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Abstract

A novel, nonlinear algorithm is introduced for the esti-
mation of rigid camera motion from instantaneous veloc-
ity measurements in the calibrated case. It is shown that
by minimizing an approximation to the image-reprojection
error rather than the actual error, as done by the opti-
mal algorithms, the proposed algorithm achieves largely in-
creased robustness to local minima at the cost of a slightly
decreased accuracy.

1. Introduction

Visual motion is one of the more important sensory cues
that are used by humans to guide behavior or to navigate a
dynamical environment. The instantaneous velocity or op-
tic flow field contains a tremendous amount of information
related to the three dimensional (3D) structure of the envi-
ronment and to independently moving objects that may be
present. Knowledge of the egomotion or self-motion of the
observer is a necessary prerequisite to obtain this valuable
information. Its determination is, however, nontrivial and
an active topic of research.

In this paper we propose a novel, nonlinear method for
the computation of egomotion from instantaneous velocity
measurements, assuming a calibrated camera. The largely
reduced variance in the parameter estimates obtained by
nonlinear algorithms as compared to linear ones, has been
shown on several occasions [2, 10, 12] and is crucial for
practical applications where very noisy optic flow serves as
input. However, contrary to linear methods, nonlinear al-
gorithms are prone to local minima. These local minima
are intrinsic to the egomotion problem itself and depend,
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among others, on the feature locations [11]. Additional lo-
cal minima are induced by the use of, possibly nonlinear,
estimation methods from the domain of robust statistics that
should be employed in the presence of independently mov-
ing objects.

We propose a novel, unbiased egomotion estimation
method that provides a balance between accuracy, and ro-
bustness to local minima. By means of extensive simula-
tions we demonstrate that it outperforms linear algorithms
with respect to variance of the estimates and nonlinear
methods with respect to robustness to local minima. The
reason for this is the approximation of the error function
used by the optimal algorithms, which allows for simplified
updating rules in our algorithm.

2. Problem statement

Under a static environment assumption, the motion of
all points in space, relative to a coordinate system centered
in the nodal point of the observer’s eye, is determined by
the translational velocity t = (tx, ty, tz)T and rotational
velocity ω = (ωx, ωy, ωz)T of the moving observer. The
3D velocity v = (vx, vy, vz)T of a point x = (x, y, z)T is
then [6]:

v = −t− ω × x . (1)

Under perspective projection and assuming, without loss of
generality, a focal length equal to unity, these 3D motion
vectors are transformed into a two dimensional (2D) veloc-
ity or optic flow field. At feature location x = (x, y, 1)T,
the observed flow u(x) = (ux, uy)T equals:

u(x) = d(x)A(x)t + B(x)ω + n(x) , (2)

where

A(x) =
[ −1 0 x

0 −1 y

]
, (3)

B(x) =
[

xy −1 − x2 y
1 + y2 −xy −x

]
. (4)



Figure 1. Optic flow components.

The observed flow consists of three parts: a component due
to the observer’s translation (which also depends on the in-
verse depth d(x) = 1/z), a component due to the observer’s
rotation, and the noise n(x) = (nx, ny)T, which is assumed
to be independently (not necessarily identically) distributed.
These different components are illustrated in Fig. 1. Also
indicated is τ (x, t), a unit length vector orthogonal to the
translational component of the flow:

τ (x, t) =
1

‖A(x)t‖
([

A(x)t
]

y
,−

[
A(x)t

]
x

)T

, (5)

where [p]x and [p]y refer to the x- and y-components of
the vector p respectively. When depth is eliminated from
Eq. (2), the well-known bilinear constraint [1] on translation
and rotation is obtained:(

u(x) − B(x)ω
)T(

‖A(x)t‖ τ (x, t)
)

= 0 . (6)

This particular notation was chosen since it highlights that
the constraint is weighted by ‖A(x)t‖. This weight term
renders the constraints much simpler algebraically [1] (see
also Eq. 17). In the absence of prior knowledge and assum-
ing isotropic, additive noise, it is however unwarranted to
weigh the constraints in this arbitrary fashion. Instead, the
unweighted constraints should be used [12]:

t̂, ω̂ = argmint,ω

∑
i

r2(xi) , (7)

where:

r(xi) =
(
u(xi) − B(xi)ω

)T

τ (xi, t) , (8)

the normalized, orthogonal, deviations from the epipolar
lines. The estimates obtained from Eq. (7) minimize the
least-squares image-reprojection error [9]. Algorithms that
operate on this error function are commonly referred to as
‘optimal’ [2, 12].

3. Previous algorithms

A wide variety of egomotion-estimation methods have
been proposed in the past. One of the first algorithms was

introduced by Bruss and Horn [1] and consists of a straight-
forward minimization of the bilinear constraints (Eq. 6) us-
ing nonlinear optimization techniques. Heeger and Jepson
(H&J) [4] proposed a method to compute the heading (nor-
malized translation) without iterative numerical optimiza-
tion. Their linear subspace method is based on the construc-
tion of a set of constraint vectors that are independent of
camera rotation. Another linear algorithm was recently pro-
posed by Ma et al. [7] and is conceptually similar to meth-
ods that operate on the discrete epipolar constraint. The
heading estimates computed with this algorithm have been
shown to be identical to those obtained with H&J but the
rotation estimates are better.

The heading estimates obtained with the aforementioned
algorithms are all systematically biased. Different bias cor-
rection procedures can be found in the literature. Kanatani
(KAN) [5] introduced a method that subtracts an estimate of
the bias from the solution. A second correction procedure
was introduced more recently by Maclean (MAC) [8] as an
adaptation to H&J. Contrary to KAN, the latter method does
not require an estimate of the noise variance. The method
we propose uses a bias correction procedure similar to MAC
(see Section 4).

An optimal, nonlinear algorithm was introduced by
Chiuso et al. (CHI) [2]. This algorithm involves a se-
quence of fixed-point iterations where each part of the se-
quence involves the solution of a linear least-squares prob-
lem. Chiuso et al. proposed iterating between estimates of
t and {d(x), ω}. Since a spherical projection model was
used in their formulation and the other algorithms assume
a traditional pin-hole model, we modified the formulation
and implemented the algorithm as follows. Starting from
an initial heading estimate t̂, a rotation estimate ω̂ is ob-
tained as the linear least-squares solution to the system of
Eq. (8). Using both estimates, the least-squares relative in-
verse depth estimates d̂(xi) are obtained as follows:

d̂(xi) =

(
u(xi) − B(xi)ω̂

)T

A(xi)̂t∥∥A(xi )̂t
∥∥2 . (9)

Next, the estimates {d̂(x), ω̂} are used to compute a new
translation estimate as the linear least-squares solution to
the system of Eq. (2). After normalization of this transla-
tion estimate, the sequence is repeated until the estimates
converge.

Zhang and Tomasi [12] (ZHA) introduced a second op-
timal algorithm which is very similar to CHI. The rotation
ω̂ and relative inverse depth estimates d̂(x) are obtained in
the same way but the heading estimate t̂ is updated using a
Gauss-Newton optimization scheme. The update ∆t is ob-
tained as the linear least-squares solution to the following
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set of equations:

(
u(xi) − B(xi)ω̂

)T

τ (xi, t̂) =

δ

δt

[(
d̂(xi)A(xi)t

)T

τ (xi, t̂)
]

∆t , (10)

combined with the additional constraint t̂T∆t = 0, which
ensures a unit length heading estimate.

4. Proposed method

A straightforward fixed-point minimization of the bilin-
ear constraints (Eq. 6), conceptually similar to CHI, can be
achieved by alternately estimating the heading assuming the
rotation is correct, and estimating the rotation assuming the
heading is correct, using linear least-squares for both es-
timates. There are two problems associated with this ap-
proach.

First of all, as explained in Section 1, the constraints
are weighted by ‖A(xi)t‖ and consequently not every flow
vector is considered equal. This can be resolved by using
weighted least squares, with weights equal to 1/‖A(xi)̂t‖.
Here, t̂ is the heading estimate obtained in the previous it-
eration. Note the difference with a direct minimization of
Eq. (7) which is normalized by the heading estimate itself
and thus highly nonlinear.

A second, more difficult problem, concerns the system-
atic bias to which heading estimates obtained in this way
are prone. The correction procedure introduced by Maclean
[8] for H&J, can be adapted to work directly on the bilin-
ear constraints. Without loss of generality, in the absence of
rotation (or after removal of the estimated rotation), these
constraints can equivalently be written as:

tT
(
xi × u(xi)

)
= 0 , (11)

with u(x) = (ux, uy, 0)T (note the change in notation as
compared to Eq. 2). The least-squares heading estimate t̂
is equal to the eigenvector corresponding to the smallest
eigenvalue of the constraint vectors’ scatter matrix S. In
practice, the flow is noisy and the constraints are:

(
xi × u(xi)

)
+

(
xi × n(xi)

)
= sui + sni , (12)

where n(xi) = (nxi , nyi , 0)T independently distributed,
isotropic, noise with zero mean and standard deviation
equal to σi. The scatter matrix S̃ of these noisy constraint
vectors is now equal to:

S̃ =
∑

i

(sui + sni)(sui + sni)
T ,

=
∑

i

(sui
sT
ui

+ sui
sT
ni

+ sni
sT
ui

+ sni
sT
ni

) ,

= S +
∑

i

(sui
sT
ni

+ sni
sT
ui

) + N . (13)

To show that the constraints are biased, we next investigate
the expected value of the scatter matrix S̃. The expected
value of the second component of S̃ equals the null matrix.
The first component, S, corresponds to the scatter matrix of
the noise-less constraint vectors, and as a result:

E{S̃} = S + E{N} . (14)

We next investigate the scatter matrix of the noise compo-
nent. For simplicity the noise variance is assumed constant
and equal to σ2 in the remainder. Note that this assumption
is not required and that the analysis remains valid when the
noise variance is different at each feature location. The vari-
ance σ2 should then be replaced by the mean variance 〈σ2

i 〉
in Eqs. (15) and (16). The expected value of the noise scat-
ter matrix can easily be shown to be:

E{N} = mσ2


 1 0 −〈x〉

0 1 −〈y〉
−〈x〉 −〈y〉 〈x2〉 + 〈y2〉


 ,

= mσ2W , (15)

with m the number of flow vectors. We now have:

E{S̃} = S + mσ2W . (16)

It can be observed from Eq. (16) that, in the presence of
noise, the expected value of the constraints vectors’ scat-
ter matrix does not correspond to the scatter matrix of the
noise-less constraint vectors. Consequently, the eigenvec-
tors of this matrix and thus the heading estimate will be bi-
ased. However, since this bias depends on the feature loca-
tions only, a technique called whitening can be used to cor-
rect for it [8]. Instead of computing the eigenvectors of S̃,
the eigenvectors of W−1/2S̃W−1/2 = W−1/2SW−1/2 +
mσ2I3 are determined. Since adding a scaled version of
the identity matrix I3 does not change the eigenvectors, the
latter will be unbiased. Choosing e, the eigenvector corre-
sponding to the smallest eigenvalue λ of (W−1/2SW−1/2),
gives: W−1/2SW−1/2e = λe. The heading estimate is
then t̂ = W−1/2e. Since W−1S(W−1/2e) = λ(W−1/2e),
this is an eigenvector of W−1S. However, since S is com-
posed of noise-free constraint vectors, pre-multiplying S
with W−1 does not change the eigenvector corresponding
to the smallest eigenvalue (which is zero).

Once the unbiased translation estimate t̂ is obtained, it is
used to compute the weights, and the rotation is computed
as the weighted least-squares solution to the bilinear con-
straints, alternatively written as:

(
(̂t × xi) × xi

)T

ω − t̂T
(
xi × u(xi)

)
= 0 . (17)
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In summary, the proposed Fixed-Point algorithm with
bias Correction (FPC) minimizes the bilinear constraints
(Eq. 6) by alternately solving the reduced problems using
weighted linear least-squares. The heading estimate at the
previous iteration is used to update the weights. Since the
heading constraints are whitened, unbiased estimates are
obtained. Note that the least-squares weights also need to
be used when averaging over feature locations in the deter-
mination of the bias correction matrix W (see Eq. 15).

5. Simulations

A first series of analyses compares the bias and variance
of the estimates obtained with the egomotion estimation al-
gorithms explained in Sections 3 and 4 and a second series
investigates the nonlinear algorithms only, in terms of their
robustness to local minima.

5.1. Bias/variance

We compare H&J, KAN, MAC, Z&T and CHI to the
proposed method FPC1 in terms of the bias and variance of
the heading estimates. We did not include the algorithms by
Ma et al. [7] (the heading estimates of which are identical to
H&J’s) and by Bruss and Horn [1] (which is a biased, non-
linear algorithm). The rotation estimates are not analyzed
since the bias is entirely due to heading estimation and the
heading estimates can be visualized and interpreted more
easily.

We examined the same configuration of translation and
rotation as Zhang and Tomasi [12], namely a translation and
rotation direction equal to [4,−3, 5] and [−1, 2, 0.5] respec-
tively. The rotation rate was fixed to 0.23◦/frame and the
translational magnitude was chosen so that the speeds of the
translational and rotational flow components are identical in
the center of the random depth cloud [10]. In each experi-
ment, 500 feature locations were randomly chosen and uni-
formly distributed over the image. The focal length was
set to unity. The 3D positions of the features were uni-
formly distributed between 1 and 4 units of focal length.
Independently distributed Gaussian noise was added to the
flow vectors. The signal-to-noise ratio (SNR), defined as:(
E‖u‖2/E‖n‖2

)1/2
, was varied between 10 and 30. For

each algorithm, 100 trials were performed, in which the
feature locations, depth and noise were randomized. For
the nonlinear algorithms, 15 heading initializations, evenly
spread on the unit sphere, were used and the solution with
the smallest error was retained. Figure 2 contains the head-
ing estimates obtained with all algorithms, for a SNR equal

1We used implementations provided by Tian et al. [10] for H&J and
KAN, our own implementations for MAC, CHI and FPC and an imple-
mentation provided by Dr. T. Zhang for Z&T.

to 10. The field of view (FOV) was equal to 50◦ and 150◦

in the top, respectively the bottom row. The estimates were
mapped to the upper hemisphere and projected onto a cir-
cle. The dashed cross marks the true heading. Example
flow fields are shown in the rightmost column. For each al-
gorithm and noise level, the bias et, defined as the angular
difference between the mean heading estimate and the ac-
tual heading, and a 95% confidence cone θα (α = 0.05),
closely related to the variance of the estimates, were com-
puted using techniques from the domain of spherical statis-
tics [3]. Contrary to the bias/variance measures used in
previous studies [10, 12], this more sophisticated analysis
clearly brings out the bias in the estimates obtained with
some of the algorithms. Table 1 contains both measures for
all algorithms, SNRs and FOVs. The bias is underlined in
the table if the mean heading estimate is contained within
the confidence cone (unbiased). With FOV equal to 50◦,
this is the case for all algorithms and noise levels except,
as expected, for H&J. We also see that the variance in the
estimates is much smaller for the nonlinear algorithms than
for the linear ones, as observed in other studies [10, 12].
Note that bias and variance for Z&T and CHI are identical
for all configurations. With FOV equal to 150◦, the head-
ing estimates for KAN are clearly biased, which was also
observed by Zhang and Tomasi [12]. A performance reduc-
tion due to an increased FOV was also reported in [10] for
the case of decreasing image resolution (the number of fea-
tures is fixed) and straight-ahead translation (the translation
used here has a relatively large z-component).

In summary, we observe a significant improvement in
performance of the nonlinear algorithms with respect to the
linear. The algorithm by Maclean outperforms the other lin-
ear algorithms, illustrating the quality of this particular bias
correction procedure which is also used by our algorithm.
Finally, the results obtained with the proposed algorithm
are very similar to those obtained with the other nonlinear
algorithms, except for a slightly increased variance of the
estimates.

5.2. Local minima

Although the use of nonlinear over linear algorithms sig-
nificantly reduces the variance of the heading estimates, the
former may occasionally get stuck in a local minimum cor-
responding to a grossly erroneous heading estimate. The er-
ror surface associated with the egomotion problem becomes
flatter in a situation of lateral translation and the number
of local minima increases when the feature locations are
clustered together, even in the noiseless case [11]. Using
this information we constructed a particularly difficult sce-
nario that enabled us to investigate the robustness to local
minima of the nonlinear algorithms: Z&T, CHI and FPC.
The egomotion consisted of a translation and rotation direc-
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H&J KAN MAC Z&T CHI FPC FLOW

Figure 2. Heading estimates obtained with six different algorithms on 100 random trials. The FOV
equals 50◦ and 150◦ in the top, respectively the bottom row (the SNR was equal to 10 for both). An
example flow field (subsampled and magnified 10 times) is shown in the rightmost column.

Table 1. Bias and variance of the heading estimates obtained with all six algorithms tested for different
FOVs and SNRs. The bias is underlined if the mean heading estimate falls within the 95% confidence
cone.

LINEAR NONLINEAR
H&J KAN MAC Z&T CHI FPC

FOV SNR et θα et θα et θα et θα et θα et θα

50 30 2.21 0.12 0.03 0.13 0.03 0.12 0.04 0.10 0.04 0.10 0.02 0.10
20 4.94 0.19 0.05 0.19 0.04 0.19 0.06 0.15 0.06 0.15 0.03 0.16
10 17.51 0.34 0.19 0.42 0.12 0.42 0.11 0.32 0.11 0.32 0.06 0.35

150 30 9.38 0.51 2.89 0.66 0.18 0.43 0.11 0.16 0.11 0.16 0.11 0.17
20 18.58 0.91 6.56 1.19 0.27 0.67 0.17 0.25 0.17 0.25 0.18 0.25
10 35.73 3.68 22.22 4.47 0.51 1.55 0.51 0.55 0.51 0.55 0.46 0.55

Z&T CHI FPC FLOW

Figure 3. Small circles in the leftmost figures correspond to heading estimates obtained with the
nonlinear algorithms when initializing with 50,000 distinct random headings. The global minimum
is labeled A and the local minimum due to the bas-relief ambiguity is labeled B. Feature locations
are indicated with small black dots. The rightmost figure contains the noiseless flow field used
(subsampled and magnified 10 times). In this figure, the small circles indicate the feature cluster
centers.
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tion equal to [1, 0, 0.1] and [0, 1, 0] respectively. The depth,
translation and rotation magnitudes were chosen as in Sec-
tion 5.1 and the FOV was set equal to 100◦. A total of 500
features were used but, contrary to Section 5.1, they were
not uniformly distributed in the image. Instead, their lo-
cations were drawn from 20 spatially distinct clusters, the
centers of which were uniformly distributed. The cluster
centers are indicated with circles in the rightmost figure of
Fig. 3. Also shown in this figure is the (subsampled and
scaled) flow field used. No noise was added to the computed
flow vectors. Each algorithm was run with 50,000 heading
initializations, randomly sampled from the unit sphere, and
was allowed 1,000 iterations to reach convergence. This
large number of initializations was used to give a detailed
account of the algorithms’ behaviors over the entire head-
ing space. The first three figures of Fig. 3 contain the es-
timated headings (black circles) together with the normal-
ized feature locations x/‖x‖. As before, the dashed cross
marks the actual heading. It is apparent from these figures
that both Z&T and CHI suffer from a large number of local
minima, located near clusters of image pixels, whereas FPC
does not suffer from this problem at all and only finds one
additional local minimum near the image center (labeled B
in Fig. 3). A similar minimum is also found by the other
algorithms and is a consequence of the so-called bas-relief
ambiguity (for details see [2, 11]). Techniques have been
proposed to discriminate between these two strong minima
[2]. Note that the second minimum (B) found by FPC dif-
fers slightly from that found by Z&T and CHI. This is due
to the bias correction which slightly modifies the error func-
tion that is used by the algorithm. The results were similar
when varying degrees of noise were added to the optic flow.

Figure 4 contains the heading initializations (gray dots)
for Z&T and CHI that result in local minima different from
A or B. As expected, the locations of these initializations are
related to the feature locations (black dots). It is notable that
the feature clusters have a rather large spatial extent over
which they exert their influence and interactions between
clusters are clearly visible.

6. Conclusion

We introduced a novel, unbiased nonlinear algorithm for
the computation of egomotion from optic flow in the cal-
ibrated case. Contrary to previously introduced, optimal
algorithms, the proposed method minimizes an approxima-
tion to the least-squares image-reprojection error, which al-
lows for much simpler updating rules. By means of exten-
sive simulations, it was shown that this greatly increases
the robustness of the algorithm to local minima at the cost
of only a slight increase in the variance of the heading esti-
mates. Furthermore, it was shown that this variance is still
much smaller than that obtained with linear algorithms.

Z&T CHI

Figure 4. Heading initializations that result in
undesired local minima (gray dots), in relation
to feature locations (black dots).
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