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Abstract curvature and independent components of surfaces was an-

alyzed. Their major conclusions were: (1) local 3D patches

For the analysis of images, a deeper understanding of tend to be saddle-like, and (2) natural scene geometry is
their intrinsic structure is required. This has been obtained quite regular and less complex than luminance images. In
for 2D images by means of statistical analysis,[18)]. [11], the distribution of 3D points was analyzed using co-
Here, we analyze the relation between local image struc- occurrence statistics and 2D and 3D joint distributions of
tures {.e., homogeneous, edge-like, corner-like or texture- Haar filter reactions. They showed that range images are
like structures) and the underlying local 3D structure, rep- much simpler to analyze than optical images and that a 3D
resented in terms of continuous surfaces and different kindsscene is composed of piecewise smooth regions.9pthe
of 3D discontinuities, using 3D range data with the true correlation between light intensities of the image data and
color information. We find that homogeneous image patchesthe corresponding range data as well as surface convexity
correspond to continuous surfaces, and discontinuities arewere investigated. They could justify the event that brighter
mainly formed by edge-like or corner-like structures. The objects are closer to the viewer, which is used by shape from
results are discussed with regard to existing and potential shading algorithms in estimating depth. I [L(], range
computer vision applications and the assumptions made byimage statistics were analyzed for explanation of several vi-
these applications. sual illusions.

Our analysis differs from these works. For 2D local im-
age patches, existing studies have only considered light in-
tensity. As for 3D local patches, the most complex consid-
ered representation have been the curvature of the local 3D

With the notion that the human visual system is adapted Patch. In this work, however, we create a higher-order rep-
to the statistics of the environment, [13, 15, 18, 22, 21] resentation of the 2D local image patches and the 3D local
and its successful applications to grouping, object recogni-Patches; we measure 2D local image patches using homoge-
tion and stereod, 4, 20, 29 the analysis, and the usage of neous, edge-like, corner-like or texture-like structures, and
natural image statistics has become an important focus of3D local patches using continuous surfaces and different
vision research. Moreover, with the advances in technol- kinds of 3D discontinuities. By this, we relate established
ogy, it has been also possible to analyze the underlying 3Dlocal image structures to their underlying 3D structures.
world using 3D range scanners] 11, 19, 27]. By creating 2D and 3D representations of the lo-

In this paper, we analyze the relation between local im- cal structure, we compute the conditional probability
age structured.e., homogeneous, edge-like, corner-like or P(3D Structurel 2D Structurg. Using this probability, we
texture-like structures) and the underlying local 3D struc- quantify some assumptions made by the studies that recon-
ture using 3D range data with the true color information.  struct the 3D world from dense range data. For example,

There have been only a few studies that have analyzedwve could show that the depth distribution varies signifi-
the 3D world from range datal, 11, 19, 27]. In [27], cantly for different visual features, and we could quantify
the distribution of roughness, size, distance, 3D orientation,already established inter-dependencies such as 'no new is

1. Introduction



good news’ f]. This work also supports the understanding by these 3D structures together with the illumination and

of how intrinsic properties 2D—3D relations can be used for reflectivity of the environment.

the reconstruction of depth, for example, by using statistical ~ With this intuition, any 3D scene can be decomposed

priors in the formalisation of depth cues. geometrically into surfaces and 3D discontinuities. In this
The paper is organized as follows: In sectiymwe define context, the local 3D structure of a point can be a:

the types of local image structures and local 3D structures

that we extract for our analysis. In secti®nwe introduce

a continuous classifier for local 2D structures. In sectipn

we outline our methods for measuring the 3D structure of a

3D point. We present and discuss our results in sedion

Finally, we conclude the paper in sectién

e Surface Continuity: The underlying 3D structure can
be described by one surface whose normal does not
change or changes smoothly.

e Regular Gap discontinuity: The underlying 3D struc-
ture can be described by a small set of surfaces with a
significant depth difference. The 2D and 3D views of
an example gap discontinuity are shown in figlifa).

2. Local 2D and 3D Structures . IrregularpGag dFi)scontinuity: ¥he underlying gD@ruc-
ture shows high depth variation and can not be de-
scribed by two or three surfaces. An example of an
irregular gap discontinuity is shown in figui€b).

e Orientation Discontinuity: The underlying 3D struc-
ture can be described by two surfaces with signifi-
cantly different 3D orientations that meet at the point
whose 3D structure is being questioned. In this type
of discontinuity, no gap but a change in 3D orientation
between the meeting surfaces occurs. An example for
this type of discontinuity is shown in figufgc).

We distinguish between the following local 2D struc-

tures:

e Homogeneous image patches: Homogeneous patches
are signals of uniform intensities.

e Edge-like structures: Edges are low-level structures
which constitute the boundaries between homoge-
neous or texture-like signals (seeg, [14, 17] for
their importance in vision).

e Corners: Corners are signals where two or more edge-
like structures with significantly different orientations

intersect (seee.g, [7, 23, 24] for their importance in . . . .
vision). 3. Intrinsic Dimensionality
e Texture: Although there is not a widely-agreed defini-  In image processing, intrinsic dimensionality was intro-

tion, textures are often defined as signals which consistduced by Zetsche and Barfii] to distinguish between dif-

of repetitive, random or directional structures (for their ferent local image structures. The idea is to assign intrin-

analysis, extraction and importance in vision, seg sically zero dimensionality (i0D), intrinsically one dimen-

[26]). sionality (i1D) and intrinsically two dimensionality (i2D) to

Locally, it is hard to distinguish between these struc- homogeneous patches, edges and corner-like structures, re-
tures, and there are structures that carry mixed propertiespectively. The concept of intrinsic dimensionality has been
of the "ideal’ cases. The classification of the features out- mostly applied in a discrete way which has been extended
lined above is discrete. However, a discrete classificationin [5, 16] to classify the local image structures continuously
may cause problems as the inherent properties of "mixed”instead of giving them discrete labels.
structures are lost in the discretization process. Instead, in In [5, 1€], it has been also shown that the topological
this paper, we make use of a recently developed continu-structure of the intrinsic dimensionality can be understood
ous scheme which is based on the concept of intrinsic di-as a triangle whose corners correspond to the 'ideal’ cases
mensionality b, 16]. In this concept, local image structures of 2D structuresi(e., homogeneous patches, edges and cor-
are organized continuously in a triangle. This approach isners). The inner of the triangle spans signals that carry
briefly described in sectioB Here, we show that the differ-  aspects of the three ’ideal’ cases, and the distance from
ent classes of local image structures map to different distin-the specific corners indicates the similarity (or dissimilar-
guishable areas in the domain of the intrinsic dimensionality ity) to the 'ideal’ iOD, i1D and i2D signals. The horizontal
triangle (see figur&) which is the first contribution of this  and the vertical axes denote the contrast and the orientation
paper. variance, respectively. Contrast measures non-homogeneity
To our knowledge, there does not exist a systematic andwhereas orientation variance measures the variation of ori-

agreed classification of 3D local structures like there is entation in a local patch describing the local image struc-
for 2D local image structures.€., homogeneous patches, ture. An ’ideal’ homogeneous image patch is expected to
edges, corners and textures). Intuitively, the 3D world con- have zero contrast and zero orientation variance whereas an
sists of continuous surface patches and different kinds of 3D’ideal’ edge should have high contrast and zero orientation
discontinuities. In the imaging process (through the lensesvariance. An ’ideal’ corner is supposed to have high con-
of camera or a retina), 2D local image structures are formedtrast and high orientation variance.



Figure 1. Examples for types of 3D discontinuities. Points of interest are marked with yellow circles. (a) 2D and 3D views of a gap
discontinuity, (b) image (on the left) and range data (on the right) of an irregular gap discontinuity and (c) orientation discontinuity.

Figure2 shows how the triangle of intrinsic dimension- two-dimensional corner edge, crease edge or surface dis-
ality looks like and how a set of example local image struc- continuity for orientation discontinuityl| 8, 25].
tures map on to it. In figurg, we see that different visual _ o
structures map to different areas in the triangle. A detailed 4-1. Measure for Gap Discontinuity: ycp
analysis of how 2D structures are distributed over the intrin- Gap discontinuities can be measured or detected in a

sic dimensionality triangle and how some visual informa- gjmilar way to edges in 2D images: edge detection pro-

tion depends on this distribution can be foundin][ Dif- cesses RGB-coded 2D images while for a gap discontinu-

ferent from [L7], in this paper, regardmg this distribution, _ity, one needs to process XYZ-coded 2D images. In other

we show that textures also map to a different area of the.'rwords, gap discontinuities can be measured or detected by
own. The fact that different local image structures have the'rtaking a second order derivative of XYZ values].

own di_stinguishablg_ areas in_ the tri_angle provides us with  Measurement of a gap discontinuity is expected to oper-

a continuous classifier that distinguishes between homogexie on both the horizontal and vertical axes of the 2D image;

neous, edge-like, texture-like and corner-like structures.  ihat is. it should be a two dimensional function. The al-

ternative is to discard the topology and do 'edge-detection’
4. Methods in sorted XYZ valuesi.e., to operate as a one-dimensional
function. Although we are not aware of a systematic com-
parison of the alternatives, for our analysis and for our
X e , o i data, the topology-discarding gap discontinuity measure-
gap discontinuity, irregular gap discontinuity and orienta- ment produced better results. Therefore, we have adopted

tion discontinuity. The measures for gap discontinuity, ir- yhe topology-discarding gap discontinuity measurement in
regular gap discontinuity and orientation discontinuity of & ha rest of the paper.

In this section, we define our measures for the three kinds
of discontinuities that we described in sectibnnamely,

patchP will be respectively denoted by p (P), prcp(P) For an image patcl of size N x N, let,

anduop(P). The reader who is not interested in the tech- X = ascendingor({X; | i € P}),

nical details can jump directly to sectién Yy = ascendingsor({Y; | i € P}), )
In our analysis, we used chromatic range data of outdoor z — ascendingor({Z | i€ P}),

sceneswhich were obtained from Riegl UK Ltd h{tp: )
and also, foi = 1,..,(N x N —2),

[lwww.riegl.co.uk/ ). There were 20 scenes in total,

10 of which are shown in figurgd. The range of an object X% = | (Xigo — Xig1) — (Xag1 — X3) | },

which does not reflect the laser beam back to the scanner V2 = (| Wiz = Vig1) = QVig1 = V) | 1 @
or is out of the range of the scanner cannot be measured. 24 {1 Bigz = Zit1) — (Zig1 — Z0) |

These points are marked with blue in figldend are not . .
processed in our analysis. The resolution range of the datawhereX;, ; 7AZi rAepresenis 3D coordinates of pixel
set is [512-2048]x[390-2290] with an average resolution of ~ The setst™, = and 2™ are the measurements of the
1140x1001. jumps {.e., second order differentials) in the séts) and

3D discontinuities are detected in studies which involve 2 réspectively. A gap discontinuity can be defined simply
range data processing, using different methods and using®S & measure of these jumps in these sets. In other words:
different names like two-dimensional discontinuous edge,

g _B(X) +6(V2) + 6(22)

jump edge or depth discontinuity for gap discontinuity; and, pap(P) = 3 ) (3

where the functio : S — [0, 1] over the setS measures

1We would like to note that it is problematic to do range scanning in : . : g :
nature scenes that include trees or other kinds of vegetation because of th he hpmogenglt%/_ Ofc'jts a;ghjmer!t set (ln terms of its peak|-
unintended motion due to wind. As the image of the scene is taken after ess) and s aefined as follows:
the scanning phase, this delay may make the image data fail to correspond #(S) = L % Z Si ()
to the range data. #(S) max(s)’

€S


http://www.riegl.co.uk/
http://www.riegl.co.uk/
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Figure 2. How a set of 54 patches map to the different areas of the intrinsic dimensionality triangle. Some examples from these patches
are also shown. The horizontal and vertical axes of the triangle denote the contrast and the orientation variances of the image patches,
respectively.
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4.2. Measure for Orientation Discontinuity: uop

The orientation discontinuity of a patdh can be de-
tected or measured by taking the 3D orientation difference
of the surfaces which meet & As the size of the patch
P is small enough, the surfaces can be, in practice, approx-
imated by 2-pixel wide unit planes. The histogram of the
3D orientation differences between every pair of unit planes
forms one cluster for continuous surfaces and two clusters
for orientation discontinuities.

For an image patcl? of size N x N pixels, the orien-
tation discontinuity measure is defined as:

— nop (P) = (H"({a(i,j) |i,j € planes(P),i # j})), (5)

Figure 3. 10 of the 20 3D data sets used in the analysis. The points
that don't have range data are marked in blue. The gray image WhereH"(S) is a function which computes thebin his-
shows the range data of the top-left scene. The resolution range igogram of its argument sé%; +(S) is a function which finds
[512-2048]x[390-2290] with an average resolution of 1140x1001. the number of clusters iff; planes(P) is a function which

fits 2-pixel-wide unit planes to 1-pixel apart pointsihus-

ing Singular Value Decompositiénand,«(i, 7) is the angle

between planesand;.

For a histogrant{ of size Ny, the number of clusters is:

where#(S) is the number of the elements 8f ands; is

the it element of the sef. Note that as a homogeneous
set {.e., a non-gap discontinuity§ produces a high(S)
value, a 9ap dISCOI’]thIty causes a lpWD value. Figure 2 Singular Value Decomposition is a standard technique for fitting

5(c) Sh(_)W$ the performance Q@D on one of our scenes planes to a set of points. It finds the perfectly fitting plane if it exists;
shown in figures. otherwise, it returns the least-square solution.
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Dis. Type “eD 1IGD “OD
Continuity High value | Don't care 1

Gap Dis. Low value | Low value | Don't care
Irregular Gap Dis. | Low value | High value | Don't care
Orientation Dis. High value | Don't care > 1

Table 1. The relation between the measurements and the types of
the 3D discontinuities.

e continuous ifuep(P) > T, aNduocp (P) < 1.

For our analysis, we have takéhand the threshold val-
uesTy,, T;, empirically asl0, 0.4 and0.6, respectively. The
number of binsgp, in H™ is taken as 20.

Figure5(a) shows the types of 3D discontinuities marked
in four different colors for every pixel of the scenes shown

Figure 4. Example histograms and the number of clusters that thejn figure 3. We see that our measures can capture the 3D

function ¢(S) computes.(.S) finds one cluster in the left his-
togram and two clusters in the right histogram. Red line marks the
threshold value of the function. X axis denotes the values for 3D
orientation differences.

where the operato#£ returnsl if its operands are not equal
and returng), otherwise;H; represents thé¢”” element of
the histogran¥!; Hy and H ,, +1 are defined as zero; and,
max(H)/10 is an empirical value which functions as the
threshold value for finding the clusters. Figdrshows two

structure of the data sufficiently correct.

5. Results and Discussion

For each pixel of the scene (except for pixels where range
data is not available), we computed the 3D discontinuity
type and the intrinsic dimensionality. Figuséa) and (b)
shows the images where the 3D discontinuity and the intrin-
sic dimensionality of each pixel are marked with different
colors.

example clusters for a continuous surface and an orientation Having the 3D discontinuity type and the infor-

discontinuity. Figures(d) shows the performance o p
on one of our scenes shown in figle

4.3. Measure for Irregular Gap Discontinuity: prap

Irregular gap discontinuity of a patdhcan be measured
by making use of the observation that an irregular-gap dis-
continuous patch from nature usually consists of small sur-
face fragments with different 3D orientations. Therefore,
the amount of variety in the 3D orientation histogram of a
patch P can measure the irregular gap discontinuity.of

Similar to the measure for orientation discontinuity de-
fined in sectiond.2, the histogram of the differences be-
tween the 3D orientations of the unit planes (which are of
2 pixels wide) is analyzed. For an image pafelof size
N x N pixels, the irregular gap discontinuity measure is
defined as:

miep(P) = ¢(H" ({a(4, §) |4,j € planes(P),i # j})), o
whereplanes(P), a(i, j), H"(S) and¢(S) are as defined
in section4.2. Figure5(e) shows the performance pfsp
on one of our scenes shown in figue

The relation between the measurements and the types of

the 3D discontinuities are outlined in takblevhich entails
that an image patcP is:
e gap discontinuous ifsn(P) < T, aNdurap (P) < Tiy,
e irregular-gap discontinuous if.cp(P) < T, and
nrep(P) > Tig,
e orientation discontinuous jfs 5 (P) > 7, anduop > 1,

mation about the local 2D structure of each point,
it is straightforward to compute the probability
P(3D Discontinuity | 2D Structurg, which is shown

in figure6. Note that the four triangles in figurééa), 6(b),

6(c) and6(d) add up to one for all points of the triangle.
We see that:

e Figure 6(a) shows that homogeneous image patches
correspond to 3D continuities.

Many surface reconstruction studies make use of a ba-
sic assumption that there is a smooth surface between
any two points in the 3D world, if there is no contrast
difference between these points in the image. This
assumption has been first called as 'no news is good
news’ in [6]. With figure 6(a), we quantify 'no news is
good news’ and show for which structures and to what
extent it holds. In addition to the fact that no news is
in fact good news, the figure shows that news, espe-
cially texture-like structures and edge-like structures,
can also be good news (see below).

Edges are considered as important sources of informa-
tion for object recognition and reliable correspondence
finding. Approximately 10% of local image structures
are of that type (see.g, [17]). Figures6(a), (b) and

(d) show that most of the edges correspond to continu-
ous surfaces or gap discontinuities. The edges that cor-
respond to continuous surfaces are mostly low-contrast
edges. Little percentage of the edges are formed by
orientation discontinuities.



Figure 5. The 3D and 2D information for one of the scenes shown in figui®ark blue marks the points without range data. (a) 3D
discontinuity. Blue: continuous surfaces, light blue: orientation discontinuities, orange: gap discontinuities and brown: irregular gap
discontinuities. (b) Intrinsic Dimensionality. Homogeneous patches, edge-like and corner-like structures are encoded in colors brown,
yellow and light blue, respectively. (c) Gap discontinuity measusg. (d) Orientation discontinuity measure,p. (€) Irregular gap
discontinuity measurgrap.

e Figure6(b) shows that well-defined corner-like struc- of a 3D structure given the 2D structure. With this prob-
tures result from either gap discontinuities or continu- ability, we could investigate the relation between 2D struc-

ities. tures and the underlying 3D structures as well as analyze the
e Textures also map with high likelihood to surface con- Vvalidity of a widely_-used assumption/smoothing constraint,
tinuities but also to irregular gap discontinuities. namely, 'no news is good news’]f

Findi d b difficult with Besides, we have presented a continuous classification
thm llngkcorrespc:rtl_ ences ?(iﬁmfs rr;orte It cu \_'l_VL scheme which can be used to distinguish between homo-
?. act or fr?r;])e lIveness ((; N oc;';lt struc ulrke ¢ € geneous, edge-like, corner-like and texture-like structures.
;es imates ot e”colrrespoF t()alncels {ah. exture- Itr? SI_LUC'By taking a higher-order representation than existing range-
l_l;]resdatrﬁ Ta urf\ ly tesi reliable. In Isdsle;nse’ t'e K€" Jata analysis studies, we could point to the intrinsic proper-
' ofo a Eer ain ?X ures are cakt:se gtcon m(;mlusties of the 3D world and its relation to the image data. This
S;Jr aces (ts hqwnfln |?uré(?r)]) ::_anl 3 U.S? 0 Imtg N analysis is important because (1) it may be that the human
stereo matching functions that include interpolation as ;g 5 system is adapted to the statistics of the environment
well as mformanp abou't possub]e correspondences[2 12,15, 18, 21, 27, and (2) it may be used in several com-
?ased on the local |mage. information. ] puter vision applications like depth estimation in a similar
It is remarkable that local image structures mapping to way as in B, 4, 20, 29].
different sub-regions in the triangle are caused by rather dif-  |n our current work, the probability distributions will
ferent 3D structures. This clearly indicates that these differ- ye ysed for estimating the 3D structure from 2D struc-
ent image structures should be used in different ways foryyre in a Bayesian framework for surface reconstruc-
surface reconstruction. tion/interpolation studies.
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Figure 6. P(3D Discontinuity | 2D Structurg: (a) P(Continuity | 2D Structure.
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