic) elements of a network. This approach is partic-
ularly attractive for those early vision applications in which
flexibility of computation is less important than the speed
to go from signals to action. In such devices, sensory in-
formation is directly mapped in the electrical variables, and
computation is carried out massively in parallel with high
efficiency and speed.

Effective collective computation (small area and low
power consumption) on real-time signals is only possible
when taking full advantage of the CMOS technology at tran-
sistor and/or circuit levels. Several examples are present in
the literature, illustrating how powerful this approach can be.
Among these contributions we can distinguish two schools
of thought. The first one, problem-oriented, starts from a
computational approach to visual tasks, formulated as vari-
ational problems. Analog VLSI circuits are considered as
“analog computers” on which to map the related Euler-
Lagrange equations [10, 12, 15]. The second one, stressing
the similarities between the physics of analog CMOS and
brain circuits, has accomplished the goal of reproducing the
various blocks of first stages in the visual pathway: photore-
ceptors, retinal cells, and optical nerve. Applications of these
blocks have been considered in relation to contrast adapta-
tion, stereo correspondence, motion, etc. [6, 14, 22, 25].

The implementation of vision algorithms by means of
analog circuits has to overcome several difficulties. One of
the principal problem regards network connectivity. A high
number of connections per node constitutes a serious obsta-
cle for algorithm implementability. In analog computations,
indeed, a physical link is necessary to exchange informa-
tion between two nodes of a computational network. In this
context, it is important to be able to devise algorithms that
minimize the number of connections per node necessary to
implement a given functionality [1, 14, 19, 21].

This work deals with the analog implementation of a
technique for depth and motion estimation [2, 8, 9] that is
based on the convolution of the incoming images with Ga-
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bor filters. It is shown that the convolution operations can be
realized by means of solutions of a linear system of differ-
ential equations (DE). The DE order is related to the number
of interconnections per node required to perform the compu-
tation in the corresponding discrete network. The influence
of the envelope change on the quality of the filter estimates
is investigated in detail and compared with the standard con-
volution results.

The model presented in this work was used to design and
fabricate a demonstrative analog chip that performs convo-
lutions. The chip is constituted of a linear array of 17 basic
cells, each cell is connected with its next and next nearest
neighbors. This research activity was part of the Esprit Basic
Research Project 8503 “Cormorant”, whose objective was
the design of algorithmic solutions for early vision process-
ing that are suitable for analog hardware implementation.

2 The phase-difference-based technique

Stereoscopy is a technique used to extract depth from a
pair of images taken from slightly different view points.
Depth can be computed from the relative position of corre-
sponding points in the two images. In a first approximation,
the positions of corresponding points are related by a one-
dimensional shift, thedisparity, along the direction of the
epipolar lines. In the simplest configuration, in which opti-
cal axes are parallel, epipolar lines are parallel to the line
joining the optical centers of the cameras.

Several techniques have been developed to estimate the
position disparity of corresponding points from pairs of
epipolar lines. The phase-difference-based technique, pro-
posed by [20], is based on the computation of the difference
between the phases of the convolutions of the two stereo
images with complex bandpass filters - the Gabor filters.

Since it is assumed that the two signals, denoted asfR(x)
andfL(x), are locally related by a shift,

fL(x + d(x0)/2) ≈ fR(x− d(x0)/2) (1)

in the neighborhood of each pointx0 the local k Fourier
components offL(x) andfR(x) are related by a phase dif-
ference equal to∆ψ(k) = ψL(k) − ψR(k) = k d.

The local Fourier analysis is performed by convolving
the images with a local envelope,

uL/R(x, k0) =
∫

dy G(x− y) ei k0 (x−y) fL/R(y)

= ρL/R(x) ei ψL/R(x) , (2)

whereG(x − y) is a function that goes to zero as|x − y|
increases, andk0 is the tuning frequency of the filter.

As a function of spatial position, the phase of the filter
response,ψ(x), has a quasi-linear behavior. In fact, the phase
derivativeψx(x) is generally close to the tuning frequency,
ψx(x) ≈ k0 . Linearity allows an accurate estimation of the
shift from the phase difference by means of a second-order
expansion ind(x) 1

∆ψ(x) = ψL(x)−ψR(x)=ψ(x− d(x)/2)−ψ(x + d(x)/2)

= ψx(x) d(x) +O(d3(x)) . (3)

1 The second-order term is zero,ψxx/2! (d2(x) − d2(x))/4 = 0.

Using the average of the derivatives, disparity is given by

d(x) ≈ 2
[∆ψ(x)]2π

ψLx (x) + ψRx (x)
. (4)

In its standard formulation, the local envelope is chosen to
be a Gaussian:

G(x) =
1√

2π σ
e− (x−x0)2

2σ2 ; Ĝ(k) = e− σ2k2

2 . (5)

The choice is dictated by the fact that the Gaussian en-
velope is best localized in both space and frequency: the
product of the uncertainties in space and in frequency at-
tains the minimum value,∆x · ∆k = 1. For other filters,
the product of uncertainties is always greater,∆x ·∆k > 1.
A relation betweenσ and k0 is imposed by assuming that
the bandwidth of the Gabor filter is one octave, that is
λ0 = 2π

3 σ ≈ 2.1σ. This means the Gaussian envelope con-
tains a complete wavelengthλ0 in the interval [x0−σ, x0+σ].

Disparity computation is reliable when phases are linear.
Around singular points where the amplitude vanishes,ρ(x) =
0, the phase develops stong nonlinearities. As a consequence,
approximation (4) fails. Therefore, computation at pointx
is accepted only if∣∣∣ (ψ

′
(x) − k0)

∣∣∣ < k0 TS , (6)

whereTS ≈ 0.4 [8]. The left side of (6) measures the dif-
ference between the peak frequency,k0, and the local fre-
quency,ψ

′
(x).

From the perspective of analog computation, an algo-
rithm is implementable if it can be reduced to local oper-
ations. The phase-based approach to disparity estimation is
local except for the convolution operation. However, if the
Gaussian envelope is replaced by other kernels, convolution
can be transformed into the solution of a set of differential
equations whose order is related to the number of connec-
tions per node necessary to implement the filter in a discrete
model.

3 Local Gabor-like filters

Because of the convolution theorem,

u(x) =
∫

dy G(x− y) ei k0 (x−y) f (y) (7)

can be expressed as the inverse Fourier transform of

û(k) = Ĝ(k − k0) f̂ (k) , (8)

whereû(k), Ĝ(k), and f̂ (k) indicate the Fourier transforms
of functionu(x), G(x), andf (x), respectively.

If Ĝ(k) is different from zero for everyk, it is possible
to write that

Ĝ−1(k − k0) û(k) = f̂ (k) (9)

or, by expanding the Gaussian kernel (µ = σ/
√

2)[
1 +µ2(k − k0)2 +

µ4(k − k0)4

2!
+ . . .

]
û(k) = f̂ (k) . (10)

Since multiplication by (k − k0) in frequency space corre-
sponds to the application of differential operator [d

dx − i k0 ]
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Fig. 1. Functionsα(x) andβ(x), the phase, and
the spike-like left 1D image

Fig. 2. The computed disparity (in pixels) us-
ing the local,ψ′(x), and the tuning frequency,
k0, and the product of the amplitudes, (ρ2

L(x) ×
ρ2

R(x)). In the lower part, the left and right 1D
images are shown: the first spike is shifted by
two pixels, the second by four pixels, as cor-
rectly estimated

in thex-space, the inverse Fourier transform of Eq. 9 gener-
ates a series of local envelopes. The envelope’s smoothness
increases with the order of the corresponding differential
equation.

3.1 The cusp filter

The first-order expansion inµ = 1/γ[
γ2 + (k − k0)2

]
û(k) = γ2f̂ (k) (11)

generates the cusp envelope

C(x) =
γ

2
e−γ|x| . (12)

This implies that integral equation

u(x) =
∫

dye−γ|x−y|+i k0 (x−y) f (y) (13)

can be turned into a linear differential equation in which the
input signalf (x) acts as a source term

(
d

dx
− i k0) (

d

dx
− i k0) u(x) + γ2u(x) = γ2f (x) , (14)

i.e.,

−uxx(x) + 2i k0 ux(x) + (k2
0 + γ2)u(x) = γ2 f (x) . (15)

Showing real and imaginary parts,u(x) = α(x) + i β(x),
differential Eq. 15 can be written as the ODE system

−αxx − 2k0 βx + (γ2 + k2
0)α = γ2 f (x)

−βxx + 2k0αx + (γ2 + k2
0)β = 0 . (16)

The system can be rewritten as a single fourth-order differ-
ential equation. For functionα(x), we find
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−αxxxx + 2 (γ2 − k2
0)αxx − E2α = γ2 (fxx − E f ) . (17)

In Fig. 1, the solution of the DE system for a one-
dimensional (1D) image is shown. The two functions repro-
duce the real and imaginary parts of the “oscillating” cusp
filter, as has to be expected for delta-like signals. The phase
is close to a straight line. Figure 2 illustrates the disparity
function obtained using both the local frequency,ψ′(x), and
the tuning frequencyk0. The computed disparity is correct:
in fact, the first spike is shifted by two pixels, the second
by four pixels, and the transition between the two disparity
values is smooth. Ripples in the disparity function in cor-
respondence to image structures are a consequence of the
sharp peak of the cusp envelope.

Figure 6 shows the disparity map obtained from a stereo
pair of computer-generated images using the cusp envelope.
The computer-generated stereo pair is shown in Figs. 3 and 4.
The true disparity map is displayed in Fig. 52

As usual, points where the algorithm is not reliable are
drawn black. In general, points were disparity can be esti-
mates are in the neighborhood of visual features, such as
edges or textures. The size of the neighborhood depends on
the width of the filter. The wavy behavior of the disparity
estimates at the borders of the tiles corresponds to the ripples
evidenced in Fig. 2. For this image, a comparison between
errors and densities of the cusp and the Gaussian filters is
shown in Fig. 7. The error measure is defined as the absolute
difference between the true disparity (TD) and the estimated
value (D). In the following, we always refer to the average
value of the error defined as the normalized sum of the errors
at the nonsingular points,

error =
1
N

∑
i.j

|TDi,j −Di,j | , (18)

wherei andj run over the nonsingular points, andN is the
number of nonsingular points. Density is the ratio between
the number of nonsingular points and the total number of
points.

Filters that are smoother at the origin and have a sharper
spectrum decay can be generated from Eq. 10. However, this
causes an increase of the order of the differential equations.

3.2 The quartic filter

If the k4 terms are kept in the expansion of the Gaussian
kernel. Eq. 10, the quartic envelope is found, see Fig. 8. Its
analytical expression is (see Appendix A).

Q(x) =
N

µ
sin

(π
8

+ γ2|x|/µ
)
e−γ1 |x|/µ , (19)

where γ1 = 21/4 cos
(
π
8

)
, γ2 = 21/4 sin

(
π
8

)
andN is a

normalization factor. The smoother behavior at the origin
corresponds to the sharper decay of the frequency spectrum.

The solution of equation

2 These images are orthographic projections generated with the ray-
tracing program of the Computer Graphics group of Prof. Fellner at the
Bonn University. Images and their description can be found at the follow-
ing address: http://www-dbv.cs.uni-bonn/ ft/stereo.html.

Fig. 3. The computer-generated “corridor image” (left), size 256× 256
pixels

Fig. 4. The computer-generated “corridor image” (right), size 256× 256
pixels

µ2 (
1
i

d

dx
− k0)2 u(x) + µ4 1

2!
(
1
i

d

dx
− k0)4 u(x)

+ u(x) = f (x) (20)

i.e.,

1
2
µ4

(
uxxxx − 4i k0 uxxx − 6k2

0 uxx + 4i k3
0 ux + k4

0 u
)

+µ2
(−uxx + 2i k0 ux + k2

0 u
)

+ α = f (x) (21)

is the convolution of the source term,f (x), with an “oscil-
lating” quartic filter.

Making plain real and imaginary parts, Eq. 20 leads to
the ODE system:

1
2
µ4

(
αxxxx + 4k0 βxxx − 6k2

0 αxx − 4k3
0 βx + k4

0 α
)

+µ2
(−αxx − 2k0 βx + k2

0 α
)

+ α = f (x) , (22)
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Fig. 5. True disparity map

Fig. 6. Disparity map estimated using the cusp filter. Singular points are
black

1
2
µ4

(
βxxxx − 4k0αxxx − 6k2

0 βxx + 4k3
0 αx + k4

0 β
)

+µ2
(−βxx + 2k0αx + k2

0 β
)

+ β = 0 .

Figure 9 shows the disparity function estimated using the
quartic filter for the stereo signal of Fig. 1. The “ripples”
found in the cusp case are not present.

4 Performance of the Gabor-like filters

From the computational perspective, the cusp and the quar-
tic filters are interesting because they require low-order DE
systems. In fact, in the corresponding discrete systems, the
DE order is related to the number of connections per node
necessary to realize the convolution, see Sect. 5. However,
the change of envelope modifies the quality of disparity es-
timates [7]. In this section, a comparison among the cusp,
the quartic, and the Gaussian filters is presented.

Fig. 7. Comparison between the cusp and the Gaussian filters for the image
shown in Fig. 3 for several wavelengths. They-axis represents the mean
value of the error or the densitiy of singular points, as defined in (18)

Fig. 8. The quartic envelope for 3 values ofµ

4.1 Basic tests

For well-defined stereo signals characterized by simple dis-
parity fields, the disparity estimates of the three filters are
comparable. Figures 10 and 11 show the disparity estimates
of the three filters for an image with spike-like features and
for a random-dot image, respectively. In general, the cusp
estimate is not as smooth as the quartic and the Gaussian
estimates.

To obtain a significative comparison between the en-
velopes, the filters’ performances were evaluated for a large
number of random-dots 1D image pairs of sizeN pixels.
Performance is measured in terms of error and density as
defined in Sect. 3.1. It is important to notice that the random-
dot 1D images used in the following simulations have zero
mean, i.e.,

∫
f (x) dx = 0, and that the shifts between left

and right signals are integer.
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Fig. 9. The computed disparity (in pixels) using
the local and the tuning frequency, and the prod-
uct of the amplitudes, (ρ2

R(x) × ρ2
L(x)) for the

quartic model. In thelower part, the left andright
1D images are shown: the first spike is shifted by
two pixels, the second by four pixels, as correctly
estimated

Fig. 10. Disparity estimates for spike-like features of the three filters,N =
256,λ0 = 20 andβ = 1

Fig. 11. Disparity estimates of the three filters for a random-dot image,
N = 256,λ0 = 20 andβ = 1

Fig. 12. Constant disparity field. Errors of disparity estimates for the three
filters with λ0 = 20, 30, 40 pixels andσ = λ0/2 for 1D images of size
N = 512 pixels

Fig. 13. Constant disparity field. Densities of disparity estimates for the
three filters withλ0 = 20, 30, 40 pixels andσ = λ0/2 for 1D images of
sizeN = 512 pixels
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4.2 Stereo-signal complexity

At first, to test the estimation capability, constant disparity
fields are used, i.e., the left image is obtained by a con-
stant shift of the right one. This means that there are no
occlusions. Figures 12 and 13 show the filters’ performances
for three different wavelengths. For fixed wavelength, the
filters’ behaviors follow the results found in [4], the error is
almost flat for disparity in the range [−λ0

3 ,
λ0
3 ], then it grows

rapidly. The sharp error increase is due to wraparound ef-
fects (aliasing). These are reduced using larger wavelengths.
A simple increase of the filter’s width, for fixed wavelength,
does not change the error curves but improves only the den-
sities. Using filter parameters that produce approximatively
the same densities, the cusp error is slightly larger than the
quartic and the Gaussian error, in particular for large wave-
lengths.

Analogous results are found for piecewise constant dis-
parity fields. In this case, there are occlusions, therefore,
the filters interpolation capabilities are also tested. Figure 14
shows the filters’ performances for random-dot stereo pairs
in which disparity assumes random values in the range
[0, D = 5] in 20 randomly generated intervals. An example
of disparity estimates for random-dot images for four inter-
vals is shown in Fig. 11. The error curves display minima
for λ0 ≈ 2.5D, whereD is the maximum disparity. This
behavior is close to the one found in real stereo images,
see [23]. Going from left to right, the error decreases be-
cause the wavelength increases (as explained above). How-
ever, when the filter becomes wider than disparity variations,
the error starts to increase because the filter averages over
close-by features of different disparities. The cusp perfor-
mance is slightly inferior to the Gaussian performance, both
in error and density.

An important issue is the influence of the stereo-signal
complexity on the quality of disparity estimation. Here, we
parametrize complexity as the number of intervals on which
disparity is constant. Zero complexity means that the dis-
parity is constant over the whole image, when the parameter
increases there are several regions of different constant dis-
parity and occlusions start to appear. Figure 15 shows the
filters’ performances as a function of complexity, i.e., as a
function of the number of intervals.

4.3 DC sensitivity

Large differences among filters’ performances arise when
sensitivity to the zero-frequency signal content (DC sensi-
tivity) is taken into consideration. DC sensitivity is caused
by the nonzero value of integral

∫
dy G(x − y) f (y). The

cusp is much more sensitive to the zero-frequency compo-
nents of the signals. Figures 16 and 17 illustrate the filters’
performance as a function of the DC level added to the in-
put signal. Note that 25% of DC is enough to dramatically
decrease the cusp density. This effect can be reduced by
increasing the number of oscillations within the envelope
support, i.e., by increasing the filter width for a fixed wave-
length, as shown in Figs. 18 and 19. However, filters can be
simply modified in order to reduce DC effects by redefining
convolution as

FDC(x, k0)=
∫
dy G(x− y)

[
ei k0(x−y) − Ĝ(k0)

]
f (y) , (23)

whereĜ(k) if the Fourier transform of envelopeG(x); for
the cusp, we have

Ĝ(k0) =
γ2

γ2 + k2
0

,

and for the quartic,

Ĝ(k0) =
1

1 +k2
0/µ

2 + 0.5k4
0/µ

4
.

Using this definition, the filters’ performances become very
similar even in presence of high zero-frequency content. Fig-
ures 20 and 21 show that performance for DC values of 50%
and 100% is almost identical to performance with no DC
added. Operation (23) is the difference between a convolu-
tion computed with tuning frequencyk0 and a convolution
with k0 = 0 weight by factorĜ(k0).

FDC(x, k0) = F (x, k0) − Ĝ(k0)F (x, k0 = 0) . (24)

5 Discrete models

Differential equations can be directly mapped on the discrete
pixel space by means of IIR filter design techniques [16].
Given the shape of the convolution kernel, it is necessary to
determine the values of coefficientsa andb of the filter
On∑

k=−On

aky(n− k) =
In∑

k=−In

bklf (n− k) (n ∈ N ) (25)

that realizes the functionality required. Here,f (n) andy(n)
are the input and the output of the processing node at loca-
tion (n), and I andO determine the number of neighbors
necessary to perform the computation.

5.1 The cusp filter

To determine the discrete model for the convolution with an
oscillating decaying exponential, let us consider the discrete
version of Eq. 15 i.e.,

A1 e
−i k0 u(n + 1) +A0 u(n)

+A−1 e
+i k0 u(n− 1) =B f (n) , (26)

whereA1, A0 andA−1 are real numbers and the exponential
terms are explicited to simplify equations. Plugging in the
discrete expression of the oscillating cusp

u(n) =
+∞∑

k=−∞
e−γ |n−k|+i k0 (n−k) fk , (27)

three linear equations are derived: the first fork ≥ n+ 1, the
second fork = n, and the third fork ≤ n− 1:

A1 +A0 e
−γ +A−1 e

−2γ = 0 ,

A1 e
−γ + A0 +A−1 e

−γ = B , (28)

A1 e
−2γ +A0 e

−γ +A−1 = 0 .

The system solution gives
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Fig. 14.Piecewise constant disparity field. Error and
density for the three filters as a function of the wave-
length, withσ = λ0/2 andN = 256 . In each stereo
pair, disparity assumes random values in the range
of [0, 5] pixels, in 20 randomly generated intervals.
Each point represents the average error or the den-
sity on a large number (256) of random-dot 1D im-
age pairs

Fig. 15. Error and density as a function of the stereo-signal complexity
(λ0 = 20). Complexity is the numbers of intervals on which disparity is
constant. The maximum disparity isD = 5 pixels

Fig. 16. Error of disparity estimates for an added DC level of 25%,N =
256,λ0 = 32 andσ = λ0/2

A−1 = A1 = −e−γ ,
A0 = 1 +e−2γ ,
B = C(1 − e−2γ) ,

whereC is an arbitrary constant.

Fig. 17. Density of disparity estimates for an added DC level of 25%,
N = 256,λ0 = 32 andσ = λ0/2

Fig. 18. Error of disparity estimates for an added DC level of 25%,N =
256,λ0 = 32 andσ = λ0

Separating real and imaginary parts,un = α(n) + i β(n),
we find the discrete version of system (16)

aα(n + 1) +c α(n) + aα(n− 1)

−b[β(n + 1) − β(n− 1)] = B fn ,

a β(n + 1) +c β(n) + a β(n− 1) (29)

+b[α(n + 1) − α(n− 1)] = 0 ,
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Fig. 19. Density of disparity estimates for an added DC level of 25%,
N = 256,λ0 = 32 andσ = λ0

Fig. 20. Error for the DC cleaned filters for three levels of added DC,
d = 0%, d = 50% andd = 100%;N = 512,λ0 = 40 andσ = λ0/2

Fig. 21. Density for the DC cleaned filters for three levels of added DC,
d = 0%, d = 50% andd = 100%,N = 512,λ0 = 40 andσ = λ0/2

Fig. 22. Schematic representation of a “cusp” lattice network. Each node
is connected with its nearest neighbors and with its next nearest neighbors
(four connections per node)

wherea = −e− γ cos(k0), b = −e− γ sin(k0), andc = (1+a2+
b2). Following steps similar to the ones used to derive Eq. 17,
the above system can be rewritten as a single equation that
involves the first four neighbors of each node, see Fig. 22.
For α(n),

a2α(n + 2) +a1α(n + 1) +a0α(n)

+a−1α(n− 1) +a−2α(n− 2) (30)

= b1 f (n + 1) +b0 f (n) + b−1 f (n− 1) ,

with
a−2 = a2 = a2 + b2 = e−2γ ,
a−1 = a1 = 2a c2 = −2e−γ (1 + e−2γ ) cosk0,

a0 = 2a2 + c2 − 2b2 = 1 + 4e−2γ cos2 k0 + e−4γ

and

b1 = −C (1 − e−2 γ ) e−γ cos(k0 − φ),
b0 = −C (1 − e−4 γ ) cos(φ),
b−1 = −C (1 − e−2 γ ) e−γ cos(k0 + φ),

whereφ = 0 for α(n), andC is an arbitrary constant. The
same equation holds forβ(n), with φ = π/2. The decay
parameterγ and the tuning phaseφ can be obtained from
a proper choice of coefficientsa, andb. In the appropriate
limit, the discrete formalism leads to the result derived in
the differential equation approach [5].

5.2 The quartic filter

Since the convolution equation with the quartic filter, Eq. 20,
is a fourth-order differential equation, the connectivity of
the discrete model has to be extended to the second nearest
neighbors

A2 e
−2 i k0u(n + 2) +A1 e

−i k0 u(n + 1)

+A0 u(n) +A−1 e
+i k0 u(n− 1)

+A−2 e
2 i k0 u(n− 2) = B f (n) . (31)

The corresponding discrete equations are obtained by plug-
ging in the discrete expression of the quartic filter,

u(n) =
+∞∑

k=−∞
sin

(π
8

+ γ2 |n− k|/µ
)

e−γ1 |n−k|/µ+i k0 (n−k) f (k) , (32)

with γ1 = 21/4 cos
(
π
8

)
, γ2 = 21/4 sin

(
π
8

)
. Five linear

equations are derived (fork ≥ n + 2, for k = n + 1, for
k = n, for k = n − 1 and fork ≤ n − 2). Exploiting sym-
metryAn = A−n, the number of equations is reduced from
five to three. CoefficientsA2 = A−2, A1 = A−1, andA0 are
the solution of the linear system: s4 + s0 s3 + s1 s0
s3 + s1 s2 + s0 s1

2s2 2s1 s0

 A2
A1
A0

 =

 0
0
B

 , (33)

where

sn = sin
(π

8
+ nγ2/µ

)
e−nγ1/µ . (34)

As done in the previous section, the complex discrete
equation can be written as two coupled real equations (see
Eq. 30). However, in this case, each node is connected to the
first and to the second nearest neighbors.
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Fig. 23a. The node basic block and its internal circuital structure: theblack dot represents the node which is stimulated by the photocurrentIs(n) and
receives inhibitory (K) and excitatory (G) contributions from neighboring nodes. The sum of the current contributions from other nodes is performed
by Kirchhoff current law at the node. The resulting excitation current,Ie(n), acts, in turn, on neighboring nodes controlling the currents of four current
generators.b Description of the node basic block at transistor level.Ie(n) is copied (weighted according toG andK values) to provide excitation or
inhibition to the neighboring nodes

In the present discussion, a lattice of infinite extent is
considered. To simulate it, we assume a natural boundary
condition: deleting the connections that would connect to
nodes that fall outside the boundaries of the array. As stated
in [21], this condition is equivalent to the Newman bound-
ary conditions of zero normal derivative in partial differ-
ential equations. The stability of the computational scheme
developed is discussed in Appendix B.

6 VLSI analog implementation

Analog recurrent filter operations with spatial kernels for
smoothing and contrast enhancement can be implemented by
using linear resistive networks with positive and negative re-
sistors [1, 11, 14, 17], or by current generators driven by the
voltage at other nodes (VCCS) [3]. Since our main interest is
to investigate how complex functionalities can be achieved
through cooperative computations, we choose to relate the
lattice networks’ equations to a circuit architecture of one-
way-interacting elements implemented as current-controlled
current sources (CCCS).

Let us thus consider a regular grid of nodes, in which
each node is fed by a current generator whose value is pro-
portional to the incident light at that point (feedforward con-
tribution). By using a current mode technique, in which all
signals are encoded by currents, the excitatione of the net-
work is mapped on a current, the interaction can be imple-
mented by CCCS that feed or sink currents according to the
current values of neighboring nodes (see Fig. 23a).

In this way, the analog signal processing of our circuit
architecture will be based on ratios of matched component
values [24], thus eliminating the dependence on the perfor-
mances of single devices. The sum of the current contribu-
tions from other nodes is performed by Kirchhoff current
law at the node.

One advantage of this interpretation shows up at transis-
tor level, where it is shown how to implement these inter-
actions with “high” precision through current mirrors which

provide, when the transistors are operating in the saturation
region, a weighted copy of their input currents according to
the W/L ratios of the transistors. To improve the matching
between devices, the gain ratios of the mirrors are restricted
to rational numbers, so that they can be implemented by
using two sets of identical transistors connected in parallel
(see Fig. 23b) [18]. A prototype 17-node VLSI circuit was
fabricated by IRST on its CMOS 2.0µm, N-well, single-
poly, and double-metal technology (see Fig. 24). Figure 25
compares measured and expected impulse response for three
different values of the phase: 0,π/2 andπ/4. These results
proves the feasibility of the approach to the generation of
more complex functionalities.

7 Discussion and conclusions

In this paper, we have discussed the analog implementation
of a phase-based technique for disparity estimaton through
continuous and discrete computational models. It has been
shown that the algorithm can be reduced to local operations.
In fact, convolutions can be performed by means of the solu-
tion of a linear system of differential equations whose order
depends on the smoothness of the local envelope used in the
Gabor-like filters. The first and simplest choice, i.e., the cusp
kernel that presents a discontinuity in the first derivative,
leads to a fourth-degree differential equation. A successive
approximation of the Gaussian kernel leads to the quartic
filter that improves the smoothness of the disparity field es-
timates but requires higher degree differential equations.

The modifications of the system’s performance due to the
envelope’s change were investigated in detail. The results of
the simulation experiments indicate that the performance of
the quartic filter is very close to the Gaussian’s. The cusp
filter is comparable if it is modified in order to eliminate the
sensitivity to the zero-frequency content of the input signals.

The continuous models were translated into a self-
consistent discrete lattice formalism, in which the degree
of the differential equation system is related to the number
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Fig. 24. Microphotograph of a 1D 2nd-order network chip

Fig. 25a–c.Comparisons between measured (dots) and theoretical (continuous lines) Gabor-like impulse responses of phasesa 0, b π/2 andc π/4

of interconnections per node required to perform the com-
putation. The implementation of a Gabor-like filter in which
the Gaussian envelope is replaced by a decaying exponential
requires that each lattice node is connected with the near-
est four neighbors. The quartic filter requires to increase
connectivity to eight neighbors per node. The limited num-
ber of connections is particularly helpful in the development
of analog VLSI circuits. The possibility of implementing
a computational procedure on an analog VLSI circuit is a
very important issue. VLSI technology can lead to the de-
velopment of microsystems capable of performing complex
computations in microseconds.

The model for the cusp filter was used to design and fab-
ricate a prototype analog chip that performs convolutions.
The chip, fabricated by IRST is constituted by a linear array
of 17 basic cells, each cell is connected with its 4 near-
est neighbors. The development of a larger version of this
circuit could lead to important applications because it is ca-
pable of performing convolutions with Gabor-like kernel in
microseconds. Furthermore, it offers the possibility of com-
prising sensing and processing on the same silicon chip.
Therefore, it could constitute an ideal low-cost, low-power
microsystem for early-stage information processing in hy-
brid systems for depth and/or movement estimation [18].

Appendix A
Shape of the quartic kernel

The analytical expression of the quartic envelope can be
easily derived by performing the inverse Fourier transform

1
2π

∫ +∞

−∞

ei k x

1 +µ2 k2 + µ4 k4/2!
dk (35)

by means of the residue theorem (i k = z/µ)

1
2π

∫ +i∞

−i∞

e
x z
µ

1 − z2 + z4/2!
dz

= i
∑
n

(z − zn) e
x z
µ

1 − z2
n + z4

n/2!
, (36)

wherezn are the zeros of
[

1 +µ2 (k − k0)2 + µ4 (k−k0)4

2!

]
that

lie inside the integration contour. The contour is closed ac-
cording to the sign ofx. Since zeros are atz1,2 = ± (a+ i b),
andz3,4 = ± (γ1 − i γ2), where

γ1 = 21/4 cos
(π

8

)
= 21/4

√
1 +

1√
2
,

and

γ2 = 21/4 sin
(π

8

)
= 21/4

√
1 − 1√

2
,

we find

Q(x) =
N

µ
sin

(π
8

+ γ2 |x|/µ
)
e−γ1 |x|/µ , (37)

whereN is a normalization factor.
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Fig. 26.Stability regions in theA1,A2 space. The resistive network is stable
only if A1 andA2 values are in a grayed region. In the light-gray region, the
operation performed is a double (i.e., cascade of) convolution with decaying
exponentials. In the dark gray area, the operation is a convolution with a
decaying oscillation given by (3). In this region the frequency decreases
whenA1 increases and the dispersion of the envelope increases withA2.
Pseudo-horizontal dotted linesare the locus for function with the same
spatial frequency.Pseudo-vertical linesare the locus for function with the
same product frequency times dispersion. See text

Appendix B
Stability analysis

The output of a linear, space invariant, network described
by (25) can be written as the convolution between the input
excitation and a kernel given by the response to a spatial
impulse. Hence, the convolution kernel can be found by ap-
plying a two-sided Z-transformation to both terms of (25)
and anti-transforming the I/O transfer function. For a 1D
network, the impulse response (i.e., the convolution kernel)
is given by anti-transforming function

H(z) =
Y (z)
F (z)

=

∑I
k=−I bkz

−k∑O
k=−O akz−k . (38)

It is noteworthy that, because of the Z-transform properties
and the linearity of the network: (i) the overall input/output
relation (i.e., Z-transform) for a system resulting from a lin-
ear combination of two independent subsystems (networks)
with the same input can be expressed as the correspond-
ing linear combination of the input/output relation (i.e., Z-
transform) for each subsystem (network); (ii) the relation
between the excitation at the nodes of a network driven by
the output of a second network and the input stimulus of
this second one (cascade of resistive networks) can be ex-
pressed as the product of the input/output relations (i.e., the
Z-transfer functions) of the two networks.

The stability of a 2nd-order network can be analyzed ac-
cording to [13] in the space of the parametersA1 = −a1/a0
andA2 = a2/a0. The network is stable if the corresponding
A1 andA2 parameters are in the grayed regions in Fig. 26.

From the stability point of viewA1 andA2 are sufficient
for the analysis. Proportional variation ofa0, a1, a2 affects
only the amplitude of the convolution kernel.

For each point inside the elliptical area (A2
1 < 4A2 −

8A2
2), the convolution kernel is of 2nd-order type, as de-

fined in (30). For each point outside the elliptical area to
which correspond a stable network (A2

1 > 4A2 − 8A2
2,

A2 < 1/6,A1 < A2 + 0.5, i.e., light-gray area in Fig. 26), the
convolution kernel is the result of two successive convolu-
tions with two decaying exponentials (e−γ1|n| and e−γ2|n|).
In particular on the frontier with the elliptical area,γ1 = γ2,
we have the best approximation of a Gaussian (it is well
known that the recurrent application of a convolution with a
decaying exponential converges to a Gaussian kernel). The
line marked with KO91 is the locus of the approximations
of Gaussians found in [13]. It is worthy to note that, when
A2 is null, the network degenerates to a order-one network
and the convolution kernel is a decaying exponential (γ1 = 0
or γ2 = 0).
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degli Studi, Milano, Italy, in 1994. He
performed the thesis work at IRST (Isti-
tuto per la Ricerca Scientifica e Tecno-
logica), Italy. He is currently a research
assistant and Ph.D. student in the group
of “Computational Neuroscience” at the
Dept. of Physiology, Ruhr-University
Bochum, Germany. His research inter-
ests include artificial vision, robotics and
object-oriented languages.

Silvio Sabatini was born in 1968. He
received the M.S. degree and the Ph.D.
in electronic engineering and computer
science at the Department of Biophys-
ical and Electronic Engineering (DIBE)
of the University of Genoa, Italy, in
1992 and 1996, respectively. In 1996,
he joined, as post-doctoral fellow, the
“Physical Structure of Perception and
Computation” (PSPC) Research Group
at DIBE (http://www.dibe.unige.it/
department/micro/pspc/home.html) wor-
king on: neuromorphic perceptual mi-
crosystems, biocybernetics of vision,
cortical computational models, multidi-
mensional signal representation.

Luigi Raffo received his degree in elec-
tronic engineering from the University
of Genova, Italy and his PhD degree in
electronic engineering and computer sci-
ence in 1994 from the same university.
In 1994, he joined the Microelectronic
Group of the Department of Electrical
and Electronic Engineering, University
of Cagliari, as an assistant professor. He
is currently associate professor of micro-
electronics. His research interest are in
the field of VLSI architectures, systems
and circuits. He is author of more than
40 international papers in his research
fields.


