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Abstract

A method to analyze first-order spatial properties of opfioav is proposed.
The approach is based on the use of a set of linear modelsythatrcally
adjust their properties on the basis of context informatidimese models
are generated by a recursive network that takes into acopatial interac-
tion between neighbors. By checking the presence of theskelniin the
optic flow using a multiple model Kalman Filter it is possiliterecover in-
formation about the coefficients of the affine descriptiod #re image mo-
tion invariants: divergence, curl and deformation. Rdéadstimates of these
guantities could help in the analysis of real world completion sequences.
Experimental results on egomotion estimation and 3D sanfaconstruction
validate the approach.

1 Introduction

The analysis and interpretation of visual motion is a cimglieg problem in computer
vision. Such interpretation aims to relate motion eventtha3D space to global spa-
tiotemporal variations of the image (i.e., the image flow)daining useful information
for different application domains, such as autonomousgaigan, robot manipulation
tasks, and3D dynamic scene understanding. By adopting a hierarchjmailcach, we
can resort, at least at a conceptual level, to an internedépresentation of the distribu-
tion of the local velocities (i.e. the motion field). This appch models the functional
organization of the cortical motion stream of mammals [13].

At a first approximation, and under proper conditions [1@}portant information
about egomotion, time-to-collision and tB® layout of the scene can be obtained by
looking at the spatial first-order differential properttgghe motion field. Many different
approaches have been proposed in the literature to reaglisrle estimates of these dif-
ferential properties. Cipolla and Blake [7] use B-splinalgs to track the change in the
apparent area of scene object to approximate the diffedantiariants (divergence and
deformation) of the motion field. Other authors estimatedifiee motion parameters by
robust maximume-likelihood estimate technique [15], oedily from the spatio-temporal
derivatives of the image intensity [8]. Other approacheskvem optic flow. Nelson and
Aloimonos [12] use divergence for obstacle avoidance byitey it analytically. This
approach needs the integration of many results over timeadyze stable results. An-
cona and Poggio [1] use sparse estimates of optic flow to f@hmation about time to



collision. Fu and Kovesi [9] propose the use of a bank of §lter recovering the dif-
ferential invariants from a dense optic flow with a correattechnique. This approach
requires a large number of filters to obtain reliable quatiti¢ results in real-world se-
guences. In summary, one can use techniques that eithgzarihk deformation of the
image or work on the optic flow. The latter poses stabilityljpeans when one directly
computes the spatial derivatives or require an high contipai@ cost when one adopts
matched filters approaches. Recently Chessa et al. [6] peap® method for designing
adjustable linear models for the analysis of first order prtigs of complex dense optic
flow fields. These models make use of contextual informatiocdpturing coherent lin-
ear properties and regularities over small image patchies limear models are specified
as discrete space-time dynamical systems, in the velopdges that are characterized
by an unforced or “free” response, given by the structureedfvork interconnections,
and a forced response related to the contingent local opticififormation in input. In
this way, we combine the advantages of the differentiablimaodels with those of tem-
plate matching since quantitative measures of first-ordfardntials can be obtained by
a small number of templates.

In this paper, we aim to systematically validate the apgngaoposed in [6] by ana-
lyzing the reliability of the first-order optic flow measurastained by the templates, and
their perceptual significance by using them directly forayic scene interpretation.

2 Adjustable linear templates

Within any small image region, and under smooth change iwpagnt [10], an affine

model of image motion
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is often sufficient to locally provide a good approximatidn3® rigid moving objects
and information about th8D layout of the scene. The parametershave qualitative
interpretations in terms of the spatial variations of theoagted velocity field(z, y) =
[vs(z,y), vy (z,y)]. Formally, the parameters andcg represent the horizontaif) and
vertical (,) translational velocities in the image patch, respectivehereas the param-
eterscy, co, c3, andey represent the values of the coefficients of the velocitydens

v, v,

T 7] 0

T=Tlxo = | v, v, 2)
ox Oy X=xXo

of a first-order Taylor expansion calculated around the eragintxo = (zo, yo):
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Equivalently, the differential invariants of image motioan be related to algebraic
combinations of the affine coefficient&ivv = ¢1+ ¢4, curlv = ca—c3, (defv) cos 20 =
c1 — ¢q and(defv)sin20 = co + c¢3. By comparing Eg. (1) and Eq. (3) and by break-
ing down the tensor in its dyadic components, the motion fielid be locally described
through2D maps representing elementary flow components (EFCs):

v = Cldi “+ CQdZ —+ ngg “+ C4dz + C5(XI + Cg(xy (4)



where o® : (z,y) — (1,0), ¥ : (z,y) — (0,1) are pure translations ardf :
(@) = (2,0), d% : (z,y) = (1.0), d” : (z,) — (0,2), d¥ : (z,) — (0,y)
represent cardinal deformations, basis of a linear defbomapace.

It is worth noting that by distributing the pure translatand incorporating the coef-
ficients in the deformation components, the velocity field ba described by four mod-
els of generalizeddeformations that act as adjustable linear templates petrened by
the coefficients:; andc;: v} : (z,y) — (c1z + a1,0), vy : (z,y) — (c2y + a2,0),
dj : (z,y) = (0,c3z + a3), d}) : (z,y) — (0,cay + as). In this way, we have four
classes of deformation gradients: one stretchiriy &nd one shearing;g}) for each of
the two cardinal directions, which generate uniform sampiethe linear deformation
space. Due to their ability to detect the presence and tleatation of velocity gradients
and kinetic boundaries, as well as large field motion invasigthese resulting templates
resemble the receptive fields of the cells in the extrastdattical areas [13].

With reference to the Taylor expansion, it is worth notingtth template based ap-
proach cannot be used to extract single components, butrforpepattern matching
operations, only. Hence, in general, to proper samplingitiear deformation space one
has to use a large number of templates with very differenttiral properties. The in-
troduction of the adjustability in our model allows us toued to only four the number
of templates. In this way, we will be able to “measure” theénproperties of the motion
field without performing direct differential operationsgyttby reading out the values of
the adjusted coefficients of the templates.

2.1 Generative models

In [6] the authors demonstrated that each template thaltyagaproximates a generalized
deformation components can be generated recursively by adiattice network:

vlk] = ®[k, k — 1ok — 1] + nalk — 1] + sk — 1], (5)

which describes the temporal evolution, from the previdue tstepk — 1 to the current
time stepk, of the relationships among motion features over a fixed Isspatial region
[-L, L] x [-L, L] according to specific rules embedded in the transition md&triThe
driving inputs|k], evaluated at each time step, by computing the average optiteflow
velocity components at the patch’s borders, can be integies the boundary conditions
of the lattice network (see Fig. 1), whereagk] represents the process noise.

It is worth noting that the spatial interactions occur sapaly for each component
of the velocity vectors through 1D nearest neighbor intéoas. More precisely, given
the difference equation that describes the nearest neigioloperation among the spatial
nodesu’s for the generic velocity component A_jv(n—1)+Agv(n)+Ajv(n+1) =0,
and solving it with the boundary condition$—L) = A\ andv(L) = u, we obtain the
velocity profiles that approximate the linear templategpeatrized by the coefficients

andc;:
—alL

v(n) = T——gar [\ = pe2 M) 4 (u = A2 )e] (6)

where\ = a; — L¢; andp = a; + Le;, and witha depending on the coupling coefficient
A; = A_, of the 1D lattice network. By a proper choice of the couplimgfficients
and of the boundary valuesand . the velocity profiles result approximately linear. To
guantify the approximation error, we calculated, as a fiomcdf o and L, the average
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Figure 1: Basic lattice interconnection schemes for theegaion of the adjustable lin-

ear templates. The lattice networks hawaracturing effectonstrained by the boundary
conditions that yields to structural equilibrium configiwas, characterized by the spe-
cific first-order EFCs. The resulting velocity patterns depen the directions of the
interaction scheme and on the boundary conditiarisand v} represent the stretching
components, whereag andv?, represent the shearing components. The boundary values
A andy control the gradient slope and the constant term.

relative integral error between the solution of the lattieéwork (see Eg. 6) and a straight
line that joins the values at the boundariasafd 11). Figure 2(a) shows the curves of
constant errord = 0.01), for different combinations ok andy. Figure 2(b) shows the
variability of the approximation error by varying the bowang values\ andy for a fixed
size of the templatel{ = 3) and for a fixed value ofe = 0.2. The limited increase of
the error over a wide variation of the boundary values in trgge of+30 pixel/frame
demonstrates the validity of the approximation of the lmteanplates by the generative
models.

2.2 Recursive/adaptive filtering

The adjustable templates defined in the previous Sectiorbeamsed as models for a
multiple model Kalman filter (KF) to measure the structunaigerties of the input optic
flow. The output of the KF will be the estimate of the motiondiein the basis of the
spatial contextual information described by the genegatiodels of the EFCs. Since the
models are continuously adapted to the measures by chahgibgundary conditions for
every patch, and the KF iteratively integrates the new nregswith the knowledge about
the motion pattern obtained by the previous measuremeptsptain adaptive estimates
of the EFCs. In this way, we perform an adaptive template hiagccapable of tracking
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Figure 2: Variations of the approximation error for diffat@alues of the network param-
eters. (a) Relationships between the size of the pat@hd the diffusive coefficient of the
lattice networkx for a constant value of the approximation erroe(0.01). (b) Variation
of the error for the pail. = 3 anda = 0.2 over a variation of the boundary values.

the coefficients of a linear description/approximationhef optic flow.

Formally, the measurement equation [g] = C[k|v[k]+n4[k], wherev[k] is a noisy
measure, at current tinle of the actual motion fielé[k], ny[k] is the uncertainty of the
measure, an@ is a modified unitary operator for discarding the image oivitere the
optic flow is not available or not reliable. The output of tHeefiis:

0[k|Vi] = 0[k|Vi-1] + G[k]v[k] (7)

where:9[k|V_1] is thea priori state estimatej[k| V] is thea posterioristate estimate,
V. represent all the measurements until time steps[k] = v[k] — V[k|V,_1] is the
innovation andG[k] is the Kalman gain. In order to have a statistical measuralithe
crepancy between predictions and observations, as arati@hof the filter's consistency,
it is frequently used the Normalized Innovation SquaredS)N2]:

NIS, = v k]S K]v[k] (8)

defined on the basis of the innovation and on its covarigiceSince the covariance
of the innovation depends on the estimate of the measure ngisit is important to
have a reliable estimate of the noise in the measure. Theisidise covariance matrices
are tuned on the basis of the differences (in terms of the raagular error [3]) of the
velocity values measured inside a patch between two cotige@tames. Where the optic
flow smoothly changes in time, the measure neisgemains low, whereas, where optic
flow changes more abruptly, the noise becomes higher andstimates have a lower
confidence. In the multiple model KF the NIS value is used tmgote, for each model,
the likelihood of the measurements, on which to base thet@eamong the different
models. This choice varies continuously while the filter pe@ating. In such a case,
we cannot make a fixed priori choice of the filter's parameters, but we have to use
a continuously varying model-conditioned combinationted tandidate state and error
covariance estimates. It is worth noting that, in our dyramultiple model approach,
we do not want the probabilities to converge to fixed valuaswe want them to be free
to change at each new measurement. In the multiple modebapip{2] it is assumed that
the system obeys one of a finite number of modalswith i = 1,2, ... r (with r = 4,



in our case, corresponding to the four classes of deformagtiadients). The likelihood
of the measurement given a modein; at time stegk is given by:

-1
f(v|mi) = |27TSmi|_%eié'}£1iSmiVmi (9)

wherem,; is the considered model. The probability that the candidaddelm; is the
correct one is given by the following equation:

f(v|my)
Pm,; [K] 2521 F(vmy) . (10)

With this approach the probability value approacheshen the optic flow has the
same structure of the model. None of the models gives a highhahility value if none
of the EFCs is present in the optic flow. In this way, noisy andtwuctured motions
are automatically discarded. Figure 3 shows the evolutiotime of the four models
related to an optic flow patch in the same position for difféfeames. The four models
are continuously adjusted on the basis of the input optic #ad a probability value is
associated to each model. We can observe through framesltlgibr of each model for
different motion situations: at frame 2, the patch cont#iiesmotion of the background,
only; from frame 8 to frame 17, motion discontinuities appgadahe models (e.qg., kinetic
edges) in correspondence of the passage of the motorbikanas 21, the patch contains
the motion of the motorbike, only.

To quantitatively assess the reliability of the first-orddferential measures and their
robustness to noise, we calculated the error for synthetic ow patterns and we com-
pared the results with the error obtained by a direct nurakdiéferentiation of the noisy
flow. We observe that the KF allows us to obtain correct egésiéor high values of the
noise, with an almost constant error beldow? (see Fig. 4).

3 Motion interpretation

The affine description of the optic flow are related to the omwf the observell’ =
(Ty, Ty, T,) and2 = (Q,, Q,,, Q2,) and to the depth gradient of the surfadeés= (p, q)
in the following way [7]:

T, Ty qT pTy T, qu
_ = - f— P = — 2 _— = — — . 11
Z + 70 co = w, + 7o c4 w, + 70 cs Z + 7 (11)

C1

There are many ways of proceeding to solve these equatiortidounknown3D
parameters. One approach is to directly derive the optic fltmasurements within a
small region and solve for the parameters by minimizing aordunction. The main
problem of this approach is the instability of the numerbalivative, as we have shown
in the previous section. An alternative is to fit a quadragicametrization to the optic flow
measurements to obtain the affine coefficients [8], thanrsgfior the3D parameters by
a minimization. Still, the main problem could be the insti&pin the affine coefficients
estimates.

In this work, we use a recursive adaptive approach to obttimates of the affine
coefficients of the optic flow that are stable in time, then wl/es the Eq. (11) by a
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Figure 3: Evolution in time of the four optic flow models in thame image patch. The
white square that localize the image patch is enlarged os#ke of representation. The
sequence is acquired by a car moving on a highway: the indkgp¢motion of the mo-
torbike superimposes to the self-motion of the car. The raroh the top of each model
indicates the associated probability.

minimization. Since we havé equation in7 unknowns (;, T, 1%, 2., p, ¢, Zo,),
by over-determining the system and by considering a sufficie@mber of points, it is
possible to recover th&D parameters, i.e. the motion parameters of the obsenaan, fr
which it is possible to derive the heading direction, anddégth gradient of the surfaces,
from which it is possible to derive the normal to the surface.

We have tested the proposed approach with both syntheticeahdvorld sequences
recorded by a camera on a moving car. We apply the KF to the fbgtv in order to obtain
stable and reliable estimates of its linear properties) the recover th&D parameters.
Figure 5 shows the estimates of the slant of the differerfiasas in a virtual environment
and in a real-world situation. The virtual scene is compdsed planes with different
orientations: the two side walls have been rotated alonyditical axis clockwise and
counter-clockwise respectively, the ground plane has bked toward the observer. The
scene has been recorded by a virtual perspective cameragrimth along the Z axis and
along the X axis. In general with the proposed approach thjermsarfaces are correctly
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Figure 4: (a) Divergence and deformation components of dit dpw corrupted by a
Gaussian noise with varianeg = 2 and the corresponding KF estimates. (b) Compar-
ison between the relative error opandc, obtained by directly differentiating the optic
flow (black lines) and by the recurrent adaptive templated [ines).

estimated, as we quantitatively measured comparing thétsesith the ground truth

in the virtual scenario. For the same sequences we have teththe egomotion (see
Fig. 6). The white cross is the true value, derived from thevkm motion of the virtual

camera and obtained from the can-bus data of the car.

Figure 5: Estimation of the slant of the surfaces. Each spetith superimposed on
the original frame is build from an estimation of the nornathe surface. (a) Virtual

environment. (b) Real-world scenario. It is worth notingttthe patches on the building
on the left correctly follow its shape. Missing data are duerreliable estimates of the
affine coefficients.

4 Conclusions

We have presented a recurrent technique to adaptivelytdtectural properties from the
optic flow, by casting the problem as a KF based on multiple etsodf spatial variations



(b)

Figure 6: Heading estimation. Red points are the estim#tesyhite cross is the true
heading position and the blue dot is the center of the imageviftual environment. (b)
Real-world scenario.

of velocity. We have shown that it is possible to recover infation about first-order
properties of optic flow in a reliable way by using a set of éinadjustable models that
make use both of contextual information and direct inputsiog from the optic flow.
This choice gives to the model maximum flexibility: everydjent deformation within a
single class will be built through the same recurrent neltwjoist by changing its driving
inputs on the basis of direct local measures on the input dlotiv. We have tested the
approach with synthetic sequences to validate the estmafithe slant of the surfaces
and the egomotion. Then we have applied it to several frafesabworld sequences.

Many works in the literature make use of the KF for motionrastion. It has been
used to estimate kinematic parameters (rotational andlaéonal velocities and acceler-
ation) of 3D features [16] or to tracRD features through a sequence [14]. In [11] affine
motion models are used to perform a region-based trackitapmimage sequences and
a standard KF generates recursive estimation of each mumti@meter. In [5] the author
uses parametrization of the local flow fields to obtain thereste of the affine coefficients
and a recursive approach to solve for #izunknowns.

The novelty of the approach presented in this paper is in dfi@ilon of adjustable
models, which describe the optic flow and not the motion irdbespace. The presented
results use real-world sequences containing rigid-bodyipheimotions. First-order anal-
ysis is not sufficient to describe non rigid motion and sucidlof situations have been
tackled in the literature by using models learned by exarfgjler considering higher-
order optic flow approximation [4]. Similarly, the work pezged could be extended to
include higher-order adjustable models to account for rmormaplex contextual informa-
tion.
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