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A phase-based stereo vision system-on-a-chip

Javier Dı́az a,∗, Eduardo Ros a,1, Silvio P. Sabatini b,2, Fabio Solari b,3, Sonia Mota c,4

a Department of Computer Architecture and Technology, University of Granada, Spain
b Department of Biophysical and Electronic Engineering (DIBE), University of Genoa, Via Opera Pia 11A, I-16145 Genova, Italy

c Department of Computer Science and Numerical analysis, University of Cordoba, Spain

Received 28 February 2005; received in revised form 8 July 2006; accepted 15 July 2006

Abstract

A simple and fast technique for depth estimation based on phase measurement has been adopted for the implementation of a
real-time stereo system with sub-pixel resolution on an FPGA device. The technique avoids the attendant problem of phase warping.
The designed system takes full advantage of the inherent processing parallelism and segmentation capabilities of FPGA devices

to achieve a computation speed of 65 megapixels/s, which can be arranged with a customized frame-grabber module to process
211 frames/s at a size of 640 × 480 pixels. The processing speed achieved is higher than conventional camera frame rates, thus
allowing the system to extract multiple estimations and be used as a platform to evaluate integration schemes of a population of
neurons without increasing hardware resource demands.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction
Stereo vision allows many biological systems to
reconstruct depth information encoded within multiple
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images. This task is accomplished in the visual cortex
by a specialized receptive field structure (DeAngelis et
al., 1991).

Significant studies have shown that a substantial pro-
portion of neurons in the striate and extrastriate cortex
of monkeys have stereoscopic properties; that is, they
respond differentially to binocular stimuli, thus provid-
ing cues for stereoscopic depth perception (Hubel and
Wiesel, 1962; Barlow et al., 1967; DeAngelis et al.,
1998). Stereoscopic neurons display disparity selectiv-
ity and correlation selectivity. Many neurons have tuned
disparity response profiles that collectively cover the
entire range of physiological disparities. These cells can
be classified on the basis of their responses: first, neu-
rons with peak responses at (or about) zero disparity
(“tuned zero neurons”, excitatory or inhibitory) which

have narrow and symmetrical receptive fields; second,
neurons that are tuned to larger disparities, either crossed
(tuned near neurons) or uncrossed (tuned far neurons).
These have broader excitatory receptive fields that are

ed.
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symmetrically wider toward the smaller disparities, and
ommonly include an inhibitory component around zero
isparity. Other stereoscopic cells have reciprocal pro-
les (“near” or “far” neurons, respectively) in the sense

hat they respond with excitation to crossed or uncrossed
isparities and with suppression to disparities of the
pposite sign (Poggio et al., 1988).

Furthermore, binocular depth perception is useful in
any visual applications such as autonomous robot nav-

gation and grasping tasks. Due to the intensive calcu-
ation required to estimate the disparity values, most of
he approaches implemented so far process the sequences
ff-line, rendering them unsuitable for real applications.
he use of customized hardware allows us to process
tereo-image sequences in real-time. These hardware-
ased approaches generally use correlation-based mod-
ls (Brown et al., 2003) because they are quite suitable
o hardware architecture. In contrast to feature corre-
pondence and correlation techniques, during the last
ecade phase-based computational models have been
roposed as an interesting alternative (Fleet and Jepson,
993; Fleet et al., 1996), mainly because they are based
n local operations and produce dense depth maps with
irect sub-pixel resolution. Several real-time approaches
ased on this technique have recently been proposed by
orr et al. (2002) and Darabiha et al. (2003).

In this paper we describe how to deal with the prop-
rties of bio-inspired systems to be designed as embed-
ed systems for real-world applications. We describe
n embedded stereo processing system based on an
PGA device known as a system-on-a-chip (SoC), which
omputes a modified phase-based technique originally
escribed by Solari et al. (2001). This model avoids the
xplicit computation of the single local phases of Gabor-
ltered binocular images, making the approach hardware
riendly and thus allowing our design to outperform pre-
ious approaches. The system includes all the hardware
ontrollers necessary for a two-camera frame-grabber,
xternal memory management units, VGA visualiza-
ion output generation, user control interface for system
onfiguration, etc. This allows us to use it as a smart
mbedded sensor that works as a system-on-a-chip, pro-
iding low level vision disparity information.

. From biological models to real-time hardware
ystems

Engineering processing architectures designed for

asks that biological systems solve with impressive ease
an benefit considerably by mimicking computing strate-
ies developed by nature over long periods of evolution.
ut the adaptation of such techniques is not straight-
7 (2007) 314–321 315

forward, since the physical principles upon which bio-
logical tissues are based are very different from those
characteristically used in electronic technology. Further-
more, biological and electrical “technologies” face dif-
ferent restrictions which are overcome by resorting to
different strategies.

Nevertheless, an “opportunistic attitude” which takes
the key-functional principles that contribute to the out-
standing performance of biological systems and also uses
technology-motivated computing techniques to adapt
those computing primitives must be of considerable
interest. This opportunistic approach should on its own
merits provide a suitable solution to the individual task in
question, whilst also helping to identify and characterize
the functional principles that support the high perfor-
mance observed in biological systems. For example,
biological systems widely use massive parallel process-
ing to overcome the slow chemical-based principles that
support most of the computing and transmission princi-
ples of neurons. On the other hand, whereas electrical
technology allows faster devices (more than three orders
of magnitude), the connectivity allowed by current tech-
nology is restricted to 2D patterns and so this massive
parallelism becomes impossible to adopt in electronic
devices.

To be able to adopt biologically inspired processing
schemes we use a time-slicing technique and we have
developed a very fast computing unit that abstracts the
functional principles upon which the emulated scheme
is based. In this way, we can process in stereo the dis-
parity between two images several times (with different
shifts and spatial scales) and thus obtain multiple dis-
parity estimations which in a biological system would
have been extracted by different populations of neurons.
We then integrate all these estimations constructively to
achieve the best performance.

We illustrate here one example of such an approach.
We have developed a very fast disparity estimation sys-
tem that is able to obtain multiple disparity estimations
(up to eight) at a conventional camera frame rate and
VGA resolution. This allows the exploration of integra-
tion schemes in the framework of real-time processing
tasks. In Section 6 we call neural population coding the
set of estimations obtained on multiple scales and with
multiple shift profiles. It is documented that the per-
formance of biological systems is based upon multiple
estimations (Fleet et al., 1996) and an efficient selection
mechanism that integrates complementary information

from different sources.

Conventionally, parallel processing of different cir-
cuits is limited due to the limited transmission band-
width. Especially significant are the constraints deriving
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from the external memory access; which is usually one
of the important bottlenecks for FPGA processing capa-
bility, but due to the on-chip system management of
external and internal memory, and since the described
architecture consists of one single processing unit, with
the whole system implemented on the same device (as
a SoC), the access control is carefully designed and
this bandwidth limitation is overcome. Furthermore, the
proposed scheme is scalable; since there are plenty of
available computing resources on the same chip, two or
more processing units can be used, if further parallelism
is needed, to extract more estimations or increase the
spatial resolution.

3. Hardware-friendly phase-based stereo

In our approach, we will use only tuned-excitatory
neurons. The results of Jones’ and Palmer’s experiments
(Jones and Palmer, 1987) suggest modelling the shapes
of the RFs by two-dimensional Gabor filters with vari-
able spatial phase. In particular, experiments carried
out by Pollen and Ronner (1981) suggest that most of
the simple cells can be combined in pairs, one cell of
each pair with even symmetry and the other one with
odd symmetry. This can be modelled by a cosine func-
tion and a sine function, corresponding to the real and
imaginary parts of a complex-valued Gabor filter, respec-
tively. Among various computational vision models that
make use of Gabor functions such as localized spatial
filters or as basis functions for image transformations
(Daugman, 1985; Porat and Zeevi, 1988; Fogel and
Sagi, 1989; Chang and Chatterjee, 1993), phase-based
approaches for stereo vision have been widely studied
recently (Sanger, 1988; Fleet et al., 1991). In these mod-
els disparity is computed as the one-dimensional shift
along the epipolar lines necessary for aligning the phase
values of the bandpass filtered versions of the binocular
stereo signal. An illustrative scheme is shown in Fig. 1.

Formally, the left and right observed intensities from
the two eyes, IL(x) and IR(x), respectively, result related
as

IL(x) = IR[x + δ(x)] (1)

where δ(x) is the (horizontal) binocular disparity.
Disparity can be estimated in terms of phase differ-

ences in the spectral components of the stereo-image pair
(Fleet and Jepson, 1993; Fleet et al., 1996). Since the two
images are locally related by a shift, in the neighbour-

hood of each image point the local spectral components
of IL(x) and IR(x) are related by a phase difference equal
to �φ(k) = φL(k) − φR(k) = kδ, where φ is the image local
phase at this position and k is the spatial frequency.
Fig. 1. Phase-based disparity estimation using neurons with receptive
fields as quadrature Gabor filters.

Spatially localized phase measures can be obtained by
filtering operations with complex-valued quadrature pair
bandpass kernels (e.g. Gabor filters), approximating a
local Fourier analysis on the retinal images (see Solari
et al., 2001; Fleet et al., 1991, 1996; Fleet and Jepson,
1993). Considering a complex Gabor filter with a peak
frequency k0 and a spatial extension σ:

h(x; k0) = exp

(
− x2

σ2 + jk0x

)

= hC(x; k0) + jhS(x; k0) (2)

the resulting convolutions with the left and right binoc-
ular signals can be expressed as

Q(x) =
∫

I(ξ)h(x − ξ; k0) dξ = C(x) + jS(x)

= ρ(x) ejφ(x) (3)

where ρ(x) and φ(x) denote their amplitude and phase
components, and C(x) and S(x) are the responses of the
quadrature filter pair. Local phase measurements are sta-
ble and with a quasi-linear behaviour over relatively large
spatial extents, except around singular points where the
amplitude of Q(x) vanishes and the phase becomes unre-
liable. This property of the phase signal yields good
predictions of binocular disparity by⌊

L R
⌋

δ(x) = φ (x) − φ (x) 2π

k(x)
= ��φ(x)�2π

k(x)
(4)

where �·�2π denotes the principal part of its argument,
i.e. �·�2π ∈ (−π, π) and k(x) is the average instantaneous
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requency of the bandpass signal, measured using the
hase derivative from the left and right filter outputs (x
ubscripts indicates differentiation along the x-axis):

(x) = φL
x (x) + φR

x (x)

2
(5)

As a consequence of the linear phase model, the
nstantaneous frequency is generally constant and close
o the tuning frequency of the filter (Φx ≈ k0), except near
ingularities where abrupt frequency changes occur as a
unction of spatial position. Therefore, a disparity esti-
ation at a point x is accepted only if |(Φx − k0)| < k0τ,
here τ is a proper reliability threshold.
It should be noted that Eq. (4) does not require the

xplicit calculation of the left and right phases. There-
ore, following the approach proposed by Solari et al.
2001), we can compute directly the phase difference in
he complex plane using the following identities:

�φ(x)�2π = ⌊
arg(QLQ∗R)

⌋
2π

= arctan2(Im(QLQ∗R), Re(QLQ∗R))

= arctan2(CRSL − CLSR, CLCR + SLSR)

(6)

here Q* denotes the complex conjugate of Q.
This formulation is computationally simple because

t is composed primarily of algebraic combinations of
he filter outputs. Moreover, it embeds the calculation of
he principal part of phase differences, without explicit

anipulations of the two phases of the left and right
mages. In this way, it takes into account the period-
city of the phase without incurring in the “wrapping”
ffects on the resulting depth map. Furthermore, follow-
ng (Fleet et al., 1991), for the expression of the average
patial frequency (5), to eliminate the need for an explicit
alculation of phases and, consequently, the problems
rising from phase unwrapping, we use the following
dentities:

x = Im[Q∗Qx]

ρ2 = SxC − SCx

C2 + S2 (7)

here Qx, Cx, and Sx are the spatial derivatives of Q, C,
.

This approach has several advantages which make the
ystem hardware-friendly. Although Eq. (6) increases
he number of multiplications, current FPGA devices
nclude embedded multipliers making this technology of
pecific interest for vision tasks. In fact, the main advan-

age provided by this approach is to avoid the explicit
ogic required for wrap-around mechanism. This implies
considerable reduction of comparison logic. Further-
ore, the division operation is reduced by 50%. This
7 (2007) 314–321 317

corresponds to a real benefit because the division in the
fix-point arithmetic requires high precision. Although
from a computational point of view there is no difference
between computing disparity from differences of the
phase on the monocular images or from a direct measure
of the binocular phase difference (without explicit com-
putation of monocular phases), quantization errors make
the former approach noisier, which in addition requires
more hardware resources. We evaluated both methods
using random-dot stereograms and fix-point data of 32
bits, obtaining direct phase computation yields for higher
performance when the available operation precision is
limited.

To address the hardware implementation of this
approach the basic steps can be summarized as follows

1. dc component image removal using the local contrast
I − Imean operator in a 9 × 9 pixel window.

2. Even and odd Gabor 17 taps filtering of left and right
images.

3. Direct phase difference calculation using Eq. (6).
4. Disparity computation using Eq. (4) assuming

k(x) ≈ k0.

The dc component image removal is particularly rel-
evant because (in a first approximation) the retina pro-
duces a “neural image” of local contrast (Shapley and
Enroth-Cugell, 1984).

4. Hardware system implementation

The implementation of the previous simplified
phase-based model (Solari et al., 2001), requires being
consistent with the discussion in Section 2. Large
neural populations are not suitable for implementation
in hardware because the available hardware resources
are limited. We have designed a processing unit
using fine-grain parallelism resources based on highly
pipelined structures and short processing times. We
describe the implementation of a SoC for real-time
stereo computation which can be used in embedded
systems. The device is a general purpose system for
image stereo computation where the technology is
based on re-configurable hardware (FPGA).

The choice of a phase-based stereo approach is
also justified because of its robustness to illumination
changes. As commented in (Cozzi et al., 1997), the con-

trast test shows that this approach is not very sensitive to
differences in such magnitude. The approach seems to
be rather robust to unbalanced images as well (usual in
real cameras which have different luminance gain).
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Fig. 2. Software vs. hardware implementation. (a) Original images, (b) software stereo processing, (c) hardware stereo processing, (d) results using
arity is
(c) are
ntation
the multiple estimation-based model described in Section 6. The disp
small differences between the software (b) and the hardware model
images due to the limited precision available in the hardware impleme

In Fig. 2 we show the algorithm outputs for a couple
of standard image pairs. We compare the software and
hardware results of the raw model (just one spatial scale
and without neuron shifting) and we also show the results
from the multiple estimation model described in Section
6.

The previous outputs (Fig. 2b and c) represent the raw
data extracted from the stereo sensor encoded using a
disparity-to-grey levels map. The system set-up requires
image rectification and camera calibration (which is a
critical stage). The present implementation only includes
a simple pre-processing method based on image dis-
placements that runs in a previous system configura-
tion. An improved calibration pre-processing step can
be implemented using an embedded calibration module
to achieve better stereo-image rectification.

The hardware system architecture according to the
model described in Section 1 is shown in Fig. 3.

The confidence measure used in the system is the
neuron energy (module of the Gabor filter outputs)
because phase is not well defined near module singu-
larities. The system is configured by five stages in the
coarse-grain pipeline (Fig. 3). All the processing stages
are designed with micro-pipeline data-paths. Therefore,

the total latency of the system is about 115 clock cycles.
Nevertheless, the data throughput is one estimation
per clock cycle. The system has been implemented
in a stand-alone board as a prototype for embedded
encoded in grey levels, light pixels indicate short distances. Note that
visible as salt and pepper noise presented in the hardware produced
.

applications, the RC300 board from Celoxica (see
http://www.celoxica.com). All the processing opera-
tions are fully computed in the FPGA device (as a SoC).

5. System performance and requirements

The system frequency is 65 MHz and produces one
pixel per clock cycle meaning that we can compute up to
65 megapixels/s (for instance corresponding to 211 fps of
640 × 480 pixels per image, or 52 fps of 1280 × 960 pix-
els of resolution). The system quality depends on image
resolution and disparity range. The present implemen-
tation runs well for small disparities (typically values
under 4 pixels for 15 taps Gabor filters). The first stage
of camera calibration reduces the global image displace-
ment and improves the local disparity range. Compared
with similar recent real-time implementations Porr et al.
(2002), which process at video-frame rate and Darabiha
et al. (2003), which process 256 × 360 pixels per image
at up to 30 fps, our system outperforms these approaches.

Table 1 shows the required resources for the whole
system. Note that in the convolutional stages the process-
ing has been done with fixed point data representation
of nine bits. The arctan function has been implemented

using a look-up-table of 1024 address of 10 bits with
5 fractional bits and some logic to decide the sign. As
shown in Fig. 2, the hardware results are similar to the
software ones implemented with double data precisions

http://www.celoxica.com/
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Fig. 3. Stereo hardware architecture. The figure shows the main processing units designed for the stereo vision system. Each sub-unit has been
developed to process the data using a fine-grain pipeline structure. The efficient use of the intrinsic parallelism and segmentation capabilities available
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omputing blocks in different stages for computing left and right imag
ifference using a LUT for the arctan function.

nd after doing several trials we consider these bit widths
s good trade-offs between the system accuracy and
ardware resource requirements.

Each design is characterized by the megapixels per
econd and is completely modular. Therefore, we can
hoose different resolution versus frames per second
rade-off.

The FPGA re-configurability also allows different
mage scales computation. Provided that stereo tech-
iques work better for small disparities, we have
esigned three different scales, with Gabor filters of 15,
1 and 55 taps. In this way, depending on the image

tructure, our FPGA can be re-configured for different
cales to estimate the range of disparities that better
atch the image structure. Table 1 also shows the hard-
are resources required for these larger spatial scales

able 1
ystem resources required on a Virtex-II XC2V6000-4

lices (%) EMBs (%) Embedded multipliers (%) Mpps

6411(18%) 15 (10%) 21 (14%) 65

9197(27%) 39 (27 %) 31 (21 %) 65

3048(38%) 71 (49%) 59 (49 %) 65

MBs stands for embedded memory blocks.
implemented a customized pipeline processing structure with parallel
ives at the same time. The micro-pipeline module computes the phase

(Gabor filters of 31 and 55 taps) which enlarge the range
of available disparities computable by the system but
reduces their resolution. Note that the system demand
grows for each scale but the computing speed in terms
of fps remains constant. In future research we plan to
design a multi-resolution system plus scale integration
unit to compute at each pixel the scale which best fits the
image properties at this position.

6. Improvements to the basic model: multiple
estimation-based scheme
The main limitation of the previous system is the
limited range of disparities available due to the linear
approximation of the phase model. Theoretically this is
λ/2 (being λ = 2π/k0 the period of the tuning frequency

Gabor spatial scale (filter taps) Image resolution fps

15 640 × 480 211
1280 × 960 52

31 640 × 480 211
1280 × 960 52

55 640 × 480 211
1280 × 960 52
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Table 2
Evaluation of the multiple estimation approach using sequences pro-
vided by Scharstein and Szeliski (2002, 2003)

RMS error

Sawtooth 1.98

for the 15 taps Gabor filter system). The accuracy of
Tsukuba 1.53
Venus 1.55

of the Gabor filter) but experimentally is about λ/3 (for
details see Cozzi et al., 1997). Usually the solution found
in the literature consists of a coarse-to-fine approach,
using confidence values from coarse scales to warp the
image at fine scales. The problem of such an approach
is that wrong estimations propagate from coarse-to-fine
scales. Furthermore, there is no biological evidence of
such kinds of architecture in the brain (Mallot et al.,
1996).

Contrary to this approach, a parallel processing of
spatial scales with a fusion integration stage is more bio-
logically plausible. In a similar way to Fleet (1994) the
scales are processed in parallel and integrated using a
similarity measure. Shift neurons could also be added
(Fleet, 1994; Fleet et al., 1996; Porr et al., 2002) to
improve the disparity range using neurons with over-
lapping disparity tunings. Contrary to Fleet’s approach
(Fleet, 1994), which uses Gabor filter correlation and
sub-pixel estimations by linear interpolation, our scheme
uses sum of absolute differences (SAD) over the energy
of the shifted cells (which is more hardware-friendly
because it avoids square roots and division operations).
At this stage, the cell with the lowest response encodes
the winner shift value which achieves the best dispar-
ity tuning. Phase difference for sub-pixel estimation
(instead of linear interpolation methods) is used to obtain
sub-pixel disparities values. The shift offset obtained
with SAD, is calculated with the value obtained from
the basic model providing the improved sub-pixel dis-
parity estimation.

Qualitative results for this model are shown in
Fig. 2d. Note that the disparity range and resolution
are improved, obtaining smooth variation and disparity
details. The approach has also been evaluated numeri-
cally with the sequences used in (Scharstein and Szeliski,
2002, 2003), for which we know the ground-truth.
The accuracy using the RMS (root-mean-squared) error
(measured in disparity units) between the computed dis-
parity map and the ground-truth map is summarized in

Table 2. The used parameters are the following: 9 shifted
neurons (with a distance of 5 pixels between them) with
λ = 14 to cover a wide disparity range (from −24 to 24
pixels) with overlapping.
87 (2007) 314–321

The processing speed of the system using a cus-
tomized frame-grabber allows us to test several popula-
tion types and fusion methods in real-time. For example,
we can process each image pair eight times, using three
spatial scales and a shifted distribution of five neurons
with overlapping disparity tuning to increase the avail-
able range of disparities obtaining an equivalent circuit
running up to 26 fps of image sizes of 640 × 480 pixels
using approximately the same system resources (mem-
ory resources demand is increased). Shift neuron just
implies offset values in the frame-grabber of one of
the cameras and the different scales imply just chang-
ing the Gabor filter coefficients. Therefore, we use the
same primitives described in Section 3. Furthermore, the
outstanding processing speed achieved by our approach
allows us to use the same circuits to process the images
repetitively (with different shifts and filter scales) storing
the results to be integrated in a simple winner-takes-all
stage. In this fusion module we just take at each pixel
the disparity value (among candidates) with the highest
confidence value.

7. Conclusions

The adopted stereo computation technique is efficient
and hardware-friendly. It provides sub-pixel resolution
and the disparity range can be adapted to the image
structure. Furthermore, it allows, in a straightforward
manner, a multi-scale and multi-shift approach as an
immediate improvement. The hardware is very pow-
erful (65 megapixels/s that can be arranged as 211 fps
of 640 × 480 pixels per image). This outstanding per-
formance with a customized frame-grabber allows the
system to be used as a platform for studying differ-
ent models of neural population coding and integration
mechanism (which take full advantage of multiple dis-
parity estimations) in real-time tasks.

We present a way of implementing a biological model
onto programmable hardware which runs on a stand-
alone chip for embedded applications. The efficient
exploitation of the computing resources available on
FPGA devices leads to an outstanding processing speed.
A customized pipeline processing structure, including
some well-balanced parallel processing modules, effi-
ciently performs phase-based stereo estimations (about
one million gates on the Virtex-II FPGA are required
the system depends on the bit-width adopted at the dif-
ferent computing stages; this is quantified using bench-
mark images. Some illustrative and promising results are
shown in Fig. 2.
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