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Abstract

A model for the generation of cortical cells selective to motion-in-depth
is presented. The model relies upon the computation of the total rate
of change of the disparity through the combination of the outputs of
monocular cortical units characterized by spatiotemporal receptive fields
extracting temporal variations of phase information on the left and right
retinal images. Each monocular unit of the cortical architecture can be
directly compared to the Adelson and Bergen’s motion detector, thus
establishing a link between the information contained in the total deriva-
tive of the binocular disparity and those hold in the interocular velocity
differences. Experimental simulations on stereo sequences evidenced that
the model can quantitatively predict motion-in-depth information.

1 Introduction

The analysis of a dynamic scene implies the estimates of motion parameters
to infer spatio-temporal information about the visual world. Among them,
the perception of motion-in-depth (MID), i.e. the capability of discriminat-
ing between forward and backward movements of objects from an observer,
has important implications for autonomous robot navigation and surveillance
in dynamic environments. In general, a reliable estimate of motion-in-depth
can be helped by considering the dynamic stereo correspondence problem in
the stereo image signals acquired by a binocular vision system. Fig. 1 shows
the relationships between an object moving in 3-D space and the geometrical
projection of the image in the right and left retinas. If an observer fixates at
a distance D, the perception of depth of an object positioned at a distance Zp
can be related to the differences in the positions of the corresponding points
in the stereo image pair projected on the retinas, provided that Zp and D are
large enough (D,Zp > a in Fig. 1, where a is the interpupillary distance).
In a first approximation, the positions of corresponding points are related by
a 1-D horizontal shift, the disparity, along the direction of the epipolar lines.
Formally, the left and right observed intensities from the two eyes, respectively
IF(z) and IR (x), result related as It(x) = IF[z + §(x)], where §(x) is the
(horizontal) binocular disparity. If an object moves from P to @Q its disparity
changes and projects different velocities on the retinas (vr, vg). Thus, the
Z component of the object’s motion (i.e., its motion-in-depth) V can be ap-
proximated in two ways [1]: (1) by the rate of change of disparity, and (2)
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Figure 1: The stereo dynamic correspondence problem. A moving object in the 3-D
space projects different trajectories onto the left and right images. The differences
between the two trajectories carry information about motion-in-depth.

by the difference between retinal velocities, as it is evidenced in the box in
Fig. 1. The predominance of one measure on the other one corresponds to dif-
ferent hypotheses on the architectural solutions adopted by visual cortical cells
in mammals. There are, indeed, several experimental evidences that cortical
neurons with a specific sensitivity to retinal disparities play a key role in the
perception of stereoscopic depth [2][3]. Though, to date, it is not completely
known the way in which cortical neurons measure stereo disparity and motion
information. In this paper, we show that the two measures can be placed into
a common framework considering a phase-based disparity encoding scheme.

2 Phase-based measurements of local disparity

According to the Fourier Shift Theorem, the spatial shift § in an image domain
effects a phase shift kd in the Fourier domain. On the basis of this property,
several researchers (e.g., [4]) proposed phase-based techniques in which dis-
parity is estimated in terms of phase differences in the spectral components
of the stereo image pair. Spatially-localized phase measures can be obtained
by filtering operations with complex-valued quadrature pair of Gabor filters
h(z, ko) = e~@"/7%gikoz  where ko is the peak frequency of the filter and o



relates to its spatial extension. The resulting convolutions with the left and
right binocular signals can be expressed as Q(z) = p(z)e’¢®) = C(z) +iS(z)
where p(z) = /C?(z) + S?(z) and ¢(z) = arctan (S(z)/C(z)) denote their
amplitude and phase components and C(z) and S(z) are the responses of
the quadrature pair of filters. Hence, binocular disparity can be predicted
by 6(z) = [¢%(x) — GR(x)]/k(z) where k(z) = [6E(z) + 6%()]/2 is the aver-
age instantaneous frequency of the bandpass signal, and can be approximated
by the peak of the Gabor filter k3. Extending to time domain, the dispar-
ity of a point moving with the motion field can be estimated by d[z(¢),t] =
(¢L[z(t),t] — ¢F[x(t),t])/ko, where phase components are computed from the
spatiotemporal convolutions of the stereo image pair Q(z,t) = C(z,t)+iS(z,t)
with directionally tuned Gabor filters with central frequency p = (ko,wo)-

3 The cortical model

If disparity is defined with respect to the spatial coordinate 2, by differenti-
ating with respect to time, its total rate of variation can be written as
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where v’ is the horizontal component of the velocity signal on the left retina.
Considering the conservation property of local phase measurements [5], im-
age velocities can be computed from the temporal evolution of constant phase
contours, and thus:
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Combining Eq. (2) with Eq. (1) we obtain d§/dt = (v® — v1)¢Z/kq, where
(v® —vT) is the phase-based interocular velocity difference along the epipolar
lines. When the spatial tuning frequency of the Gabor filter ky approaches the
instantaneous spatial frequency of the left and right convolution signals one
can derive the following approximated expressions:

di =~ ot ko v (3)

The partial derivative of the disparity can be directly computed by convolutions
(S, C) of stereo image pairs and by their temporal derivatives (S, Cy):
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thus avoiding explicit calculation and differentiation of phase, and the attendant
problem of phase unwrapping.

Since numerical differentiation is very sensitive to noise, proper regular-
ized solutions have to be adopted to compute correct and stable numerical
derivates. As a simple way to avoid the undesired effects of noise, band-limited




filters can be used to filter out high frequencies that are amplified by differen-
tiation. Specifically, if one prefilters the image signal to extract some temporal
frequency sub-band, S(z,t) ~ g * S(z,t) and C(z,t) ~ g * C(z,t), and evalu-
ates the temporal changes in that sub-band, differentiation can be attained by
convolutions on the data with appropriate bandpass temporal filters:

S'(z,t) ~ g *S(z,t) ; C'(z,t) =g *C(z,t) (5)

S" and C' approximate S; and C;, respectively, if g and g’ are a quadrature
pair of temporal filters, e.g.: g(t) = e ¥/ sinwyt and ¢'(t) = e~*/7 coswopt. By
rewriting the terms of the numerators in (4):

4StC = (St + 0)2 - (St - 0)2 and 4SCt = (S+ Ct)2 - (S - Ct)z,(6)

one can express the computation of 9§/0t in terms of convolutions with a set
of oriented spatiotemporal filters, whose shapes resemble simple cell receptive
fields of the primary visual cortex [6]. Specifically, each square term on the
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Figure 2: Cortical architecture of a motion-in-depth detector. The rate of
variation of disparity can be obtained by a direct comparison of the responses
of two monocular units labelled CXL and CXR. Each monocular unit receives
contributions from a pair of directionally tuned ”energy” complex cells that
compute phase temporal derivative (S;C —SC}) and a non-directional complex
cell that supplies the static energy of the stimulus (C'2 + S2).



right sides of Eqgs.(6) is a directionally tuned energy detector [7]. The overall
MID cortical detector can be built as shown in Fig. 2. Each branch represents
a monocular opponent motion energy unit of Adelson and Bergen’s type where
divisions by the responses of stationary filters (cf. the denominators of Eq.(4)),
yields to measures of velocity that are invariant with contrast. We can extract
a measure of the rate of variation of local phase information by taking the arith-
metic difference between the left and right channel responses. Further division
by the tuning frequency of the Gabor filter yields a quantitative measure of
MID. It is worthy to note that phase-independent motion detectors of Adelson
and Bergen can be used to compute temporal variations of phase. This result
is consistent with the assumption we made of the linearity of the phase model.
Therefore, our formulation evidences that formal relationships exist between
energy and phase-based approaches to motion modeling.

4 Experimental results

Extensive simulations on both synthetic and real-world image sequences, yield
to excellent performaces (see Fig. 3), resulting in correct discrimination be-
tween forward and backward movements of objects from the observer. Points
where phase information are unreliable are discarded according to a confidence
measure that is related to the local energy of the binocular filter output.
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Figure 3: Experimental results on a natural scene. Two toy cars are moving
in opposite directions respect to the observer. Left and right frames at three
different times are shown. The gray levels in the MID maps code the motion-in-
depth of the two cars: the lighter gray blob represents the car moving toward
the observer, whereas the darker gray blob represents the car moving away.
The background gray level codes all the static elements present in the scene.



5 Discussion and conclusions

There are at least two binocular cues that can be used to determine the motion
of an object toward or away from an observer [1]: binocular combination of
monocular velocity signals or the rate of change of retinal disparity. Assuming
a phase-based disparity encoding scheme [4], we demonstrated that informa-
tion hold in the interocular velocity difference is the same of that derived by
the evaluation of the total derivative of the binocular disparity. The result-
ing computation relies upon spatiotemporal differentials of the left and right
retinal phases that can be approximated by linear filtering operations with spa-
tiotemporal receptive fields. Accordingly, we proposed a cortical model for the
generation of binocular motion-in-depth selective cells as a hierarchical combi-
nation of monocular spatiotemporal subunits. Each monocular branch of the
cortical architecture can be directly compared to the Adelson and Bergen’s mo-
tion detector[7], thus establishing a link between phase-based approaches and
motion energy models.

The algorithmic approach followed is particularly suitable for an “economic”
hardware implementation, since such parameters can be gained via a feed-
forward computation (i.e., collection, comparison, and punctual operations) on
the outputs of a Gabor filtering stage that can be directly implemented in ana-
log VLSI, as demonstrated by recent prototypes of our group [8]. Conversely,
the feed-forward computations can be treated in a punctual way, i.e., accord-
ing to standard computational schemes (sequential, parallel, pipeline). In this
way, one can take take full advantage of the potentialities of analog processing
together with the flexibility provided by digital hardware.
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