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Abstract

For the analysis of images, a deeper understanding of
their intrinsic structure is required. This has been obtained
for 2D images by means of statistical analysis [15, 18].
Here, we analyze the relation between local image struc-
tures (i.e., homogeneous, edge-like, corner-like or texture-
like structures) and the underlying local 3D structure, rep-
resented in terms of continuous surfaces and different kinds
of 3D discontinuities, using 3D range data with the true
color information. We find that homogeneous image patches
correspond to continuous surfaces, and discontinuities are
mainly formed by edge-like or corner-like structures. The
results are discussed with regard to existing and potential
computer vision applications and the assumptions made by
these applications.

1. Introduction

With the notion that the human visual system is adapted
to the statistics of the environment [2, 13, 15, 18, 22, 21]
and its successful applications to grouping, object recogni-
tion and stereo [3, 4, 20, 29] the analysis, and the usage of
natural image statistics has become an important focus of
vision research. Moreover, with the advances in technol-
ogy, it has been also possible to analyze the underlying 3D
world using 3D range scanners [10, 11, 19, 27].

In this paper, we analyze the relation between local im-
age structures (i.e., homogeneous, edge-like, corner-like or
texture-like structures) and the underlying local 3D struc-
ture using 3D range data with the true color information.

There have been only a few studies that have analyzed
the 3D world from range data [10, 11, 19, 27]. In [27],
the distribution of roughness, size, distance, 3D orientation,

curvature and independent components of surfaces was an-
alyzed. Their major conclusions were: (1) local 3D patches
tend to be saddle-like, and (2) natural scene geometry is
quite regular and less complex than luminance images. In
[11], the distribution of 3D points was analyzed using co-
occurrence statistics and 2D and 3D joint distributions of
Haar filter reactions. They showed that range images are
much simpler to analyze than optical images and that a 3D
scene is composed of piecewise smooth regions. In [19], the
correlation between light intensities of the image data and
the corresponding range data as well as surface convexity
were investigated. They could justify the event that brighter
objects are closer to the viewer, which is used by shape from
shading algorithms in estimating depth. In [9, 10], range
image statistics were analyzed for explanation of several vi-
sual illusions.

Our analysis differs from these works. For 2D local im-
age patches, existing studies have only considered light in-
tensity. As for 3D local patches, the most complex consid-
ered representation have been the curvature of the local 3D
patch. In this work, however, we create a higher-order rep-
resentation of the 2D local image patches and the 3D local
patches; we measure 2D local image patches using homoge-
neous, edge-like, corner-like or texture-like structures, and
3D local patches using continuous surfaces and different
kinds of 3D discontinuities. By this, we relate established
local image structures to their underlying 3D structures.

By creating 2D and 3D representations of the lo-
cal structure, we compute the conditional probability
P (3D Structure| 2D Structure). Using this probability, we
quantify some assumptions made by the studies that recon-
struct the 3D world from dense range data. For example,
we could show that the depth distribution varies signifi-
cantly for different visual features, and we could quantify
already established inter-dependencies such as ’no new is



good news’ [6]. This work also supports the understanding
of how intrinsic properties 2D–3D relations can be used for
the reconstruction of depth, for example, by using statistical
priors in the formalisation of depth cues.

The paper is organized as follows: In section2, we define
the types of local image structures and local 3D structures
that we extract for our analysis. In section3, we introduce
a continuous classifier for local 2D structures. In section4,
we outline our methods for measuring the 3D structure of a
3D point. We present and discuss our results in section5.
Finally, we conclude the paper in section6.

2. Local 2D and 3D Structures

We distinguish between the following local 2D struc-
tures:
• Homogeneous image patches: Homogeneous patches

are signals of uniform intensities.
• Edge–like structures: Edges are low-level structures

which constitute the boundaries between homoge-
neous or texture-like signals (see,e.g., [14, 17] for
their importance in vision).

• Corners: Corners are signals where two or more edge-
like structures with significantly different orientations
intersect (see,e.g., [7, 23, 24] for their importance in
vision).

• Texture: Although there is not a widely-agreed defini-
tion, textures are often defined as signals which consist
of repetitive, random or directional structures (for their
analysis, extraction and importance in vision, seee.g.,
[26]).

Locally, it is hard to distinguish between these struc-
tures, and there are structures that carry mixed properties
of the ’ideal’ cases. The classification of the features out-
lined above is discrete. However, a discrete classification
may cause problems as the inherent properties of ”mixed”
structures are lost in the discretization process. Instead, in
this paper, we make use of a recently developed continu-
ous scheme which is based on the concept of intrinsic di-
mensionality [5, 16]. In this concept, local image structures
are organized continuously in a triangle. This approach is
briefly described in section3. Here, we show that the differ-
ent classes of local image structures map to different distin-
guishable areas in the domain of the intrinsic dimensionality
triangle (see figure2) which is the first contribution of this
paper.

To our knowledge, there does not exist a systematic and
agreed classification of 3D local structures like there is
for 2D local image structures (i.e., homogeneous patches,
edges, corners and textures). Intuitively, the 3D world con-
sists of continuous surface patches and different kinds of 3D
discontinuities. In the imaging process (through the lenses
of camera or a retina), 2D local image structures are formed

by these 3D structures together with the illumination and
reflectivity of the environment.

With this intuition, any 3D scene can be decomposed
geometrically into surfaces and 3D discontinuities. In this
context, the local 3D structure of a point can be a:

• Surface Continuity: The underlying 3D structure can
be described by one surface whose normal does not
change or changes smoothly.

• Regular Gap discontinuity: The underlying 3D struc-
ture can be described by a small set of surfaces with a
significant depth difference. The 2D and 3D views of
an example gap discontinuity are shown in figure1(a).

• Irregular Gap discontinuity: The underlying 3D struc-
ture shows high depth variation and can not be de-
scribed by two or three surfaces. An example of an
irregular gap discontinuity is shown in figure1(b).

• Orientation Discontinuity: The underlying 3D struc-
ture can be described by two surfaces with signifi-
cantly different 3D orientations that meet at the point
whose 3D structure is being questioned. In this type
of discontinuity, no gap but a change in 3D orientation
between the meeting surfaces occurs. An example for
this type of discontinuity is shown in figure1(c).

3. Intrinsic Dimensionality

In image processing, intrinsic dimensionality was intro-
duced by Zetsche and Barth[28] to distinguish between dif-
ferent local image structures. The idea is to assign intrin-
sically zero dimensionality (i0D), intrinsically one dimen-
sionality (i1D) and intrinsically two dimensionality (i2D) to
homogeneous patches, edges and corner-like structures, re-
spectively. The concept of intrinsic dimensionality has been
mostly applied in a discrete way which has been extended
in [5, 16] to classify the local image structures continuously
instead of giving them discrete labels.

In [5, 16], it has been also shown that the topological
structure of the intrinsic dimensionality can be understood
as a triangle whose corners correspond to the ’ideal’ cases
of 2D structures (i.e., homogeneous patches, edges and cor-
ners). The inner of the triangle spans signals that carry
aspects of the three ’ideal’ cases, and the distance from
the specific corners indicates the similarity (or dissimilar-
ity) to the ’ideal’ i0D, i1D and i2D signals. The horizontal
and the vertical axes denote the contrast and the orientation
variance, respectively. Contrast measures non-homogeneity
whereas orientation variance measures the variation of ori-
entation in a local patch describing the local image struc-
ture. An ’ideal’ homogeneous image patch is expected to
have zero contrast and zero orientation variance whereas an
’ideal’ edge should have high contrast and zero orientation
variance. An ’ideal’ corner is supposed to have high con-
trast and high orientation variance.
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Figure 1. Examples for types of 3D discontinuities. Points of interest are marked with yellow circles. (a) 2D and 3D views of a gap
discontinuity, (b) image (on the left) and range data (on the right) of an irregular gap discontinuity and (c) orientation discontinuity.

Figure2 shows how the triangle of intrinsic dimension-
ality looks like and how a set of example local image struc-
tures map on to it. In figure2, we see that different visual
structures map to different areas in the triangle. A detailed
analysis of how 2D structures are distributed over the intrin-
sic dimensionality triangle and how some visual informa-
tion depends on this distribution can be found in [12]. Dif-
ferent from [12], in this paper, regarding this distribution,
we show that textures also map to a different area of their
own. The fact that different local image structures have their
own distinguishable areas in the triangle provides us with
a continuous classifier that distinguishes between homoge-
neous, edge-like, texture-like and corner-like structures.

4. Methods

In this section, we define our measures for the three kinds
of discontinuities that we described in section1; namely,
gap discontinuity, irregular gap discontinuity and orienta-
tion discontinuity. The measures for gap discontinuity, ir-
regular gap discontinuity and orientation discontinuity of a
patchP will be respectively denoted byµGD(P ), µIGD(P )
andµOD(P ). The reader who is not interested in the tech-
nical details can jump directly to section5.

In our analysis, we used chromatic range data of outdoor
scenes1 which were obtained from Riegl UK Ltd. (http:
//www.riegl.co.uk/ ). There were 20 scenes in total,
10 of which are shown in figure3. The range of an object
which does not reflect the laser beam back to the scanner
or is out of the range of the scanner cannot be measured.
These points are marked with blue in figure3 and are not
processed in our analysis. The resolution range of the data
set is [512-2048]x[390-2290] with an average resolution of
1140x1001.

3D discontinuities are detected in studies which involve
range data processing, using different methods and using
different names like two-dimensional discontinuous edge,
jump edge or depth discontinuity for gap discontinuity; and,

1We would like to note that it is problematic to do range scanning in
nature scenes that include trees or other kinds of vegetation because of the
unintended motion due to wind. As the image of the scene is taken after
the scanning phase, this delay may make the image data fail to correspond
to the range data.

two-dimensional corner edge, crease edge or surface dis-
continuity for orientation discontinuity [1, 8, 25].

4.1. Measure for Gap Discontinuity: µGD

Gap discontinuities can be measured or detected in a
similar way to edges in 2D images; edge detection pro-
cesses RGB-coded 2D images while for a gap discontinu-
ity, one needs to process XYZ-coded 2D images. In other
words, gap discontinuities can be measured or detected by
taking a second order derivative of XYZ values [25].

Measurement of a gap discontinuity is expected to oper-
ate on both the horizontal and vertical axes of the 2D image;
that is, it should be a two dimensional function. The al-
ternative is to discard the topology and do ’edge-detection’
in sorted XYZ values,i.e., to operate as a one-dimensional
function. Although we are not aware of a systematic com-
parison of the alternatives, for our analysis and for our
data, the topology-discarding gap discontinuity measure-
ment produced better results. Therefore, we have adopted
the topology-discarding gap discontinuity measurement in
the rest of the paper.

For an image patchP of sizeN ×N , let,
X = ascendingsort(

˘
Xi | i ∈ P

¯
),

Y = ascendingsort(
˘
Yi | i ∈ P

¯
), (1)

Z = ascendingsort(
˘
Zi | i ∈ P

¯
),

and also, fori = 1, .., (N ×N − 2),

X∆
=

˘
| (X i+2 − X i+1)− (X i+1 − X i) |

¯
,

Y∆
=

˘
| (Yi+2 − Yi+1)− (Yi+1 − Yi) |

¯
, (2)

Z∆
=

˘
| (Zi+2 − Zi+1)− (Zi+1 − Zi) |

¯
,

whereX i,Yi,Zi represents 3D coordinates of pixeli.
The setsX∆,Y∆ andZ∆ are the measurements of the

jumps (i.e., second order differentials) in the setsX ,Y and
Z, respectively. A gap discontinuity can be defined simply
as a measure of these jumps in these sets. In other words:

µGD(P ) =
φ(X∆) + φ(Y∆) + φ(Z∆)

3
, (3)

where the functionφ : S → [0, 1] over the setS measures
the homogeneity of its argument set (in terms of its ’peaki-
ness’) and is defined as follows:

φ(S) =
1

#(S)
×

X
i∈S

si

max(S)
, (4)

http://www.riegl.co.uk/
http://www.riegl.co.uk/


Figure 2. How a set of 54 patches map to the different areas of the intrinsic dimensionality triangle. Some examples from these patches
are also shown. The horizontal and vertical axes of the triangle denote the contrast and the orientation variances of the image patches,
respectively.

Figure 3. 10 of the 20 3D data sets used in the analysis. The points
that don’t have range data are marked in blue. The gray image
shows the range data of the top-left scene. The resolution range is
[512-2048]x[390-2290] with an average resolution of 1140x1001.

where#(S) is the number of the elements ofS, andsi is
the ith element of the setS. Note that as a homogeneous
set (i.e., a non-gap discontinuity)S produces a highφ(S)
value, a gap discontinuity causes a lowµGD value. Figure
5(c) shows the performance ofµGD on one of our scenes
shown in figure3.

4.2. Measure for Orientation Discontinuity: µOD

The orientation discontinuity of a patchP can be de-
tected or measured by taking the 3D orientation difference
of the surfaces which meet atP . As the size of the patch
P is small enough, the surfaces can be, in practice, approx-
imated by 2-pixel wide unit planes. The histogram of the
3D orientation differences between every pair of unit planes
forms one cluster for continuous surfaces and two clusters
for orientation discontinuities.

For an image patchP of sizeN × N pixels, the orien-
tation discontinuity measure is defined as:

µOD(P ) = ψ(H
n
(
˘
α(i, j) | i, j ∈ planes(P ), i 6= j

¯
)), (5)

whereHn(S) is a function which computes then-bin his-
togram of its argument setS; ψ(S) is a function which finds
the number of clusters inS; planes(P ) is a function which
fits 2-pixel-wide unit planes to 1-pixel apart points inP us-
ing Singular Value Decomposition2; and,α(i, j) is the angle
between planesi andj.

For a histogramH of sizeNH , the number of clusters is:

ψ(S) =

PNH+1
i=1 (Hi >

max(H)
10 ) 6= (Hi−1 >

max(H)
10 )

2
, (6)

2 Singular Value Decomposition is a standard technique for fitting
planes to a set of points. It finds the perfectly fitting plane if it exists;
otherwise, it returns the least-square solution.



Figure 4. Example histograms and the number of clusters that the
functionψ(S) computes.ψ(S) finds one cluster in the left his-
togram and two clusters in the right histogram. Red line marks the
threshold value of the function. X axis denotes the values for 3D
orientation differences.

where the operator6= returns1 if its operands are not equal
and returns0, otherwise;Hi represents theith element of
the histogramH; H0 andHNH+1 are defined as zero; and,
max(H)/10 is an empirical value which functions as the
threshold value for finding the clusters. Figure4 shows two
example clusters for a continuous surface and an orientation
discontinuity. Figure5(d) shows the performance ofµOD
on one of our scenes shown in figure3.

4.3. Measure for Irregular Gap Discontinuity: µIGD

Irregular gap discontinuity of a patchP can be measured
by making use of the observation that an irregular-gap dis-
continuous patch from nature usually consists of small sur-
face fragments with different 3D orientations. Therefore,
the amount of variety in the 3D orientation histogram of a
patch P can measure the irregular gap discontinuity ofP .

Similar to the measure for orientation discontinuity de-
fined in section4.2, the histogram of the differences be-
tween the 3D orientations of the unit planes (which are of
2 pixels wide) is analyzed. For an image patchP of size
N × N pixels, the irregular gap discontinuity measure is
defined as:

µIGD(P ) = φ(H
n
(
˘
α(i, j) | i, j ∈ planes(P ), i 6= j

¯
)), (7)

whereplanes(P ), α(i, j),Hn(S) andφ(S) are as defined
in section4.2. Figure5(e) shows the performance ofµIGD
on one of our scenes shown in figure3.

The relation between the measurements and the types of
the 3D discontinuities are outlined in table1 which entails
that an image patchP is:
• gap discontinuous ifµGD(P ) < Tg andµIGD(P ) < Tig,
• irregular-gap discontinuous ifµGD(P ) < Tg and
µIGD(P ) > Tig,

• orientation discontinuous ifµGD(P ) ≥ Tg andµOD > 1,

Dis. Type µGD µIGD µOD

Continuity High value Don’t care 1
Gap Dis. Low value Low value Don’t care
Irregular Gap Dis. Low value High value Don’t care
Orientation Dis. High value Don’t care > 1

Table 1. The relation between the measurements and the types of
the 3D discontinuities.

• continuous ifµGD(P ) ≥ Tg andµOD(P ) ≤ 1.
For our analysis, we have takenN and the threshold val-

uesTg, Tig empirically as10, 0.4 and0.6, respectively. The
number of bins,n, inHn is taken as 20.

Figure5(a) shows the types of 3D discontinuities marked
in four different colors for every pixel of the scenes shown
in figure 3. We see that our measures can capture the 3D
structure of the data sufficiently correct.

5. Results and Discussion

For each pixel of the scene (except for pixels where range
data is not available), we computed the 3D discontinuity
type and the intrinsic dimensionality. Figure5(a) and (b)
shows the images where the 3D discontinuity and the intrin-
sic dimensionality of each pixel are marked with different
colors.

Having the 3D discontinuity type and the infor-
mation about the local 2D structure of each point,
it is straightforward to compute the probability
P (3D Discontinuity | 2D Structure), which is shown
in figure6. Note that the four triangles in figures6(a),6(b),
6(c) and6(d) add up to one for all points of the triangle.
We see that:
• Figure 6(a) shows that homogeneous image patches

correspond to 3D continuities.

Many surface reconstruction studies make use of a ba-
sic assumption that there is a smooth surface between
any two points in the 3D world, if there is no contrast
difference between these points in the image. This
assumption has been first called as ’no news is good
news’ in [6]. With figure6(a), we quantify ’no news is
good news’ and show for which structures and to what
extent it holds. In addition to the fact that no news is
in fact good news, the figure shows that news, espe-
cially texture-like structures and edge-like structures,
can also be good news (see below).

• Edges are considered as important sources of informa-
tion for object recognition and reliable correspondence
finding. Approximately 10% of local image structures
are of that type (see,e.g., [12]). Figures6(a), (b) and
(d) show that most of the edges correspond to continu-
ous surfaces or gap discontinuities. The edges that cor-
respond to continuous surfaces are mostly low-contrast
edges. Little percentage of the edges are formed by
orientation discontinuities.
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Figure 5. The 3D and 2D information for one of the scenes shown in figure3. Dark blue marks the points without range data. (a) 3D
discontinuity. Blue: continuous surfaces, light blue: orientation discontinuities, orange: gap discontinuities and brown: irregular gap
discontinuities. (b) Intrinsic Dimensionality. Homogeneous patches, edge-like and corner-like structures are encoded in colors brown,
yellow and light blue, respectively. (c) Gap discontinuity measureµGD. (d) Orientation discontinuity measureµOD. (e) Irregular gap
discontinuity measureµIGD.

• Figure6(b) shows that well-defined corner-like struc-
tures result from either gap discontinuities or continu-
ities.

• Textures also map with high likelihood to surface con-
tinuities but also to irregular gap discontinuities.

Finding correspondences becomes more difficult with
the lack or repetitiveness of the local structure. The
estimates of the correspondences at texture-like struc-
tures are naturally less reliable. In this sense, the like-
lihood that certain textures are caused by continuous
surfaces (shown in figure6(a)) can be used to model
stereo matching functions that include interpolation as
well as information about possible correspondences
based on the local image information.

It is remarkable that local image structures mapping to
different sub-regions in the triangle are caused by rather dif-
ferent 3D structures. This clearly indicates that these differ-
ent image structures should be used in different ways for
surface reconstruction.

6. Conclusion

In this paper, using 3D range data with real-world color
information, we have analyzed the conditional probability

of a 3D structure given the 2D structure. With this prob-
ability, we could investigate the relation between 2D struc-
tures and the underlying 3D structures as well as analyze the
validity of a widely-used assumption/smoothing constraint,
namely, ’no news is good news’ [6].

Besides, we have presented a continuous classification
scheme which can be used to distinguish between homo-
geneous, edge-like, corner-like and texture-like structures.
By taking a higher-order representation than existing range-
data analysis studies, we could point to the intrinsic proper-
ties of the 3D world and its relation to the image data. This
analysis is important because (1) it may be that the human
visual system is adapted to the statistics of the environment
[2, 13, 15, 18, 21, 22], and (2) it may be used in several com-
puter vision applications like depth estimation in a similar
way as in [3, 4, 20, 29].

In our current work, the probability distributions will
be used for estimating the 3D structure from 2D struc-
ture in a Bayesian framework for surface reconstruc-
tion/interpolation studies.
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Figure 6. P (3D Discontinuity | 2D Structure): (a) P (Continuity | 2D Structure). (b) P (Gap Discontinuity| 2D Structure). (c)
P (Irregular Gap Discontinuity| 2D Structure). (d)P (Orientation Discontinuity| 2D Structure).

VISION project.
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