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Introduction (1) M I
A

What is the Goal?

� Given

• image sequence f(x1, x2, x3) location (x1, x2) ∈ Ω
time x3 ∈ [0, T ]

� Wanted

• interframe displacement field u = (u1, u2, 1) → optic flow

x3x3 x3 + 1x3 + 1
??
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Introduction (2) M I
A

What is Optic Flow Good for?

� Extraction of Motion Information

• navigation

• obstacle detection

• tracking

� Processing of Image Sequences

• compact coding (compression → MPEG)

• restoration and editing

• motion compensation

� Related Correspondence Problems

• stereo reconstruction

• structure-from-motion

• medical image registration
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Introduction (3) M I
A

Why Variational Methods?

� Many Advantages

• transparent modelling

• well-posedness and simple minimisation

• highest accuracy in the literature

• dense flow fields

� Main Drawback

• large linear/nonlinear systems of equations
(→ very slow with basic numerical solvers)

Goals of this Talk

� Quality: introduction to the design of high accuracy methods

� Efficiency: discussion of specifically adapted real-time algorithms

� Practical Relevance: presentation of current applications
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Outline M I
A

Outline

� Modelling

• general structure

• data and smoothness term

• qualitative benchmarks

� Numerics

• minimisation and discretisation

• efficient multigrid algorithms

• performance benchmarks

• real-time live demo

� Applications

� Summary
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Outline M I
A

PART I
Modelling
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Modelling - General Structure M I
A

Motion Estimation as Optimisation Problem

� Optic Flow u as Minimiser of the Energy Functional
(Horn/Schunck 1981)

E(u) =
∫ (

D(u)︸ ︷︷ ︸
Data Term

+ α G(∇u)︸ ︷︷ ︸
Smoothness Term

)
dx

• data term penalises deviations from constancy assumptions on image features

• smoothness term penalises deviations from smoothness of solution

• regularisation parameter α > 0 determines smoothness

• global method: integration over single image or full video
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Modelling - The Data Term (1) M I
A

Standard Data Term

� Constancy Assumption on the Image Brightness
(e.g. Horn/Schunck 1981, Lucas/Kanade 1981)

• implicit formulation

0 = f(x1 + u1, x2 + u2, x3 + 1) − f(x1, x2, x3)

• Taylor linearisation

0 = fx1u1 + fx2u2 + fx31 = u>∇3f

• quadratic penalisation

(u>∇3f)2

� Drawback

• image brightness not invariant under varying illumination
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Modelling - The Data Term (2) M I
A

Higher Order Constancy Assumptions

� Constancy Assumptions on Image Derivatives
(Uras et al. 1988, Schnörr 1993, Papenberg/Bruhn/Brox/Didas/Weickert IJCV 2006)

Constancy Data Term Motion Type

translational
gradient

2∑
i=1

(u>∇3fxi
)2 divergent

slow rotational

translational
Hessian

2∑
i=1

2∑
j=1

(u>∇3fxixj
)2 divergent

slow rotational

gradient magnitude (u>∇3|∇2f |)2 any

Hessian trace (u>∇3(∆2f))2 any

Hessian determinant (u>∇3det(H2f))2 any

� Drawback

• images derivatives only invariant under global additive illumination changes
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Modelling - The Data Term (3) M I
A

Colour Constancy Assumptions

� Constancy Assumptions on Photometric Invariants
(Mileva/Bruhn/Weickert DAGM 2007)

• colour images offer three measurements per pixel (R,G,B)

• exploit redundancy by computing differences and ratios

• transformations of the colour space / normalisation of RGB channels

(R, G, B)> 7→
(

R

N
,
G

N
,
B

N

)>

, N =
R + G + B

3

• invariant under more realistic local multiplicative illumination changes

DIPLODOC Road Sequence RGB Constancy Invariant Constancy
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Modelling - The Data Term (4) M I
A

Generic Framework for the Data Term

� Motion Tensor Formalism
(Bigün/Granlund/Wiklund 1991, Bruhn/Weickert/Kohlberger/Schnörr IJCV 2006)

• compact representation for combined data term

• consider n constancy assumptions on p1,...,pn with weights λ1,...,λn

n∑
i=1

λi (u>∇3 pi)2 =
n∑

i=1

λi

(
u>∇3 pi ∇3 p>

i u
)

= u>
( n∑

i=1

λi ∇3 pi ∇3 p>
i

)
u = u>J u

• single quadratic form with positive semi-definite 3 × 3 motion tensor J

� Advantages

• framework for all presented data terms

• rank analysis specifies degrees of freedom
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Modelling - The Data Term (5) M I
A

Generic Framework for the Data Term

� Overview of Motion Tensors
(Bruhn/Weickert/Kohlberger/Schnörr IJCV 2006)

Constancy Motion Tensor J

brightness ∇3f ∇3f
>

gradient
2∑

i=1
(∇3fxi

)(∇3fxi
)>

Hessian
2∑

i=1

2∑
j=1

(∇3fxixj
)(∇3fxixj

)>

gradient norm
(fx1∇3fx1+fx2∇3fx2)(fx1∇3fx1+fx2∇3fx2)

>

f2
x1

+f2
x2

Hessian trace (∇3

2∑
i=1

fxixi
)(∇3

2∑
i=1

fxixi
)>

(fx2x2∇3fx1x1+fx1x1∇3fx2x2−2fx1x2∇3fx1x2) ·
Hessian determinant

(fx2x2∇3fx1x1+fx1x1∇3fx2x2−2fx1x2∇3fx1x2)
>

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35

http://www.mia.uni-saarland.de


Modelling - The Data Term (6) M I
A

Robustification against Noise and Outliers

� Local Least Squares Fit
(Lucas/Kanade 1981, Bruhn/Weickert/Schnörr IJCV 2005)

• integration over a neighbourhood of fixed size

Kρ ∗
(
u>J u

)
= u>

(
Kρ ∗ J

)
u = u>Jρ u

� Robust Statistics – Single Assumption
(Black/Anandan 1991, Mémin/Pérez 1998)

• subquadratic penalisation with increasing function Ψ(s2)

Ψ (u>J u)

• reduce influence of outliers, e.g. by replacing L2 with L1 norm

Ψ(s2) := s2 → Ψ(s2) :=
√

ε2 + s2 − ε
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Modelling - The Data Term (7) M I
A

Robustification of Multiple Assumptions

� Robust Statistics – Correlated Assumptions
(Brox/Bruhn/Papenberg/Weickert ECCV 2004)

• joint robustification, e.g. in the case of RGB colour images

Ψ (
n∑

i=1

λi u>Ji u)

� Robust Statistics – Independent Assumptions
(Bruhn/Weickert ICCV 2005)

• separate robustification, e.g. in the case of HSV colour images

n∑
i=1

λi Ψ (u>Ji u)
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Modelling - The Data Term (8) M I
A

Large Displacements

� Theoretically Justified Warping
(Nagel 1983, Brox/Bruhn/Papenberg/Weickert ECCV 2004)

• original constancy assumption

0 = f(x + u) − f(x)

• incremental computation

uk+1 = uk + ∆uk

• linearisation only by increment

0 = ∆uk>∇3f(x + uk)
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Modelling - The Data Term (9) M I
A

Large Displacements

� Multiscale Strategy
(Bergen/Anandan/Hanna/Hingorani 1992)

• large displacements become small displacements

fine scale (displacements up to 10 pixels) coarse scale (displacements up to 1 pixel)

� Modified Motion Tensors for Large Displacements
(Bruhn/Weickert/Kohlberger/Schnörr IJCV 2006)

• motion tensor notation still applicable (in the incremental computation)

• specific multiscale representation
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Modelling - The Smoothness Term (1) M I
A

Spatial vs. Spatiotemporal Regularisation

� Spatial Regularisation
(Horn/Schunck 1981)

• penalises deviations from smoothness in the spatial domain

2∑
i=1

|∇2ui|2

� Spatiotemporal Regularisation
(Nagel 1990, Weickert/Schnörr 1999)

• extending spatial smoothness to the temporal domain

2∑
i=1

|∇3ui|2

• computationally hardly more expensive than spatial approach

• better results but delayed computation (stack of frames required)
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Modelling - The Smoothness Term (2) M I
A

Adaptive Smoothness Terms

� Diffusion-Inspired Regularisers (yield Diffusion Tensors)
(Weickert/Schnörr 2001, Zimmer/Bruhn at al. EMMCVPR 2009)

Strategy Smoothness Term

homogeneous ∑
i |∇ui|2(Horn/Schunck 1981)

image-driven, isotropic/anistropic
g(|∇f |2)

∑
i |∇ui|2

/ ∑
i ∇u>

i D(∇f) ∇ui
(Alvarez et al. 1999, Nagel 1983)

flow-driven, isotropic/anisotropic
Ψ

( ∑
i |∇ui|2

) /
tr

(
Ψ

( ∑
i ∇ui∇u>

i

))
(Schnörr 1994, Weickert et al. 2001)

combined, anisotropic ∑
r Ψr

( ∑
i ∇u>

i Dr(∇f) ∇ui

)
(Sun et al. 2008)

complementary, anisotropic
not yet available

(Zimmer/Bruhn et al. 2009)
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Modelling - The Smoothness Term (3) M I
A

Adaptive Smoothness Terms

� Comparison of Different Strategies
(Zimmer/Bruhn/Weickert/Valgaerts/Salgado/Rosenhahn/Seidel EMMCVPR 2009)

Fig. 2. The Snail sequence. First row: (a) Frame 1. (b) Frame 2. Second row: (c)
Flow with RGB colour space (α = 800.0). (d) JIF (α = 1500.0) (e) Brox et al. [1]
(α = 75.0). (f) Our approach (α = 1500.0).

difficult illumination conditions and the large displacements (up to 25 pixels) in
this sequence.

For a final comparison of our approach to state-of-the-art methods, we sub-
mitted our results to the Middlebury benchmark page2. In accordance to their
guidelines, we used the fixed parameters α = 700.0, σ = 0.5, γ = 20.0 and ρ = 2.5
for all sequences. In Tab. 1, we show the average rank of the Top 8 methods for
the AAE. As we can see, our method performs favourably, showing that sophisti-
cated transparent modelling allows to outperform other well-engineered methods
that incorporate many more processing steps. We further note that the running
time for the Urban sequence was ??.? s, proving that the employed multigrid
scheme [21] allows to obtain moderate runtimes for standard test sequences.

7 Conclusions and Outlook

In our paper we presented a highly accurate variational optic flow method where
a robust data term was supplemented by an anisotropic smoothness term that
combines the advantages of image- and flow-driven regularisers. On the one
hand, this proves that an appropriate adaptation and combination of different
established concepts like normalisation and the employment of the HSV colour
space with a completely separate robustification, can lead to a very robust data
term. Even more important, we show that the smoothness term should not be
seen as the antagonist of the data term. In contrast, it should complement the
energy-based method where the data term is not sufficient.

2 available under http://vision.middlebury.edu/flow/eval/results/
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Experiments - Qualitative Benchmarks (1) M I
A

Real-World Sequences - Qualitative Evaluation

� Rheinhafen Sequence
(Nagel, Size 688 × 565 × 1000)

Frame 1130 Brightness Constancy
Homogeneous Regulariser
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Experiments - Qualitative Benchmarks (1) M I
A

Real-World Sequences - Qualitative Evaluation

� Rheinhafen Sequence
(Nagel, Size 688 × 565 × 1000)

Frame 1130 Brightness Constancy
Image-Driven Anisotropic Regulariser
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Experiments - Qualitative Benchmarks (1) M I
A

Real-World Sequences - Qualitative Evaluation

� Rheinhafen Sequence
(Nagel, Size 688 × 565 × 1000)

Frame 1130 Robust Brightness Constancy
Flow-Driven Isotropic Regulariser
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Experiments - Qualitative Benchmarks (1) M I
A

Real-World Sequences - Qualitative Evaluation

� Rheinhafen Sequence
(Nagel, Size 688 × 565 × 1000)

Frame 1130 Robust Brightness Constancy
Robust Gradient Constancy

without Linearisation
Flow-Driven Isotropic Regulariser
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Experiments - Qualitative Benchmarks (2) M I
A

Real-World Sequences - Qualitative Evaluation

� Karl Wilhelm Street and Ettlinger Tor Sequence
(Nagel, Size 351 × 283 × 1034 and Size 512 × 512 × 50)

Karl Wilhelm Street Ettlinger Tor
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Experiments - Qualitative Benchmarks (3) M I
A

Synthetic Sequences - Qualitative Evaluation

� Yosemite Sequence with Clouds
(Quam 1984, Size 316 × 252 × 15)

Frame 8 Frame 9
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Experiments - Qualitative Benchmarks (3) M I
A

Synthetic Sequences - Qualitative Evaluation

� Yosemite Sequence with Clouds
(Quam 1984, Size 316 × 252 × 15)

Ground Truth (Colour Plot) Ground Truth (Vector Plot)
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Experiments - Qualitative Benchmarks (3) M I
A

Synthetic Sequences - Qualitative Evaluation

� Yosemite Sequence with Clouds
(Quam 1984, Size 316 × 252 × 15)

Ground Truth (Colour Plot) Brightness Constancy
Homogeneous Regulariser

AAE=7.17◦

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35

http://www.mia.uni-saarland.de


Experiments - Qualitative Benchmarks (3) M I
A

Synthetic Sequences - Qualitative Evaluation

� Yosemite Sequence with Clouds
(Quam 1984, Size 316 × 252 × 15)

Ground Truth (Colour Plot) Brightness Constancy
Image-Driven, Anisotropic Regulariser

AAE=6.28◦
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Experiments - Qualitative Benchmarks (3) M I
A

Synthetic Sequences - Qualitative Evaluation

� Yosemite Sequence with Clouds
(Quam 1984, Size 316 × 252 × 15)

Ground Truth (Colour Plot) Robust Brightness Constancy
Flow-Driven, Isotropic Regulariser

AAE=5.74◦
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Experiments - Qualitative Benchmarks (3) M I
A

Synthetic Sequences - Qualitative Evaluation

� Yosemite Sequence with Clouds
(Quam 1984, Size 316 × 252 × 15)

Ground Truth (Colour Plot) Robust Brightness Constancy
Robust Gradient Constancy

without Linearisation
Flow-Driven, Isotropic Regulariser

AAE=2.42◦
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Experiments - Qualitative Benchmarks (4) M I
A

Synthetic Sequences - Comparison to Literature

� Yosemite Sequence with Clouds
(Quam 1984, Size 316 × 252 × 15)

Technique AAE

Horn/Schunck, orig. 31.69◦

Singh, step 1 15.28◦

Anandan 13.36◦

Singh, step 2 10.44◦

Nagel 10.22◦

Horn/Schunck, mod. 9.78◦

Uras et al. 8.94◦

Prototype A 7.17◦

Liu et al. 6.85◦

Prototype B 6.44◦

Prototype E 6.42◦

Prototype D 6.32◦

Prototype C 6.28◦

Prototype F (2-D, SD) 5.74◦

Alvarez et al. 5.53◦

Technique AAE

Mémin/Pérez 5.38◦

Prototype F (3-D, SD) 5.18◦

Farnebäck 4.84◦

Mémin/Pérez 4.69◦

Prototype F (3-D, LD) 4.17◦

Wu et al. 3.54◦

Prototype G (2-D, SD) 3.50◦

Prototype G (3-D, SD) 2.78◦

Teng et al. 2.70◦

Prototype H (2-D, LD) 2.42◦

Amiaz/Kiryati 2.04◦

Prototype G (3-D, LD) 1.78◦

Amiaz/Kiryati 1.73◦

Prototype H (3-D, LD) 1.72◦

Brox/Bruhn/Weickert 1.22◦
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Experiments - Qualitative Benchmarks (5) M I
A

Synthetic Sequences - Comparison to Literature

� Middlebury Benchmark
(Baker/Scharstein/Lewis/Roth/Black/Szeliski 2007, 8 Sequences with Different Sizes)
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Outline M I
A

PART II
Numerics
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Numerics - Minimisation and Discretisation M I
A

Minimisation Strategy

� Euler–Lagrange Equations

• necessary conditions for a minimiser

• coupled system of partial differential equations

• discretisation yields large linear or nonlinear system of equations

• typically solved by iterative methods (Jacobi, Gauß-Seidel)

� Drawback of Iterative Methods

• slow convergence after a few iterations

• logarithmic error spectrum reveals slow decrease of lower frequency parts
(→ only efficient damping of higher error frequency parts)
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Numerics - Efficient Multigrid Algorithms (1) M I
A

Multigrid Methods

� Basic Idea
(Brandt 1977, Hackbusch 1985)

• transfer and compute error on coarser grids

• low frequencies reappear as higher frequencies
(→ also efficient damping of lower error frequency parts)

� Recursive Strategies, Linear Complexity

• hierarchical application (→ V–cycle, W–cycle)

• additional usage of hierarchical initialisation (→ Full Multigrid)
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Numerics - Efficient Multigrid Algorithms (1) M I
A

Multigrid Methods

� Basic Idea
(Brandt 1977, Hackbusch 1985)

• transfer and compute error on coarser grids

• low frequencies reappear as higher frequencies
(→ also efficient damping of lower error frequency parts)

� Recursive Strategies, Linear Complexity

• hierarchical application (→ V–cycle, W–cycle)

• additional usage of hierarchical initialisation (→ Full Multigrid)
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Numerics - Efficient Multigrid Algorithms (2) M I
A

Multigrid for Optic Flow

� Specific Adaptations

• improved coarse grid correction scheme (tensor based)
(Bruhn/Weickert/Kohlberger/Schnörr IJCV 2006)

• improved intergrid transfer operators (non-dyadic) and solvers (coupled)
(Bruhn/Feddern/Weickert/Kohlberger/Schnörr IEEE TIP 2005)

• extended to large displacements (combination with warping)
(Bruhn/Weickert ICCV 2005)

� Overview of Multigrid Implementations

Type MG Solver Cycles Basic Solver Pre/Post

A - Homogeneous FMG-W 1 GS-CPR 1-1

B - Image-Driven Isotropic FMG-W 2 GS-CPR 2-2

C - Image-Driven Anisotropic FMG-W 4 GS-ALR 1-1

D - Flow-Driven Isotropic FAS-FMG-W 2 GS-CPR 2-2

E - Flow-Driven Anisotropic FAS-FMG-W 4 GS-ALR 1-1

F - Bruhn et al. 2-D, SD FAS-FMG-W 2 GS-CPR 2-2

G - Papenberg et al. 3-D, SD FAS-FMG-W 2 GS-CPR 2-2

H - Bruhn/Weickert 2-D, LD WARP-FAS-FMG-W 2 GS-CPR 3-3
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Experiments - Performance Benchmarks (1) M I
A

Comparison of Numerical Solvers (Image Size 160 × 120)

� Overview for Different Numerical Prototypes

• C implementation on standard desktop PC (3.06 GHz Pentium4)

• stopping criterion: norm of error less than 1% of norm of solution

� Method with Image-Driven Anisotropic Regularisation: Linear Multigrid

Solver Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme 36433 47.08 0.02 1

Gauß-Seidel (ALR) 607 3.60 0.27 13

Full Multigrid 1 0.17 5.88 275

� Method with Flow-Driven Isotropic Regularisation: Nonlinear Multigrid

Solver Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme 10633 30.492 0.033 1

Gauß-Seidel (ALR) 2679 6.911 0.145 4

FAS Full Multigrid 1 0.082 12.172 372
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Experiments - Performance Benchmarks (2) M I
A

Multigrid Speedups (Image Size 160 × 120)

� Overview For Different Model Prototypes
(Bruhn/Weickert/Kohlberger/Schnörr IJCV 2006)

• two to three orders of magnitude for different regularisation strategies

Type Solver FPS Speedup

A - Homogeneous Full Multigrid 62.7 220

B - Image-Driven Isotropic Full Multigrid 20.8 251

C - Image-Driven Anisotropic Full Multigrid 5.8 275

D - Flow-Driven Isotropic FAS Full Multigrid 12.1 372

E - Flow-Driven Anisotropic FAS Full Multigrid 2.0 120

• three to four orders of magnitude for high accuracy methods

Type Solver FPS Speedup

F - Bruhn et al. 2-D, SD FAS Full Multigrid 11.5 2836

G - Papenberg et al. 3-D, SD FAS Full Multigrid 9.9 10588

H - Bruhn/Weickert 2-D, LD Warp FAS Full Multigrid 2.9 5454
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Experiments - Performance Benchmarks (3) M I
A

Speedup by Parallel Hardware (Image Size 316 × 252)

� Cell Processor - Sony Playstation 3
(Gwosdek/Bruhn/Weickert VMV 2008, Gwosdek/Bruhn/Weickert JRTIP 2009 submitted)

• 6 SPUs with ringbus memory interface

• Speedup of 6.5 compared to a 3.2 GHz desktop PC

• linear case: up to 210 dense flow fields per second (13.6 million pixels)

• nonlinear case: up to 65 dense flow fields per second (4.2 million pixels)
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Experiments - Real-Time Live Demo (1) M I
A

Real-Time Live Demo

� Live Computation with Webcam (160 × 120)

Start

Stop
Flow fields are computed with a 1.7 GHz PentiumM CPU
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Outline M I
A

PART III
Applications
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Applications - Stereo (1) M I
A

Stereo - Calibrated Case

� Integration of Prior Knowledge on the Stereo Geometry
(Slesareva/Bruhn/Weickert DAGM 2005)

• restriction of search space to given stereo geometry

• depth can be directly computed from displacements (disparity)

� Example: Reconstruction of the Pentagon from Aerial Views
(CMU Stereo Database, Size 512 × 512)

CMU Pentagon Image Pair
with Stereo Geometry

Displacement Field Reconstruction
with Illumination
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Applications - Stereo (2) M I
A

Stereo - Uncalibrated Case

� Joint Estimation of Displacements and Stereo Geometry
(Valgaerts/Bruhn/Weickert DAGM 2008)

• more precise and more robust estimation of correspondences

• more exact estimation of camera poses (essential matrix)

� Example: Face Reconstruction from Uncalibrated Images
(Pascal Gwosdek, Size 280 × 430)

Dense 3D Reconstruction Using Optical Flow

Levi Valgaerts, Andrés Bruhn, Markus Mainberger,

Pascal Gwosdek and Joachim Weickert

Mathematical Image Analysis Group, Saarland University • {valgaerts, bruhn, mainberger, gwosdek, weickert}@mia.uni-saarland.de

Research partly funded by Deutsche Forschungsgemeinschaft (WE 2602/6-2)

Contribution: Simultaneous estimation of scene structure and camera pose from stereo image pairs

Joint Variational Model

E(w, f) =
∫

Ω

(
ΨD

(|I(x + w)−I(x)|2 + γ|∇I(x + w)−∇I(x)|2)︸ ︷︷ ︸
data term

+ α ΨS

(|∇w|2)︸ ︷︷ ︸
smoothness term

+ β ΨE

(
(s�(w) f)2

)
︸ ︷︷ ︸
epipolar term

)
dxdy

• Data term assumes similar brightness and contrast of corresponding pixels

• Smoothness term imposes spatial coherence between neighbouring correspondences

• Epipolar term favors correspondences that satisfy the same stereo geometry

• Robustness against outliers in all terms via regularised L1 norm: Ψ(s2) =
√

s2 + ε2

• NEW: coupling of optical flow
and fundamental matrix via

s�(w)f =

0
@

x + u
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Evaluation: Image Correspondences

• Comparison to best 2D optical flow methods from literature

• Test stereo pair: Yosemite sequence without clouds

Frame 8 Ground truth Our method

Method AAE

Brox et al. 1.59◦

Mémin/Pérez 1.58◦

Bruhn et al. 1.46◦

Method AAE

Amiaz et al. 1.44◦

Nir et al. 1.18◦

Our method 1.17◦

Evaluation: Stereo Geometry

• Comparison with calibrated data

• Test stereo pair: two rendered views of the Sofa Scene

Initial estimate Final estimate

• Camera pose estimation improves during computation

• Epipolar geometry estimated up to subpixel precision

Dense 3D Reconstruction

Image correspondences and stereo geometry allow direct reconstruction if internal camera parameters are known

Example I: Face Reconstruction Example II: Outdoor Scene Reconstruction

Dense 3D Reconstruction Using Optical Flow

Levi Valgaerts, Andrés Bruhn, Markus Mainberger,
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Contribution: Simultaneous estimation of scene structure and camera pose from stereo image pairs
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Evaluation: Image Correspondences

• Comparison to best 2D optical flow methods from literature

• Test stereo pair: Yosemite sequence without clouds

Frame 8 Ground truth Our method

Method AAE

Brox et al. 1.59◦

Mémin/Pérez 1.58◦

Bruhn et al. 1.46◦

Method AAE

Amiaz et al. 1.44◦

Nir et al. 1.18◦

Our method 1.17◦

Evaluation: Stereo Geometry

• Comparison with calibrated data

• Test stereo pair: two rendered views of the Sofa Scene

Initial estimate Final estimate

• Camera pose estimation improves during computation

• Epipolar geometry estimated up to subpixel precision

Dense 3D Reconstruction

Image correspondences and stereo geometry allow direct reconstruction if internal camera parameters are known

Example I: Face Reconstruction Example II: Outdoor Scene Reconstruction
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data term
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(|∇w|2)︸ ︷︷ ︸
smoothness term

+ β ΨE

(
(s�(w) f)2

)
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epipolar term

)
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• Data term assumes similar brightness and contrast of corresponding pixels

• Smoothness term imposes spatial coherence between neighbouring correspondences

• Epipolar term favors correspondences that satisfy the same stereo geometry

• Robustness against outliers in all terms via regularised L1 norm: Ψ(s2) =
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Evaluation: Image Correspondences

• Comparison to best 2D optical flow methods from literature

• Test stereo pair: Yosemite sequence without clouds

Frame 8 Ground truth Our method

Method AAE

Brox et al. 1.59◦

Mémin/Pérez 1.58◦

Bruhn et al. 1.46◦

Method AAE

Amiaz et al. 1.44◦

Nir et al. 1.18◦

Our method 1.17◦

Evaluation: Stereo Geometry

• Comparison with calibrated data

• Test stereo pair: two rendered views of the Sofa Scene

Initial estimate Final estimate

• Camera pose estimation improves during computation

• Epipolar geometry estimated up to subpixel precision

Dense 3D Reconstruction

Image correspondences and stereo geometry allow direct reconstruction if internal camera parameters are known

Example I: Face Reconstruction Example II: Outdoor Scene Reconstruction

Dense 3D Reconstruction Using Optical Flow
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Contribution: Simultaneous estimation of scene structure and camera pose from stereo image pairs

Joint Variational Model

E(w, f) =
∫

Ω

(
ΨD

(|I(x + w)−I(x)|2 + γ|∇I(x + w)−∇I(x)|2)︸ ︷︷ ︸
data term

+ α ΨS

(|∇w|2)︸ ︷︷ ︸
smoothness term

+ β ΨE

(
(s�(w) f)2

)
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epipolar term

)
dxdy

• Data term assumes similar brightness and contrast of corresponding pixels

• Smoothness term imposes spatial coherence between neighbouring correspondences

• Epipolar term favors correspondences that satisfy the same stereo geometry

• Robustness against outliers in all terms via regularised L1 norm: Ψ(s2) =
√

s2 + ε2

• NEW: coupling of optical flow
and fundamental matrix via
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Evaluation: Image Correspondences

• Comparison to best 2D optical flow methods from literature

• Test stereo pair: Yosemite sequence without clouds

Frame 8 Ground truth Our method

Method AAE

Brox et al. 1.59◦

Mémin/Pérez 1.58◦

Bruhn et al. 1.46◦

Method AAE

Amiaz et al. 1.44◦

Nir et al. 1.18◦

Our method 1.17◦

Evaluation: Stereo Geometry

• Comparison with calibrated data

• Test stereo pair: two rendered views of the Sofa Scene

Initial estimate Final estimate

• Camera pose estimation improves during computation

• Epipolar geometry estimated up to subpixel precision

Dense 3D Reconstruction

Image correspondences and stereo geometry allow direct reconstruction if internal camera parameters are known

Example I: Face Reconstruction Example II: Outdoor Scene Reconstruction

Image Pair without Geometry Reconstruction with Texture

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35

http://www.mia.uni-saarland.de


Applications - Video Processing (1) M I
A

Deinterlacing

� Conversion from Interlaced to Progressive Format
(Ghodstinat/Bruhn/Weickert SGAVMA 2009)

• alternatingly only even and odd lines given (z.B. PAL)

• inpainting of missing information respecting motion trajectories

� Example: Motion Compensation in Broadcasts of Sports Events
(European Broadcasting Union, Zoom-In, Size 300 × 300)
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Hairstyle Simulation

� Automatic Registration of Reference Hairstyles onto Customer Faces
(Demetz/Weickert/Bruhn/Welk SSVM 2007)

• adaptation of reference hairstyle according to deformation field

• preregistration of eyes, masking of hairstyle, flow computation

� Example: Registration of a Short Hairstyle
(Style Concept, Size 900 × 900)

Customer Face Reference Face with Hairstyle Hairstyle Simulation
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Motion Analysis

� Motion Estimation of Nanoparticles in Tracheal Tissue
(Kariger/Bruhn/Henning/Weickert/Lehr - Cooperation with Dept. of Pharmaceutical Technology)

• investigation of mucociliary clearance (protection of respiratory system)

• smoothness constraints from the field of particle image velocimetry (PIV)

� Example: Transport of Coal Particles of Size 1-100 µm
(Andreas Henning, Size 660 × 492)

Images with Time Interval 200 ms Registered Images
Velocity 2.55 mm/min
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Summary

� High Accuracy Models

• generic framework for the design of novel methods

• highest precision in the literature

• robust under noise and illumination changes

� Real-Time Algorithms

• speedups of two to four orders of magnitude

• additional acceleration using parallel hardware

� Numerous Applications

• stereo: calibrated and uncalibrated case

• video processing: deinterlacing, re-timing

• image registration: hairstyle simulation, particle matching
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Thank you very much!

more information:

www.mia.uni-saarland.de
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Fig. 2. The Snail sequence. First row: (a) Frame 1. (b) Frame 2. Second row: (c)
Flow with RGB colour space (α = 800.0). (d) JIF (α = 1500.0) (e) Brox et al. [1]
(α = 75.0). (f) Our approach (α = 1500.0).

difficult illumination conditions and the large displacements (up to 25 pixels) in
this sequence.

For a final comparison of our approach to state-of-the-art methods, we sub-
mitted our results to the Middlebury benchmark page2. In accordance to their
guidelines, we used the fixed parameters α = 700.0, σ = 0.5, γ = 20.0 and ρ = 2.5
for all sequences. In Tab. 1, we show the average rank of the Top 8 methods for
the AAE. As we can see, our method performs favourably, showing that sophisti-
cated transparent modelling allows to outperform other well-engineered methods
that incorporate many more processing steps. We further note that the running
time for the Urban sequence was ??.? s, proving that the employed multigrid
scheme [21] allows to obtain moderate runtimes for standard test sequences.

7 Conclusions and Outlook

In our paper we presented a highly accurate variational optic flow method where
a robust data term was supplemented by an anisotropic smoothness term that
combines the advantages of image- and flow-driven regularisers. On the one
hand, this proves that an appropriate adaptation and combination of different
established concepts like normalisation and the employment of the HSV colour
space with a completely separate robustification, can lead to a very robust data
term. Even more important, we show that the smoothness term should not be
seen as the antagonist of the data term. In contrast, it should complement the
energy-based method where the data term is not sufficient.

2 available under http://vision.middlebury.edu/flow/eval/results/
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Dense 3D Reconstruction Using Optical Flow
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Contribution: Simultaneous estimation of scene structure and camera pose from stereo image pairs

Joint Variational Model

E(w, f) =
∫

Ω

(
ΨD

(|I(x + w)−I(x)|2 + γ|∇I(x + w)−∇I(x)|2)︸ ︷︷ ︸
data term

+ α ΨS

(|∇w|2)︸ ︷︷ ︸
smoothness term

+ β ΨE

(
(s�(w) f)2

)
︸ ︷︷ ︸
epipolar term

)
dxdy

• Data term assumes similar brightness and contrast of corresponding pixels

• Smoothness term imposes spatial coherence between neighbouring correspondences

• Epipolar term favors correspondences that satisfy the same stereo geometry

• Robustness against outliers in all terms via regularised L1 norm: Ψ(s2) =
√

s2 + ε2

• NEW: coupling of optical flow
and fundamental matrix via

s�(w)f =

0
@

x + u
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Evaluation: Image Correspondences

• Comparison to best 2D optical flow methods from literature

• Test stereo pair: Yosemite sequence without clouds

Frame 8 Ground truth Our method

Method AAE

Brox et al. 1.59◦

Mémin/Pérez 1.58◦

Bruhn et al. 1.46◦

Method AAE

Amiaz et al. 1.44◦

Nir et al. 1.18◦

Our method 1.17◦

Evaluation: Stereo Geometry

• Comparison with calibrated data

• Test stereo pair: two rendered views of the Sofa Scene

Initial estimate Final estimate

• Camera pose estimation improves during computation

• Epipolar geometry estimated up to subpixel precision

Dense 3D Reconstruction

Image correspondences and stereo geometry allow direct reconstruction if internal camera parameters are known

Example I: Face Reconstruction Example II: Outdoor Scene Reconstruction
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