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Abstract

A method to analyze first-order spatial properties of optical flow is proposed.
The approach is based on the use of a set of linear models that dynamically
adjust their properties on the basis of context information. These models
are generated by a recursive network that takes into accountspatial interac-
tion between neighbors. By checking the presence of these models in the
optic flow using a multiple model Kalman Filter it is possibleto recover in-
formation about the coefficients of the affine description and the image mo-
tion invariants: divergence, curl and deformation. Reliable estimates of these
quantities could help in the analysis of real world complex motion sequences.
Experimental results on egomotion estimation and 3D surface reconstruction
validate the approach.

1 Introduction

The analysis and interpretation of visual motion is a challenging problem in computer
vision. Such interpretation aims to relate motion events inthe3D space to global spa-
tiotemporal variations of the image (i.e., the image flow) for gaining useful information
for different application domains, such as autonomous navigation, robot manipulation
tasks, and3D dynamic scene understanding. By adopting a hierarchical approach, we
can resort, at least at a conceptual level, to an intermediate representation of the distribu-
tion of the local velocities (i.e. the motion field). This approach models the functional
organization of the cortical motion stream of mammals [13].

At a first approximation, and under proper conditions [10], important information
about egomotion, time-to-collision and the3D layout of the scene can be obtained by
looking at the spatial first-order differential propertiesof the motion field. Many different
approaches have been proposed in the literature to recover reliable estimates of these dif-
ferential properties. Cipolla and Blake [7] use B-spline snakes to track the change in the
apparent area of scene object to approximate the differential invariants (divergence and
deformation) of the motion field. Other authors estimate theaffine motion parameters by
robust maximum-likelihood estimate technique [15], or directly from the spatio-temporal
derivatives of the image intensity [8]. Other approaches work on optic flow. Nelson and
Aloimonos [12] use divergence for obstacle avoidance by deriving it analytically. This
approach needs the integration of many results over time to produce stable results. An-
cona and Poggio [1] use sparse estimates of optic flow to get information about time to



collision. Fu and Kovesi [9] propose the use of a bank of filters for recovering the dif-
ferential invariants from a dense optic flow with a correlation technique. This approach
requires a large number of filters to obtain reliable quantitative results in real-world se-
quences. In summary, one can use techniques that either analyze the deformation of the
image or work on the optic flow. The latter poses stability problems when one directly
computes the spatial derivatives or require an high computational cost when one adopts
matched filters approaches. Recently Chessa et al. [6] proposed a method for designing
adjustable linear models for the analysis of first order properties of complex dense optic
flow fields. These models make use of contextual information by capturing coherent lin-
ear properties and regularities over small image patches. The linear models are specified
as discrete space-time dynamical systems, in the velocity space, that are characterized
by an unforced or “free” response, given by the structure of network interconnections,
and a forced response related to the contingent local optic flow information in input. In
this way, we combine the advantages of the differential linear models with those of tem-
plate matching since quantitative measures of first-order differentials can be obtained by
a small number of templates.

In this paper, we aim to systematically validate the approach proposed in [6] by ana-
lyzing the reliability of the first-order optic flow measuresobtained by the templates, and
their perceptual significance by using them directly for dynamic scene interpretation.

2 Adjustable linear templates

Within any small image region, and under smooth change in viewpoint [10], an affine
model of image motion
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is often sufficient to locally provide a good approximation of 3D rigid moving objects
and information about the3D layout of the scene. The parametersci have qualitative
interpretations in terms of the spatial variations of the associated velocity fieldv(x, y) =
[vx(x, y), vy(x, y)]. Formally, the parametersc5 andc6 represent the horizontal (v̄x) and
vertical (̄vy) translational velocities in the image patch, respectively; whereas the param-
etersc1, c2, c3, andc4 represent the values of the coefficients of the velocity tensor:
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of a first-order Taylor expansion calculated around the image pointx0 = (x0, y0):
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Equivalently, the differential invariants of image motioncan be related to algebraic
combinations of the affine coefficients:divv = c1+c4, curlv = c2−c3, (defv) cos 2θ =
c1 − c4 and(defv) sin 2θ = c2 + c3. By comparing Eq. (1) and Eq. (3) and by break-
ing down the tensor in its dyadic components, the motion fieldcan be locally described
through2D maps representing elementary flow components (EFCs):
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where α
x : (x, y) 7→ (1, 0), α

y : (x, y) 7→ (0, 1) are pure translations anddx
x :
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x
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represent cardinal deformations, basis of a linear deformation space.
It is worth noting that by distributing the pure translations and incorporating the coef-

ficients in the deformation components, the velocity field can be described by four mod-
els of generalizeddeformations that act as adjustable linear templates parametrized by
the coefficientsai andci: v

x
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x
y : (x, y) 7→ (c2y + a2, 0),

d
y
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y
y : (x, y) 7→ (0, c4y + a4). In this way, we have four

classes of deformation gradients: one stretching (v
i
i) and one shearing (v

i
j) for each of

the two cardinal directions, which generate uniform samples of the linear deformation
space. Due to their ability to detect the presence and the orientation of velocity gradients
and kinetic boundaries, as well as large field motion invariants, these resulting templates
resemble the receptive fields of the cells in the extrastriate cortical areas [13].

With reference to the Taylor expansion, it is worth noting that a template based ap-
proach cannot be used to extract single components, but to perform pattern matching
operations, only. Hence, in general, to proper sampling thelinear deformation space one
has to use a large number of templates with very different structural properties. The in-
troduction of the adjustability in our model allows us to reduce to only four the number
of templates. In this way, we will be able to “measure” the linear properties of the motion
field without performing direct differential operations, but by reading out the values of
the adjusted coefficients of the templates.

2.1 Generative models

In [6] the authors demonstrated that each template that locally approximates a generalized
deformation components can be generated recursively by using a lattice network:

v[k] = Φ[k, k − 1]v[k − 1] + n2[k − 1] + s[k − 1] , (5)

which describes the temporal evolution, from the previous time stepk − 1 to the current
time stepk, of the relationships among motion features over a fixed small spatial region
[−L, L] × [−L, L] according to specific rules embedded in the transition matrixΦ. The
driving inputs[k], evaluated at each time step, by computing the average of theoptic flow
velocity components at the patch’s borders, can be interpreted as the boundary conditions
of the lattice network (see Fig. 1), whereasn2[k] represents the process noise.

It is worth noting that the spatial interactions occur separately for each component
of the velocity vectors through 1D nearest neighbor interactions. More precisely, given
the difference equation that describes the nearest neighbor cooperation among the spatial
nodesn’s for the generic velocity componentv: A

−1v(n−1)+A0v(n)+A1v(n+1) = 0,
and solving it with the boundary conditionsv(−L) = λ andv(L) = µ, we obtain the
velocity profiles that approximate the linear templates parametrized by the coefficientsai

andci:

v(n) =
e−αL

1 − e−4αL

[

(λ − µe−2αL)e−αn + (µ − λe−2αL)eαn
]

(6)

whereλ = ai −Lci andµ = ai + Lci, and withα depending on the coupling coefficient
A1 = A

−1 of the 1D lattice network. By a proper choice of the coupling coefficients
and of the boundary valuesλ andµ the velocity profiles result approximately linear. To
quantify the approximation error, we calculated, as a function of α andL, the average
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Figure 1: Basic lattice interconnection schemes for the generation of the adjustable lin-
ear templates. The lattice networks have astructuring effectconstrained by the boundary
conditions that yields to structural equilibrium configurations, characterized by the spe-
cific first-order EFCs. The resulting velocity patterns depend on the directions of the
interaction scheme and on the boundary conditions.v
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components, whereasvx
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y
x represent the shearing components. The boundary values

λ andµ control the gradient slope and the constant term.

relative integral error between the solution of the latticenetwork (see Eq. 6) and a straight
line that joins the values at the boundaries (λ andµ). Figure 2(a) shows the curves of
constant error (ǫ = 0.01), for different combinations ofλ andµ. Figure 2(b) shows the
variability of the approximation error by varying the boundary valuesλ andµ for a fixed
size of the template (L = 3) and for a fixed value ofα = 0.2. The limited increase of
the error over a wide variation of the boundary values in the range of±30 pixel/frame
demonstrates the validity of the approximation of the linear templates by the generative
models.

2.2 Recursive/adaptive filtering

The adjustable templates defined in the previous Section canbe used as models for a
multiple model Kalman filter (KF) to measure the structural properties of the input optic
flow. The output of the KF will be the estimate of the motion field on the basis of the
spatial contextual information described by the generative models of the EFCs. Since the
models are continuously adapted to the measures by changingthe boundary conditions for
every patch, and the KF iteratively integrates the new measures with the knowledge about
the motion pattern obtained by the previous measurements, we obtain adaptive estimates
of the EFCs. In this way, we perform an adaptive template matching capable of tracking
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Figure 2: Variations of the approximation error for different values of the network param-
eters. (a) Relationships between the size of the patchL and the diffusive coefficient of the
lattice networkα for a constant value of the approximation error (ǫ = 0.01). (b) Variation
of the error for the pairL = 3 andα = 0.2 over a variation of the boundary values.

the coefficients of a linear description/approximation of the optic flow.
Formally, the measurement equation isv[k] = C[k]v[k]+n1[k], wherev[k] is a noisy

measure, at current timek, of the actual motion fieldv[k], n1[k] is the uncertainty of the
measure, andC is a modified unitary operator for discarding the image points where the
optic flow is not available or not reliable. The output of the filter is:

v̂[k|Vk] = v̂[k|Vk−1] + G[k]ν[k] (7)

where:v̂[k|Vk−1] is thea priori state estimate,̂v[k|Vk] is thea posterioristate estimate,
Vk represent all the measurements until time stepsk, ν[k] = v[k] − v̂[k|Vk−1] is the
innovation andG[k] is the Kalman gain. In order to have a statistical measure thedis-
crepancy between predictions and observations, as an indication of the filter’s consistency,
it is frequently used the Normalized Innovation Squared (NIS) [2]:

NISk = ν
T [k]S−1[k]ν[k] (8)

defined on the basis of the innovation and on its covarianceS. Since the covariance
of the innovation depends on the estimate of the measure noise n1, it is important to
have a reliable estimate of the noise in the measure. Thus, the noise covariance matrices
are tuned on the basis of the differences (in terms of the meanangular error [3]) of the
velocity values measured inside a patch between two consecutive frames. Where the optic
flow smoothly changes in time, the measure noisen1 remains low, whereas, where optic
flow changes more abruptly, the noise becomes higher and the estimates have a lower
confidence. In the multiple model KF the NIS value is used to compute, for each model,
the likelihood of the measurements, on which to base the selection among the different
models. This choice varies continuously while the filter is operating. In such a case,
we cannot make a fixeda priori choice of the filter’s parameters, but we have to use
a continuously varying model-conditioned combination of the candidate state and error
covariance estimates. It is worth noting that, in our dynamic multiple model approach,
we do not want the probabilities to converge to fixed values, but we want them to be free
to change at each new measurement. In the multiple model approach [2] it is assumed that
the system obeys one of a finite number of modelsmi with i = 1, 2, . . . , r (with r = 4,



in our case, corresponding to the four classes of deformation gradients). The likelihood
of the measurementv given a modelmi at time stepk is given by:

f(v|mi) = |2πSmi
|−

1

2 e
−

1

2
ν
T

m
i
S

−1

m
i
νmi (9)

wheremi is the considered model. The probability that the candidatemodelmi is the
correct one is given by the following equation:

pmi
[k] =

f(v|mi)
∑r

j=1
f(v|mj)

. (10)

With this approach the probability value approaches1 when the optic flow has the
same structure of the model. None of the models gives a high probability value if none
of the EFCs is present in the optic flow. In this way, noisy and unstructured motions
are automatically discarded. Figure 3 shows the evolution in time of the four models
related to an optic flow patch in the same position for different frames. The four models
are continuously adjusted on the basis of the input optic flowand a probability value is
associated to each model. We can observe through frames the behavior of each model for
different motion situations: at frame 2, the patch containsthe motion of the background,
only; from frame 8 to frame 17, motion discontinuities appear in the models (e.g., kinetic
edges) in correspondence of the passage of the motorbike; atframe 21, the patch contains
the motion of the motorbike, only.

To quantitatively assess the reliability of the first-orderdifferential measures and their
robustness to noise, we calculated the error for synthetic optic flow patterns and we com-
pared the results with the error obtained by a direct numerical differentiation of the noisy
flow. We observe that the KF allows us to obtain correct estimates for high values of the
noise, with an almost constant error below0.07 (see Fig. 4).

3 Motion interpretation

The affine description of the optic flow are related to the motion of the observerT =
(Tx, Ty, Tz) andΩ = (Ωx, Ωy, Ωz) and to the depth gradient of the surfacesF = (p, q)
in the following way [7]:

c1 =
Tz

Z0

+
pTx

Z0

c2 = ωz +
qTx

Z0

c4 = −ωz +
pTy

Z0

c5 =
Tz

Z0

+
qTy

Z0

. (11)

There are many ways of proceeding to solve these equations for the unknown3D
parameters. One approach is to directly derive the optic flowmeasurements within a
small region and solve for the parameters by minimizing an error function. The main
problem of this approach is the instability of the numericalderivative, as we have shown
in the previous section. An alternative is to fit a quadratic parametrization to the optic flow
measurements to obtain the affine coefficients [8], than solving for the3D parameters by
a minimization. Still, the main problem could be the instability in the affine coefficients
estimates.

In this work, we use a recursive adaptive approach to obtain estimates of the affine
coefficients of the optic flow that are stable in time, then we solve the Eq. (11) by a
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Figure 3: Evolution in time of the four optic flow models in thesame image patch. The
white square that localize the image patch is enlarged for the sake of representation. The
sequence is acquired by a car moving on a highway: the independent motion of the mo-
torbike superimposes to the self-motion of the car. The number on the top of each model
indicates the associated probability.

minimization. Since we have4 equation in7 unknowns (Tx, Ty, Tz, Ωz, p, q, Z0,),
by over-determining the system and by considering a sufficient number of points, it is
possible to recover the3D parameters, i.e. the motion parameters of the observer, from
which it is possible to derive the heading direction, and thedepth gradient of the surfaces,
from which it is possible to derive the normal to the surface.

We have tested the proposed approach with both synthetic andreal-world sequences
recorded by a camera on a moving car. We apply the KF to the optic flow in order to obtain
stable and reliable estimates of its linear properties, then we recover the3D parameters.
Figure 5 shows the estimates of the slant of the different surfaces in a virtual environment
and in a real-world situation. The virtual scene is composedby 3 planes with different
orientations: the two side walls have been rotated along thevertical axis clockwise and
counter-clockwise respectively, the ground plane has beentilted toward the observer. The
scene has been recorded by a virtual perspective camera moving both along the Z axis and
along the X axis. In general with the proposed approach the major surfaces are correctly
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Figure 4: (a) Divergence and deformation components of an optic flow corrupted by a
Gaussian noise with varianceσn = 2 and the corresponding KF estimates. (b) Compar-
ison between the relative error onc1 andc4 obtained by directly differentiating the optic
flow (black lines) and by the recurrent adaptive templates (red lines).

estimated, as we quantitatively measured comparing the results with the ground truth
in the virtual scenario. For the same sequences we have computed the egomotion (see
Fig. 6). The white cross is the true value, derived from the known motion of the virtual
camera and obtained from the can-bus data of the car.

(a) (b)

Figure 5: Estimation of the slant of the surfaces. Each smallpatch superimposed on
the original frame is build from an estimation of the normal to the surface. (a) Virtual
environment. (b) Real-world scenario. It is worth noting that the patches on the building
on the left correctly follow its shape. Missing data are due to unreliable estimates of the
affine coefficients.

4 Conclusions

We have presented a recurrent technique to adaptively detect structural properties from the
optic flow, by casting the problem as a KF based on multiple models of spatial variations



(a) (b)

Figure 6: Heading estimation. Red points are the estimates,the white cross is the true
heading position and the blue dot is the center of the image. (a) Virtual environment. (b)
Real-world scenario.

of velocity. We have shown that it is possible to recover information about first-order
properties of optic flow in a reliable way by using a set of linear adjustable models that
make use both of contextual information and direct inputs coming from the optic flow.
This choice gives to the model maximum flexibility: every gradient deformation within a
single class will be built through the same recurrent network, just by changing its driving
inputs on the basis of direct local measures on the input optic flow. We have tested the
approach with synthetic sequences to validate the estimation of the slant of the surfaces
and the egomotion. Then we have applied it to several frames of real world sequences.

Many works in the literature make use of the KF for motion estimation. It has been
used to estimate kinematic parameters (rotational and translational velocities and acceler-
ation) of3D features [16] or to track2D features through a sequence [14]. In [11] affine
motion models are used to perform a region-based tracking inlong image sequences and
a standard KF generates recursive estimation of each motionparameter. In [5] the author
uses parametrization of the local flow fields to obtain the estimate of the affine coefficients
and a recursive approach to solve for the3D unknowns.

The novelty of the approach presented in this paper is in the definition of adjustable
models, which describe the optic flow and not the motion in the3D space. The presented
results use real-world sequences containing rigid-body multiple motions. First-order anal-
ysis is not sufficient to describe non rigid motion and such kind of situations have been
tackled in the literature by using models learned by example[8] or considering higher-
order optic flow approximation [4]. Similarly, the work presented could be extended to
include higher-order adjustable models to account for morecomplex contextual informa-
tion.
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