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ABSTRACT

We present an approach to detecting independently moving
objects (IMOs) in stereo video sequences acquired by on-
board cameras on a moving vehicle. The proposed approach
is based on the processing of two independent information
streams: an independent motion detection stream and an ob-
ject recognition stream. Fusion of these streams outputs al-
lows our system to segment IMOs, track them, and even
estimate some of their properties.

1. INTRODUCTION

Automatic intelligent navigation systems in cars and trucks
have gained recently much attention. This can be explained
by the constantly increasing motorization, which is in turn
resulting in a corresponding growth in car accidents and
road casualties.

The detection of independently moving objects (IMOs)
in video sequences acquired during driving is a much more
challenging task compared to moving object detection by a
static observer. The problem is complicated by a number
of factors such as ego-motion, camera vibrations, imperfect
calibration of the on-board cameras, complex outdoor envi-
ronments etc. A detailed review of this topic is out of scope
of this work and we refer to [1, 2] for decent surveys.

In this study, we propose a novel approach that allows
a detection of IMOs by processing and subsequent fusing
two cooperative information streams (see Fig. 1): the in-
dependent motion detection stream and the object recog-
nition stream. None of these streams alone can provide a
satisfactory quality of the IMOs detection. Using only the
motion stream leads to discontinuous and sparse IMOs rep-
resentations. In this case, additional efforts are needed for
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Fig. 1. Outline of the proposed model.

delineation and classification of the IMOs. The recogni-
tion stream deals with static images (does not use tempo-
ral information) and therefore can not distinguish between
independently moving and static (with respect to environ-
ment) objects. One should note that the idea of the two pro-
cessing streams is widely accepted and in the visual neuro-
science [3].

2. INDEPENDENT MOTION STREAM

The problem of independent motion detection can be de-
fined as the problem of locating objects that move indepen-
dently of the observer in his field of view. In our case, we
build so-called independent motion maps where each pixel
encodes the likelihood of belonging to an IMO. For each
frame we build an independent motion map in two steps
(see Fig. 1): early vision cues extraction and classification.

As vision cues we consider: stereo disparity (three com-
ponents – for current, previous and next frame), optical flow
(two components) and normalized coordinates1 (two com-
ponents). The optic flow and stereo disparity are computed
using multiscale phase-based optic flow and stereo disparity
algorithms [4, 5]. Unfortunately, there are no possibilities to

1By normalized coordinate system on a frame we mean the rectangular
coordinate system with origin in the center of the frame, where upper-left
corner is (−1,−1) and lower-right is (1, 1).



estimate reliably all these cues for every pixel in the entire
frame. This means that the motion stream contains incom-
plete information, but this gap will be bridged after fusion
with the recognition stream.
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Fig. 2. MLP used as classifier in motion stream.

We consider each pixel as a multidimensional vector
with visual cues as components. We classify all the pix-
els (which have every component properly defined) in two
classes: IMO or background. We have tried a number of
setups for classification, but the optimal performance was
obtained with a multilayered perceptron (MLP) with three
layers: a linear (4–8 neurons), a nonlinear layer (8–16 neu-
rons), and one linear neuron as output.

After training, the MLP can be used for building an IMO
likelihood map I for the entire frame:

I(x, y) = p (IMO|(x, y)) , (1)

where x, y are pixel coordinates.

Fig. 3. (Left) Frame number 342 of motorway3 sequence.
(Right) Matrix I , output of the motion stream for the same
frame. Value I(x, y) is defined as probability of pixel (x, y)
being part of an IMO.

3. RECOGNITION STREAM

For the recognition of vehicles and other potentially dan-
gerous objects (such as bicycles and motorcycles but also
pedestrians), we have used a state of the art recognition
paradigm – the convolutional network LeNet, proposed by
LeCun and colleagues [6]. Modifications of LeNet were
successfully exploited for generic object recognition [7] and
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Fig. 4. LeNet – a feed-forward convolutional neural net-
work, used in recognition stream.

even for autonomous robot’s obstacle avoidance system [8].
We have used the CSCSCF configuration of LeNet (see Fig. 4)
comprising six layers: three convolutional layers (C0, C1,
C2), two subsampling layers (S0, S1) and one fully con-
nected layer (F). As an input LeNet receives a 64×64 gray-
scale image. Layer C0 convolves the input with ten 5 × 5
kernels, adds (ten) corresponding biases, and passes the re-
sult to a squashing function2 to obtain ten 60 × 60 feature
maps.

In layer S0, each 60×60 map is subsampled to a 30×30
map, in such a way that each element of S0 is obtained from
a 2 × 2 region of C1 by summing these four elements, by
multiplying with a coefficient, adding a bias, and by squash-
ing the end-result. For different S0’s elements, the corre-
sponding C1’s 2 × 2 regions do not overlap. The S0 layer
has ten coefficient-bias couples (one couple for each feature
map). Computations in C1 are the same as in C0 with the
only difference in the connectivity: each C1 feature map is
not obtained by a single convolution, but as a sum of con-
volutions with a set of previous (S0) maps (see Table 1).
Layer S1 subsamples the feature maps of C1 in the same
manner as S0 subsamples the feature maps of C0. The fi-
nal convolutional layer C2 has kernels sized 13 × 13 and
180 feature maps which are fully connected to all S1’s 16
feature maps. It means that the number of C2 kernels is
16 × 180 = 2880, and the corresponding connectivity ma-
trix should have all cells shaded. The output layer consists
of seven neurons, which are fully connected to C2’s outputs.
It means that each neuron in F (corresponding to a particular
class background, cars, motorbikes, trucks, buses, bicycles
and pedestrians) just squashes the biased weighted sum of
all C2’s outputs.

LeNet scans the input image (left frame) in two scales,
320 × 256 and 640 × 512, with a 64 × 64 sliding window
and in 8 and 16 steps, respectively. For each position of
the sliding window, we add the output of the class to the
corresponding (window) range in a 320 × 256 matrix. In
such a way we obtain seven matrices R0, . . . , R6 which,
after normalization, are regarded as likelihood maps for the
considered classes.

2f(x) = A tanh(Sx), A = 1.7159 and S = 2/3 according to [6].
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Table 1. S0-C1 connectivity matrix. Shaded cell which
belongs to the i-th column and j-th row indicates that the j-
th feature map of S0 participates in the computation of the
i-th feature map of C1. For example, to compute the fourth
feature map of C1, one has to find a sum of convolutions of
S0 feature maps 0, 8 and 9 with correspondent kernels. The
number of kernels in C1 (the number of shaded cells in the
table) is 64.

Fig. 5. (Left) Frame number 342 of motorway3 sequence.
(Right) Output of the recognition stream for the same frame.
Here, we used different colors to present different classes:
black for background, red for cars, blue for motorcycles and
green for trucks.

Note that, for further processing, the most important
map is R0, which corresponds to the background class and
the so-called non-background map is obtained as (1−R0).
The rest of the maps R1, . . . , R6 are responsible only for
IMO classification.

4. TRAINING

For training both streams, we used two rectified stereo video
sequences, each consisting of 450 frames. We have labeled
IMOs in all left frames of the sequences. These labels were
used for training motion stream classifier as well as for prepar-
ing the training dataset for LeNet.

We have used small batches with the increasing size ver-
sion of the BFGS Quasi-Newton algorithm for the indepen-
dent motion classifier training. Samples for each batch were
randomly taken from all the frames of all the scenes. Train-
ing was stopped after reaching 0.04 (MSE) performance.

To train LeNet, we have prepared a dataset of 64 ×
64 grayscale images (approximately 67500 backgrounds,
24500 cars, 2500 motorbikes, 6200 trucks, 1900 bicycles,
78 buses, and 3500 pedestrians). We have doubled the dataset
by including horizontally flipped versions of all the samples.
Images were taken mainly from publicly available object
recognition databases (LabelMe3, VOC4). A stochastic ver-
sion of the Levenberg-Marquardt algorithm with diagonal
approximation of the Hessian [6] was used for LeNet train-
ing. Training was stopped after reaching a misclassification
rate less than 1.5%. To increase the robustness of the clas-
sification, we have run the training procedure several times,
every time by adding a small (2%) amount of uniform noise
and by randomly changing the intensity (97–103%) of the
each training sample.

5. FUSION OF THE STREAMS

Fusion of the streams for a particular frame is achieved in
three steps.

1. Intersection of the independent motion map I with the
mask M of the most probable locations of the IMOs
in the frame (see Fig. 6):

F1(x, y) = I(x, y)M(x, y). (2)

2. Intersection of the previous result F1 with the non-
background map (1−R0):

F2(x, y) = F1(x, y)(1−R0(x, y)). (3)

3. Intersection of the previous result F2 with the likeli-
hood maps R1, . . . , R6 of each class, which results in
six maps L1, . . . , L6 (one for each class, except the
background):

Lk(x, y) = F2(x, y)Rk(x, y), k = 1, . . . , 6. (4)

The first step is necessary for rejecting regions of the frame
where the appearance of the IMOs is implausible. After
the second step we obtain crucial information about regions
which have been labeled as non-backgrounds (vehicles or
pedestrians) and which, at the same time, contain indepen-
dent moving objects. This information is represented as
saliency map F2 which we will use further for IMOs de-
tection/description and in the tracking procedure. The third
step provides us the information needed in the classification
stage.

3http://labelme.csail.mit.edu/
4http://www.pascal-network.org/challenges/VOC/
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Fig. 6. Matrix M , mask of possible IMO appearance in a
frame.

6. IMOS DETECTION AND TRACKING

For an IMO detection we have used a simple technique based
on detection of the local maximas of the maps defined in (3).
We have performed a spatio-temporal filtering (i.e. for i-th
frame we apply smoothing of a three-dimensional array – a
concatenation of the (i − 2)-th, (i − 1)-th, i-th, (i + 1)-th
and (i + 2)-th two-dimensional maps along the third time-
dimension). Then we search for local maximas in the entire
(i-th) filtered frame and consider them as the IMO centers
xk for this frame.

For a tracking of each IMO, we have introduced a pa-
rameter called tracking score. For a particular IMO, we in-
crease this parameter when in the next frame, only in a small
neighbourhood of the IMO center there is a good candidate
for the considered IMO in the next frame, namely the IMO
with the same class label, and approximately with the same
properties (size, distance and relative speed in depth). Oth-
erwise, the tracking score is decreased. An IMO survives
while the tracking score is above a fixed threshold. The
tracking score works as a momentum and allows the system
to keep tracking an IMO even when there are no sufficient
data in the next few frames.

7. CLASSIFICATION AND DESCRIPTION OF THE
IMOS

As soon as we are able to detect IMOs, it becomes possible
to classify them and retrieve their properties (size, absolute
speed in depth, relative speed in depth, time to contact, ab-
solute acceleration etc).

The class ck of the k-th IMO we define as:

ck = arg max
1≤c≤6

{Lc(xc)} , (5)

where xk = (ik, jk) is the center of the k-th IMO (in image
domain D) and Lc are the maps, defined in (4).

Fig. 7. Result of tracking and description of IMOs.

For the k-th IMO’s size, σk, estimation, we search for
a σ > 0, where the first minimum of the function (6) takes
place.

∆k(σ) =
∫

D

∣∣∣Lck
(xk)e−||xk−x||2/σ2 − Lck

(x)
∣∣∣ dx. (6)

The IMO’s distance estimation is a crucial point in the
retrieval process. Using an averaged (in a small neighbor-
hood of the IMO’s center) disparity and known cameras cal-
ibration parameters, we have computed the distance to the
IMO. To compensate for instabilities in the distance estima-
tions, we have used an robust linear regression based on the
previous five estimates.

Most of the present-day motor vehicles are being equip-
ped with an increasing number of electronic devices, includ-
ing control units, sensors, actuators etc. All these devices
communicate with each other by vehicle data bus. Dur-
ing recording sessions we have stored some crucial data
from the vehicle data (namely CAN) bus synchronized with
video. This has provided us with precise estimations of ego-
motion speed.

The relative speed in depth, we estimated as the deriva-
tive (with respect to time) of the distance using robust linear
regression based on the last five estimations of the distance.
To estimate the time to contact, we have divided the aver-
aged distance by the averaged relative speed in depth. Using
the precise value of the ego-motion speed from the CAN-
bus data, and simply by adding it to the relative speed in
depth we have also obtained the absolute speed in depth of
the considered IMO.

The derivative of the absolute speed in depth can be con-
sidered as an estimation of the acceleration (it is true only
in the case when the ego-heading is collinear to the heading
of the entire IMO). An example of IMO tracking and the
retrieved properties is shown in Fig. 7.



8. CONCLUSIONS

The two streams approach we presented is successful in
IMOs detection and classification, and allows for an easy
tracking and properties retrieval (Fig. 7). By mixing IMO
maps and class likelihood maps we increase the reliability
of the detected IMOs and automatically clean up the false
positives. This is a crucial issue when video streams ob-
tained from moving cameras are used.

The main drawback of the presented approach is the un-
satisfactory computation time. The existing model is still
far from real-time systems, but we see a number of ways to
increase its speed. In order to speed up the most computa-
tionally expensive part (recognition) we propose:

• to build the object likelihood maps not for the entire
frame, but only for salient regions of the independent
motion map (this has obvious biological support: for
biological visual systems, attention is drawn to mov-
ing objects);

• to replace LeNet’s first processing layer (C0) with a
bank of Gabor-like (fixed/non-trainable) filters which
are used for visual cue extraction in the independent
motion stream;

• to optimize sliding window scanning procedure in or-
der to eliminate redundant computations of the over-
lapping regions.

Both processing streams of the model have feed-forward
architectures, which can be easily implemented in hardware
such as Field-Programmable Gate Arrays (FPGAs). More-
over, as far as the streams are independent, they can be im-
plemented as separate FPGAs, working in parallel.

As it was mentioned in Section 7, via CAN-bus we can
access to on-board sensor data. Some of the sensors can
provide us with precise and reliable information. For exam-
ple, Adaptive Cruise Control (ACC) system uses a LIDAR
(Light Detection and Ranging) sensor to track up to ten ob-
jects and estimate their relative position, speeds and acceler-
ations. Unfortunately ACC system alone can not distinguish
the IMOs from the static objects. We see the incorporation
of the ACC track data in the our model as one more way to
improve the model.

9. REFERENCES

[1] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle de-
tection: a review,” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, vol. 28, no. 5, pp. 694–
711, 2006.

[2] V. Kastrinaki, M. Zervakis, and K. Kalaitzakis, “A sur-
vey of video processing techniques for traffic applica-

tions,” Image and Vision Computing, vol. 21, no. 4, pp.
359–381, 2003.

[3] L.G. Ungerleider and T. Pasternak, “Ventral and dorsal
cortical processing streams,” The Visual Neurosciences,
vol. 1, no. 34, pp. 541–562, 2004.

[4] K. Pauwels and M.M. Van Hulle, “Optic flow from
unstable sequences containing unconstrained scenes
through local velocity constancy maximization,” Ed-
inburgh, 2006, vol. 1, pp. 397–406.

[5] S.P. Sabatini, G. Gastaldi, F. Solari, J. Diaz, E. Ros,
K. Pauwels, M.M. Van Hulle, N. Pugeault, and
N. Krueger, “Compact and accurate early vision pro-
cessing in the harmonic space,” Barcelona, 2007.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” 1998, vol. 86, pp. 2278–2324.

[7] Y. LeCun, F.J. Huang, and L. Bottou, “Learning meth-
ods for generic object recognition with invariance to
pose and lighting,” 2004, vol. 2.

[8] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp,
“Off-road obstacle avoidance through end-to-end learn-
ing,” Advances in neural information processing sys-
tems, vol. 18, 2006.


