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Abstract. The analog implementation of a phase-based techstruction of "neuromorphic” computers in which computa-
nique for disparity estimation is discussed. This technique idion is realized in the systems dynamics. In contrast to digital
based on the convolution of images with Gabor filters. Thesystem where computation is obtained by performing a well-
article shows that by replacing the Gaussian envelope witldefined sequence of logical operations, analog computation
other envelopes, the convolution operation is equivalent taesults as the output of the cooperative interaction of the
the solution of a system of differential equations, whose or-(electronic) elements of a network. This approach is partic-
der is related to the smoothness of the kernel. A detailedularly attractive for those early vision applications in which
comparison between the disparity estimates obtained usinfiexibility of computation is less important than the speed
these kernels and those obtained using the standard filtdo go from signals to action. In such devices, sensory in-
is presented. The discretization of the model leads to latformation is directly mapped in the electrical variables, and
tice networks in which the number of connections per nodecomputation is carried out massively in parallel with high
required to perform convolution is limited to the first few efficiency and speed.
nearest neighbors. The short connection length makes these Effective collective computation (small area and low
filter suitable for analog VLSI implementation, for which power consumption) on real-time signals is only possible
the number of connection per node is a crucial factor. Ex-when taking full advantage of the CMOS technology at tran-
perimental measures on a prototype CMOS 17-node chigistor and/or circuit levels. Several examples are present in
validated the approach. the literature, illustrating how powerful this approach can be.
Among these contributions we can distinguish two schools
Key words: Phase-based technique — Differential equationsof thought. The first one, problem-oriented, starts from a
— Disparity — Analog computation — VLSI computational approach to visual tasks, formulated as vari-
ational problems. Analog VLSI circuits are considered as
“analog computers” on which to map the related Euler-
Lagrange equations [10, 12, 15]. The second one, stressing
the similarities between the physics of analog CMOS and
1 Introduction brain circuits, has accomplished the goal of reproducing the
various blocks of first stages in the visual pathway: photore-
The capabilities of the human (or animal) visual system toceptors, retinal cells, and optical nerve. Applications of these
process sensory information are still beyond the power ofblocks have been considered in relation to contrast adapta-
today’s computing machines even when perception is contion, stereo correspondence, motion, etc. [6, 14, 22, 25].
sidered at the lowest levels. Although early vision processes The implementation of vision algorithms by means of
can be defined in term of mathematically well-defined pro-analog circuits has to overcome several difficulties. One of
cedures, their implementation is still hampered by the hugdhe principal problem regards network connectivity. A high
amount of computing power needed to perform the math-humber of connections per node constitutes a serious obsta-
ematical procedures (filtering, correlations, matching, etc.)cle for algorithm implementability. In analog computations,
However, recent technological advances, such as the develRdeed, a physical link is necessary to exchange informa-
opment of massive parallel computers and special-purposton between two nodes of a computational network. In this
VLSI circuits, indicate that it will soon be possible to de- context, it is important to be able to devise algorithms that
velop real-time vision systems that combine different per-minimize the number of connections per node necessary to
ceptual modalities. implement a given functionality [1, 14, 19, 21].
In particular, analog VLSI technology has reached a  This work deals with the analog implementation of a
point where it is realistic to imagine and project the con-technique for depth and motion estimation [2, 8, 9] that is
based on the convolution of the incoming images with Ga-
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bor filters. It is shown that the convolution operations can beUsing the average of the derivatives, disparity is given by

realized by means of solutions of a linear system of differ- [Ad(2)]
ential equations (DE). The DE order is related to the numbei(z) ~ 2 —+ }2%’“ . (4)
of interconnections per node required to perform the compu- by (@) +93i(2)

tation in the corresponding discrete network. The influencen its standard formulation, the local envelope is chosen to

of the envelope change on the quality of the filter estimatese a Gaussian:

is investigated in detail and compared with the standard con- 1 — R 2,2

volution results. G(z) = e w2, Gk)=e 2 . (5)

The model presented in this work was used to design and V2ro

fabricate a demonstrative analog chip that performs convo- The choice is dictated by the fact that the Gaussian en-

lutions. The chip is constituted of a linear array of 17 basicvelope is best localized in both space and frequency: the

cells, each cell is connected with its next and next nearesproduct of the uncertainties in space and in frequency at-

neighbors. This research activity was part of the Esprit Basidains the minimum valueAz - Ak = 1. For other filters,

Research Project 8503 “Cormorant”, whose objective waghe product of uncertainties is always greatér; - Ak > 1.

the design of algorithmic solutions for early vision process-A relation betweers and kg is imposed by assuming that

ing that are suitable for analog hardware implementation. the bandwidth of the Gabor filter is one octave, that is
Ao = %’ra ~ 2.1¢. This means the Gaussian envelope con-
tains a complete wavelengly in the interval fpo—o, xot+o].

2 The phase-difference-based technique Disparity computation is reliable when phases are linear.
Around singular points where the amplitude vanishés) =

Stereoscopy is a technique used to extract depth from &, the phase develops stong nonlinearities. As a consequence,

pair of images taken from slightly different view points. approximation (4) fails. Therefore, computation at paint

Depth can be computed from the relative position of corre-is accepted only if

sponding points in the two images. In a first approximation,;

the positions of corresponding points are related by a oneL (¢ (x) = ko) | < koTs , (6)

dimensional shift, thalisparity, along the direction of the whereTs ~ 0.4 [8]. The left side of (6) measures the dif-

epipolar lines. In the simplest cpnfiguration, in which op;i- ference between the peak frequenky, and the local fre-
cal axes are parallel, epipolar lines are parallel to the line "

joining the optical centers of the cameras. quency,y (). _ .

Several techniques have been developed to estimate the Fr(.)m. the perspective .Of analog computation, an aigo-
position disparity of corresponding points from pairs of rlt_hm is implementable if it can be redu_ced to Iocal oper-
epipolar lines. The phase-difference-based technique, prft'ons' The phase-based approach to disparity estimation is
posed by [20], is based on the computation of the differencd2¢@! €xcept for the convolution operation. However, if the
between the phases of the convolutions of the two stere&aussian envelope is replaced by other kernels, convolution

images with complex bandpass filters - the Gabor filters can be transformed into the solution of a set of differential
Since it is assumed that the two signals, denotetk4s) " equations whose order is related to the number of connec-
and f;(z), arelocally related by a shift ' tions per node necessary to implement the filter in a discrete

model.
fr(@+d(z0)/2) = fr(z — d(x0)/2) 1)

in the neighborhood of each poing the local & Fourier
components off(z) and fr(z) are related by a phase dif-
ference equal t\y(k) = ¥r(k) — vgr(k) = kd.

The local Fourier analysis is performed by convolving

3 Local Gabor-like filters

Because of the convolution theorem,

the images with a local envelope, u(z) = / dy Gz —y) i@ f(y) (7)
ur,r(z, ko) = / dy Gz —y) e’ =¥) fr/r() can be expressed as the inverse Fourier transform of

= pr/r(@) e Ven@ (2) k)= Gk — ko) f(K) , ®)
where G(z — y) is a function that goes to zero @8 —y|  where@(k), G(k), and f(k) indicate the Fourier transforms
increases, andy is the tuning frequency of the filter. of functionu(z), G(z), and f(x), respectively.

As a function of spatial position, the phase of the filter |t G(x) is different from zero for every;, it is possible
responsey(z), has a quadinear behavior. In fact, the phase g write that

derivative,.(x) is generally close to the tuning frequency, ~ 4 . ~
V.(z) ~ ko. Linearity allows an accurate estimation of the G~ (k — ko) u(k) = f(k) 9)
shift from the phase difference by means of a second-ordep, py expanding the Gaussian kerngl< o/\V?2)
expansion ind(z) *

pi(k = ko)*

AY(a) = M (@)~ (@) =v(r — d(2)/2)— b + d(2)/2) L2k — ko) + == .| k) = (k) . (10)

- 3
= Yulw) d(@) + O(d(z)) - 3) Since multiplication by ¥ — ko) in frequency space corre-
1 The second-order term is zerp.. /2! (d(x) — d?(x))/4 = 0. sponds to the application of differential operat%[— 1 ko]
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ates a series of local envelopes. The envelope’s smoothness

increases with the order of the corresponding differentialcan be turned into a linear differential equation in which the

equation.

3.1 The cusp filter

The first-order expansion ip = 1/~

(72 + (k= ko)?] @) = 72 ()
generates the cusp envelope

C(x) = % e~ el

This implies that integral equation

(11

(12)

input signal f(x) acts as a source term

(ko) (o o) u@) +2ul@) =S, (14)
x dz

ie.,

(@) * 20 ko) + (B + ) (@) =47 f) . (15)

Showing real and imaginary parts(z) = a(z) + i 5(z),
differential Eqg. 15 can be written as the ODE system
~auz — 2ko Bs *+ (/7 +k§) @ = 77 f(2)
_ﬁL:L +2k004w +(72+k(§)ﬂ =0. (16)
The system can be rewritten as a single fourth-order differ-
ential equation. For function(z), we find
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—Olgrax + 2 (72 - ké) Qg — Eza = ’72 (fa:a: - E f) . (17)

In Fig.1, the solution of the DE system for a one- |
dimensional (1D) image is shown. The two functions repro-
duce the real and imaginary parts of the “oscillating” cusp |
filter, as has to be expected for delta-like signals. The phas |
is close to a straight line. Figure 2 illustrates the disparity,
function obtained using both the local frequengy(z), and |
the tuning frequencyto. The computed disparity is correct: |
in fact, the first spike is shifted by two pixels, the second
by four pixels, and the transition between the two disparit
values is smooth. Ripples in the disparity function in cor-
respondence to image structures are a consequence of
sharp peak of the cusp envelope.

Figure 6 shows the disparity map obtained from a sterec | d.’ - "

F
pair of computer-generated images using the cusp envelop( | ~”
The computer-generated stereo pair is shown in Figs. 3 and 4 ?% : K
The true disparity map is displayed in Fig?5 ‘ -
As usual, points where the algorithm is not reliable are :
drawn black. In general, points were disparity can be estiFig. 3. The computer-generated “corridor imageff), size 256x 256
mates are in the neighborhood of visual features, such agixels
edges or textures. The size of the neighborhood depends on
the width of the filter. The wavy behavior of the disparity
estimates at the borders of the tiles corresponds to the rippl
evidenced in Fig. 2. For this image, a comparison betwee
errors and densities of the cusp and the Gaussian filters
shown in Fig. 7. The error measure is defined as the absolut
difference between the true disparity (TD) and the estimated
value (D). In the following, we always refer to the average
value of the error defined as the normalized sum of the error
at the nonsingular points,

1
error = Z |TD;; — Dyl , (18)
1.7

wherei andj run over the nonsingular points, aid is the
number of nonsingular points. Density is the ratio betwee
the number of nonsingular points and the total number of
points. ’
Filters that are smoother at the origin and have a sharpe
spectrum decay can be generated from Eq. 10. However, thi_
causes an increase of the order of the differential equationssig. 4. The computer-generated “corridor imagelght), size 256x 256

pixels
3.2 The quartic filter 1d 11d
2 (5 == — ko) ul@) + p* 5 (5 = — ko) u(z)
] ) ) i dx 2! Vi de
If the k* terms are kept in the expansion of the Gaussian + u(z) = f(z) (20)
kernel. Eq. 10, the quartic envelope is found, see Fig. 8. Its
analytical expression is (see Appendix A). I.e.,
1 ) .
Q(LL') = E sin (7_81— +72|IE‘/,U,) e—’Yl‘ZVM , (19) §N4 (Uxacacac — 4 koumx — Gkgum + 4 kgux +k3u)
! 4122 (g + 20 oty +K3u) + @ = f(@) (21)

wherey; = 2Y4cos( %), 72 = 2Y4sin(%) and N is a . . -
normalization factor. The smoother behavior at the origin'S the convolution of the source terifi(z), with an “oscil-

ting” quartic filter.
corresponds to the sharper decay of the frequency spectrurh”? ! . . .
The solution of equation Making plain real and imaginary parts, Eq. 20 leads to

the ODE system:

2 These images are orthographic projections generated with the ray- 1
tracing program of the Computer Graphics group of Prof. Fellner at the —,u4 (amm +4ko Bozz — Gk(z, Qpy — 4/€8 B + ké a)
Bonn University. Images and their description can be found at the follow- 2
ing address: http://www-dbv.cs.uni-bonn/ ft/stereo.html. +1? (—am — 2ko By + k3 a) +a=f(x), (22)
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Figure 9 shows the disparity function estimated using

quartic filter for the stereo signal of Fig.1. The “ripples
found in the cusp case are not present.

theFor well-defined stereo signals characterized by simple dis-
» parity fields, the disparity estimates of the three filters are
comparable. Figures 10 and 11 show the disparity estimates
of the three filters for an image with spike-like features and
for a random-dot image, respectively. In general, the cusp
4 Performance of the Gabor-like filters estimate is not as smooth as the quartic and the Gaussian
estimates.
From the computational perspective, the cusp and the quar- To obtain a significative comparison between the en-
tic filters are interesting because they require low-order DEvelopes, the filters’ performances were evaluated for a large
systems. In fact, in the corresponding discrete systems, theumber of random-dots 1D image pairs of siXepixels.
DE order is related to the number of connections per nodd’erformance is measured in terms of error and density as
necessary to realize the convolution, see Sect.5. Howevedefined in Sect. 3.1. It is important to notice that the random-
the change of envelope modifies the quality of disparity es-dot 1D images used in the following simulations have zero
timates [7]. In this section, a comparison among the cuspmean, i.e.,[ f(z)dz = 0, and that the shifts between left
the quartic, and the Gaussian filters is presented. and right signals are integer.
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4.2 Stereo-signal Complexity FDC(:B, k:o)=/dy G(w _ y) el ko(z—y) _ é(ko)} f(y) , (23)

At first, to test the estimation capability, constant disparity ~ .

fields are used, i.e., the left image is obtained by a conWhereG(k) if the Fourier transform of envelop&(z); for

stant shift of the right one. This means that there are ndhe cusp, we have

occlusions. Figures 12 and 13 show the filters’ performances. 2

for three different wavelengths. For fixed wavelength, theG/(ko) = 22

filters’ behaviors follow the results found in[4], the error is v 0

almost flat for disparity in the range-p2, 2], then it grows  and for the quartic,

rapidly. The sharp error increase is due to wraparound ef- _ 1

fects (aliasing). These are reduced using larger wavelength:i(ko) = 57 2 YWk

A simple increase of the filter's width, for fixed wavelength, 1+ko/u?+0.5kg/

does not change the error curves but improves only the denJsing this definition, the filters’ performances become very

sities. Using filter parameters that produce approximativelysimilar even in presence of high zero-frequency content. Fig-

the same densities, the cusp error is slightly larger than theres 20 and 21 show that performance for DC values of 50%

quartic and the Gaussian error, in particular for large wave-and 100% is almost identical to performance with no DC

lengths. added. Operation (23) is the difference between a convolu-
Analogous results are found for piecewise constant distion computed with tuning frequendy, and a convolution

parity fields. In this case, there are occlusions, thereforewith k, = 0 weight by factor(;(ko)_

the filters interpolation capabilities are also tested. Figure 14 N

shows the filters’ performances for random-dot stereo paird™2“ (z, ko) = F(x, ko) — G(ko) F(x, ko = 0) . (24)

in which disparity assumes random values in the range

[0, D =5] in 20 randomly generated intervals. An example

of disparity estimates for random-dot images for four inter-5 Discrete models

vals is shown in Fig.11. The error curves display minima

for Ao ~ 2.5D, where D is the maximum disparity. This Differential equations can be directly mapped on the discrete

behavior is close to the one found in real stereo imagespixel space by means of IIR filter design techniques[16].

see[23]. Going from left to right, the error decreases be-Given the shape of the convolution kernel, it is necessary to

cause the wavelength increases (as explained above). Howletermine the values of coefficientsandb of the filter

ever, when the filter becomes wider than disparity variations, o, I,
the error starts to increase because the filter averages oveE apy(n — k) = Z buf(n—k) (n e N) (25)
close-by features of different disparities. The cusp perfor-,2—, k=1,

mance is slightly inferior to the Gaussian performance, bot
in error and density.

An important issue is the influence of the stereo-signa
complexity on the quality of disparity estimation. Here, we
parametrize complexity as the number of intervals on which
disparity is constant. Zero complexity means that the dis-
parity is constant over the whole image, when the paramete,
increases there are several regions of different constant dis-

parity and occlusions start to appear. Figure 15 shows thero determine the discrete model for the convolution with an

?lljtr?ézoﬁeor;cc')[ﬂ:annucnii;so? il;ll'jtg(r:\tla?lg of complexity, i.e., as aoscillating decaying exponential, let us consider the discrete
: version of Eq. 15 i.e.,

Ag e ko yu(n + 1) + Ag u(n)
4.3 DC sensitivity +A_q et Fou(n —1) =B f(n), (26)

r%hat realizes the functionality required. Hergn) andy(n)

jare the input and the output of the processing node at loca-
tion (n), andI and O determine the number of neighbors
necessary to perform the computation.

.1 The cusp filter

Large differences among filters’ performances arise wherf{"h€reé4i, Ao andA_, are real numbers and the exponential
sensitivity to the zero-frequency signal content (DC sensi-terms are explicited to simplify equations. Plugging in the
tivity) is taken into consideration. DC sensitivity is caused discrete expression of the oscillating cusp

by the nonzero value of integrgl dy G(z — y) f(y). The +00 _
cusp is much more sensitive to the zero-frequency compou(n) = > 7 Inkltkoln=h) f (27)
nents of the signals. Figures 16 and 17 illustrate the filters’ k=—o00

performance as a function of the DC level added to the in-, ; ; N -
put signal. Note that 25% of DC is enough to dramaticallytsherfgnlélnfeoaﬂr€ iqsagzgstﬁéetﬂ%l\g% Lhi Tsltﬁ e n+1, the
decrease the cusp density. This effect can be reduced by ’ - '
increasing the number of oscillations within the envelopeA; + Age™ +A_j1e727 =0,

support, i.e., by increasing the filter width for a fixed wave- 4, ¢~ + 4y +A_;e77 = B, (28)
length, as shown in Figs. 18 and 19. However, filterscanbe, 2+, , v, 4 _g

simply modified in order to reduce DC effects by redefining 1€ 0¢ -1 ’

convolution as The system solution gives
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Separating real and imaginary parts, = a(n) + i 3(n),
we find the discrete version of system (16)

aan+1)+ca(n)+aa(n —1)
=b[B(n+1)—Bn-1)]=Bfn,

af(n+1)+cpB(n)+ap(n—1)
+bla(n+1)—a(n —1)]=0,

(29)
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wherea = —e~ 7 cos(ko), b = —e~ 7 sin(ko), andc = (1+a+

b?). Following steps similar to the ones used to derive Eq. 17,
the above system can be rewritten as a single equation that
involves the first four neighbors of each node, see Fig. 22.
For a(n),

aza(n +2)+aya(n +1) +aga(n)

+a_j1a(n—1)+a_sa(n —2) (30)
=b1 f(n+1)+bo f(n) +b_1 f(n — 1),
with
a_p»=ap; = a? +b? = e 2,
a_1=a; = 2ac? =  —2e7(1+e ?)cosko,
ag = 2a2+c2 =202 = 1+4e27cofkgte
and
by = —C(1l—e2Y)e " cos(ko — ¢),
bo = —C(—e*)cos(d),
b_y = —C@—e2Y)e 7 cos(ko+ ),

where ¢ = 0 for a(n), andC' is an arbitrary constant. The
same equation holds fg#(n), with ¢ = 7/2. The decay
parametery and the tuning phaseé can be obtained from
a proper choice of coefficients, andb. In the appropriate
limit, the discrete formalism leads to the result derived in
the differential equation approach [5].

5.2 The quartic filter

Since the convolution equation with the quartic filter, Eqg. 20,
is a fourth-order differential equation, the connectivity of
the discrete model has to be extended to the second nearest
neighbors
Ay e 2 koy(n +2) + Ay e PR y(n + 1)

+Agu(n) + A_1 e  y(n — 1)

+A_pe?tkoy(n —2) = B f(n) . (31)
The corresponding discrete equations are obtained by plug-
ging in the discrete expression of the quartic filter,

X
u(n)= > sin (§ +2(n — k‘|/M)
k=—o0
e~ In—kl|/u+iko (n—k) f(&) , (32)

with 71 = 24 cos(g) , v = 2Y4sin(%). Five linear
equations are derived (fdt > n + 2, for k = n+ 1, for
k=n, for k=n—1 and fork < n — 2). Exploiting sym-
metry A,, = A_,,, the number of equations is reduced from
five to three. Coefficientsl, = A_», A1 = A_1, and Ag are
the solution of the linear system:

Sa+ 80 83+ 81 Sg Ao 0
83+ 81 S+ 80 S1 A = 0 , (33)
282 251 S0 Ao B
where
LT _
sn:S|n(§+n’yz/;¢>e n/i (34)

As done in the previous section, the complex discrete

Fig. 22. Schematic representation of a “cusp” lattice network. Each nodeequation can be written as two coupled real equations (see

is connected with its nearest neighbors and with its next nearest neighbonEq_ 30)_ However, in this case, each node is connected to the
(four connections per node)

first and to the second nearest neighbors.
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Fig. 23a. The node basic block and its internal circuital structure: lifteek dotrepresents the node which is stimulated by the photocurkgit) and
receives inhibitory ) and excitatory ) contributions from neighboring nodes. The sum of the current contributions from other nodes is performed
by Kirchhoff current law at the node. The resulting excitation currépfn), acts, in turn, on neighboring nodes controlling the currents of four current
generatorsb Description of the node basic block at transistor leve(n) is copied (weighted according 6 and K values) to provide excitation or
inhibition to the neighboring nodes

In the present discussion, a lattice of infinite extent isprovide, when the transistors are operating in the saturation
considered. To simulate it, we assume a natural boundaryegion, a weighted copy of their input currents according to
condition: deleting the connections that would connect tothe W/L ratios of the transistors. To improve the matching
nodes that fall outside the boundaries of the array. As statebletween devices, the gain ratios of the mirrors are restricted
in[21], this condition is equivalent to the Newman bound- to rational numbers, so that they can be implemented by
ary conditions of zero normal derivative in partial differ- using two sets of identical transistors connected in parallel
ential equations. The stability of the computational schemdsee Fig. 23b) [18]. A prototype 17-node VLSI circuit was
developed is discussed in Appendix B. fabricated by IRST on its CMOS 2.0m, N-well, single-

poly, and double-metal technology (see Fig.24). Figure 25
compares measured and expected impulse response for three
6 VLSI analog implementation different values of the phase: 8/2 and= /4. These results
proves the feasibility of the approach to the generation of
Analog recurrent filter operations with spatial kernels for more complex functionalities.
smoothing and contrast enhancement can be implemented by
using linear resistive networks with positive and negative re-
sistors [1, 11, 14, 17], or by current generators driven by the7 Discussion and conclusions
voltage at other nodes (VCCS) [3]. Since our main interest is
to investigate how complex functionalities can be achievedn this paper, we have discussed the analog implementation
through cooperative computations, we choose to relate thef a phase-based technique for disparity estimaton through
lattice networks’ equations to a circuit architecture of one-continuous and discrete computational models. It has been
way-interacting elements implemented as current-controlledshown that the algorithm can be reduced to local operations.
current sources (CCCS). In fact, convolutions can be performed by means of the solu-

Let us thus consider a regular grid of nodes, in whichtion of a linear system of differential equations whose order
each node is fed by a current generator whose value is pradepends on the smoothness of the local envelope used in the
portional to the incident light at that point (feedforward con- Gabor-like filters. The first and simplest choice, i.e., the cusp
tribution). By using a current mode technique, in which all kernel that presents a discontinuity in the first derivative,
signals are encoded by currents, the excitatiarf the net-  leads to a fourth-degree differential equation. A successive
work is mapped on a current, the interaction can be imple-approximation of the Gaussian kernel leads to the quartic
mented by CCCS that feed or sink currents according to thdilter that improves the smoothness of the disparity field es-
current values of neighboring nodes (see Fig. 23a). timates but requires higher degree differential equations.

In this way, the analog signal processing of our circuit ~ The modifications of the system’s performance due to the
architecture will be based on ratios of matched componenénvelope’s change were investigated in detail. The results of
values [24], thus eliminating the dependence on the perforthe simulation experiments indicate that the performance of
mances of single devices. The sum of the current contributhe quartic filter is very close to the Gaussian’s. The cusp
tions from other nodes is performed by Kirchhoff current filter is comparable if it is modified in order to eliminate the
law at the node. sensitivity to the zero-frequency content of the input signals.

One advantage of this interpretation shows up at transis- The continuous models were translated into a self-
tor level, where it is shown how to implement these inter- consistent discrete lattice formalism, in which the degree
actions with “high” precision through current mirrors which of the differential equation system is related to the number
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Fig. 24. Microphotograph of a 1D 2nd-order network chip

2007

output current [A]
H
output current [A]
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Fig. 25a—c.Comparisons between measureidt§ and theoreticaldontinuous linesGabor-like impulse responses of phase8, b /2 andc = /4

of interconnections per node required to perform the com- 1 / oo etk k (35)

putation. The implementation of a Gabor-like filter in which 27 1+p2 k2 + pt k42! d
the Gaussian envelope is replaced by a decaying exponential

requires that each lattice node is connected with the neamy means of the residue theoreik (= z/ 1)
est four neighbors. The quartic filter requires to increase

connectivity to eight neighbors per node. The limited num- 4 +i 00 e

ber of connections is particularly helpful in the development% / 4 m dz

of analog VLSI circuits. The possibility of implementing oo cT

a computational procedure on an analog VLSI circuit isa  _ . (z —zp)e 36
very important issue. VLSI technology can lead to the de- ! 1—22+24/217 (36)
velopment of microsystems capable of performing complex "

computations in microseconds. ) 2 o bt (k)

The model for the cusp filter was used to design and fabWherez, are the zeros Oﬁl +pc (k — ko)* + “TO} that
ricate a prototype analog chip that performs convolutionslie inside the integration contour. The contour is closed ac-
The chip, fabricated by IRST is constituted by a linear arraycording to the sign of:. Since zeros are at , = + (a+ib),
of 17 basic cells, each cell is connected with its 4 near-andz34 = £ (71 — i 72), Where
est neighbors. The development of a larger version of this
circuit could lead to important applications because it is ca- - 1
pable of performing convolutions with Gabor-like kernel in ~; = 21/4 cos(—) = 21/4, [1+—,
microseconds. Furthermore, it offers the possibility of com- 8 V2
prising sensing and processing on the same silicon chip.

Therefore, it could constitute an ideal low-cost, low-power and
microsystem for early-stage information processing in hy-

brid systems for depth and/or movement estimation [18]. = 24 sin (f) —ot/4 1 1 7
V2
Appendix A we find
Shape of the quartic kernel N -
Q@)= = sin(g + 7z fol/u) 1ol (37)
w

The analytical expression of the quartic envelope can be
easily derived by performing the inverse Fourier transform where N is a normalization factor.
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fined in (30). For each point outside the elliptical area to
which correspond a stable networkd¥ > 44, — 8453,

A < 1/6,A; < A,+0.5, i.e., light-gray area in Fig. 26), the
convolution kernel is the result of two successive convolu-
tions with two decaying exponentials(&!"! and e 2I"l).

In particular on the frontier with the elliptical areg, = 7,,

we have the best approximation of a Gaussian (it is well
known that the recurrent application of a convolution with a
decaying exponential converges to a Gaussian kernel). The
line marked with KO91 is the locus of the approximations
of Gaussians found in [13]. It is worthy to note that, when
Ay is null, the network degenerates to a order-one network

% 01 02 03 04 05 0.6 0.7

A2

and the convolution kernel is a decaying exponentialH 0
or v, =0).

Fig. 26. Stability regions in thed;, A, space. The resistive network is stable References

only if A; andA; values are in a grayed region. In the light-gray region, the
operation performed is a double (i.e., cascade of) convolution with decaying 1.
exponentials. In the dark gray area, the operation is a convolution with a
decaying oscillation given by (3). In this region the frequency decreases
when A; increases and the dispersion of the envelope increasesAyith
Pseudo-horizontal dotted lineasre the locus for function with the same 2.
spatial frequencyPseudo-vertical linesire the locus for function with the
same product frequency times dispersion. See text 3.

Appendix B
Stability analysis

The output of a linear, space invariant, network described
by (25) can be written as the convolution between the input 5.
excitation and a kernel given by the response to a spatial
impulse. Hence, the convolution kernel can be found by ap-
plying a two-sided Z-transformation to both terms of (25) ™
and anti-transforming the 1/O transfer function. For a 1D ;
network, the impulse response (i.e., the convolution kernel)
is given by anti-transforming function 8.

V() _ Dpeybez"
F(2) Zngo apz k-

H(z) = (38) 9.

. . 10.
It is noteworthy that, because of the Z-transform properties 0

and the linearity of the network: (i) the overall input/output

relation (i.e., Z-transform) for a system resulting from a lin- 11.

ear combination of two independent subsystems (networks)
with the same input can be expressed as the correspond-
ing linear combination of the input/output relation (i.e., Z-
transform) for each subsystem (network); (i) the relation ;5
between the excitation at the nodes of a network driven by
the output of a second network and the input stimulus of

this second one (cascade of resistive networks) can be ex4.

pressed as the product of the input/output relations (i.e., the
Z-transfer functions) of the two networks.
The stability of a 2nd-order network can be analyzed ac-

cording to [13] in the space of the parametdris= —a;/ag 16.

and A, = az/ao. The network is stable if the corresponding

A; and A, parameters are in the grayed regions in Fig. 26.17.

From the stability point of viewA; and A, are sulfficient
for the analysis. Proportional variation a§, a1, ay affects
only the amplitude of the convolution kernel.

For each point inside the elliptical ared < 44, — 19.

8A432), the convolution kernel is of 2nd-order type, as de-
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