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A Connectivity-Based Method for Defining
Regions-of-Interest in fMRI Data

Filip Deleus and Marc M. Van Hulle, Senior Member, IEEE

Abstract—In this paper, we describe a new methodology for
defining brain regions-of-interset (ROIs) in functional magnetic
resonance imaging (fMRI) data. The ROIs are defined based
on their functional connectivity to other ROIs, i.e., ROIs are
defined as sets of voxels with similar connectivity patterns to other
ROIs. The method relies on 1) a spatially regularized canonical
correlation analysis for identifying maximally correlated signals,
which are not due to correlated noise; 2) a test for merging ROIs
which have similar connectivity patterns to the other ROIs; and 3)
a graph-cuts optimization for assigning voxels to ROIs. Since our
method is fully connectivity-based, the extracted ROIs and their
corresponding time signals are ideally suited for a subsequent
brain connectivity analysis.

Index Terms—fMRI, functional connectivity, image segmenta-
tion.

I. INTRODUCTION

T HE fMRI signal is generally regarded as a proxy for the
underlying neural activity. Most fMRI studies are con-

cerned with the detection of foci of activation in the brain and
with modelling the relationship to the experimental paradigm.
These studies are called activation studies. However, disjunct
regions of the brain do not operate in isolation so that there is
a growing interest in studying the interactions and connectivity
patterns between these regions, yielding an augmented un-
derstanding of the functional organization of the brain. These
studies are called connectivity studies. Two main approaches
exist for the analysis of fMRI data, a voxel-based approach
in which each individual voxel is treated separately, and a
ROI-based approach in which one first defines regions-of-in-
terest and then performs the analysis on the level of these
regions. The most popular voxel-based approach for connec-
tivity analysis is the seed region approach. A connectivity map
is calculated in which the value at each voxel represents the
correlation between the time signal of this voxel and that of the
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seed voxel. This technique is subjective since the exploration
of the brain connectivity heavily depends on the choice of the
seed voxel. Other voxel-based approaches include principal
components analysis (PCA) [1] and independent components
analysis (ICA) [2]. These techniques maximize a mathematical
criterion, based on all voxels. However, the physiological inter-
pretation of these results is often difficult, and prior anatomical
or neurophysiological knowledge cannot be easily incorporated
in the analysis. Finally, we have the ROI-based approaches
and their advantage is that they compute connectivities be-
tween brain regions, thus anatomically-related entities, leading
to a much easier interpretation of the connectivity patterns
found. The most popular ROI-based approaches are structural
equations modelling (SEM) [3] and dynamic causal modelling
(DCM) [4], which are used for the model fitting of an assumed
connectivity pattern between a set of ROIs (i.e., between their
representative signals). However, ROIs and their representative
signals can also be used in exploratory (not confirmatory)
effective connectivity studies. These methods include Bayesian
networks (BN) and dynamic Bayesian networks (DBN) which
have been used to achieve learning functional structure from
fMRI data [5], [6], and multivariate analyses using the Granger
Causality concept [7]–[10].

ROIs are frequently defined based on their cytoarchitectonic
structure or anatomical landmarks such as sulci [11], [12], or
on their functional specialization. However, the delineation of
a ROI is a very difficult task because the automatic labeling of
many sulci is still an open problem, and tools for defining 3-D
volumes on the cortex are difficult to use (a manual parcellation
can take many hours or days) [13]. Furthermore, the exact par-
cellations of the cortex and the precise boundaries of many brain
areas are still a matter of debate. There exist also data-driven
methods to assign voxels to ROIs. These methods are cluster
analysis [14]–[17] and region-growing methods [18]–[20]. The
objective of cluster analysis is to maximize the intragroup ho-
mogeneity within the ROIs, based on a distance measure be-
tween the voxels of a ROI. The most applied distance measures
in fMRI are the correlation coefficient or Kendall’s concordance
coefficient [21] between the voxels’ time signals. In order to ob-
tain contiguous clusters of spatially connected voxels, the spa-
tial distance between the voxels can be incorporated in the dis-
tance measure, as for example in [22]. On the other hand, the ob-
jective of the region growing methods is also to maximize the
intragroup homogeneity within the ROIs, but they account di-
rectly for the spatial structure in the fMRI data by starting from
a set of seed voxels and adding only neighboring voxels to the
ROIs.

After the assignment of voxels to ROIs, a representative
signal can be defined for the further connectivity analysis.
Three methods are frequently used for this. In the first method,
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the time signal of the peak voxel of fMRI activation is taken as
the representative signal for the ROI. This method is biased by
which contrast between the experimental conditions has been
used. In the second method, the average signal is taken accross
all the voxels of a ROI, which, however, may be distorted by
other (noise) signals present in the ROI. In the third method,
a PCA is first performed on the time signals of the individual
ROIs, and the first principal components are taken as the
representative signals. This method is mostly used in fMRI
connectivity studies. However, PCA does only account for the
variance within one region and not for the relations between
regions.

We propose a new method which defines ROIs based on their
(functional) connectivities to other ROIs, i.e., as sets of voxels
with similar connectivity patterns to other ROIs. Our method
is mainly based on canonical correlation analysis (CCA). CCA
[23] is a multivariate statistical technique commonly used to
identify and quantify the correlation between two sets of vari-
ables. More in detail, given two data sets and , CCA seeks
to find a linear transformation of the variables in and a linear
transformation of the variables in such that the resulting two
new variables are maximally correlated. CCA has already been
used in fMRI for detecting neural activity [24]–[26]. This ac-
tivation detection has been shown to work well and the reason
is that CCA enables simultaneous temporal modeling and adap-
tive spatial filtering of the data [27]. We will use CCA to define
functionally connected ROIs in fMRI data.

Our method starts from a given set of ROIs, which may be
based on prior neurophysiological knowledge. Constrained
canonical correlation analysis (CCA) has been performed on
these sets of voxels in order to find subsets that are maximally
connected. We modify the classical CCA-algorithm in two
ways: first by introducing spatial regularization constraints
to get results that are more compliant with the spatial struc-
ture of fMRI data, second by changing the goal function of
the optimization to make the algorithm more indifferent to
spatially-correlated noise. In the next step, local maxima are
identified on the weight vectors of the CCA. We merge neigh-
bouring local maxima if they have similar connectivity patterns
to the other ROIs. The local maxima are now centers of new
ROIs, and voxels are assigned to these regions using graph-cuts
optimization. After the ROIs are converged, a connectivity
analysis can be performed, based on any of the current method-
ologies. Our method can be summarized as follows:

— Input: .
— Iterate until a stable solution has been reached.

1) Perform CCA on the given sets of voxels (Section II).
2) Identify local maxima in the weights patterns of the

CCA.
3) Merge local maxima based on their connectivities to

other ROIs (Section III-A).
4) Assign voxels to local maxima to define new ROIs

(Section III-B).
5) Go back to step 1.

— Perform connectivity analysis (SEM, DCM, BN, DBN,
Granger causality-based approaches, etc.) on the represen-
tative signals of the ROIs

We demonstrate our method in Section IV on a synthetic and a
real fMRI data set and we compare our results with clusters that

Fig. 1. Illustration of spatially regularized CCA: subsets of given sets of voxels
are selected to delineate ROIs in which the representative signals (red) have
maximum correlation: the blue voxels have zero weight and the strength of the
weight increases from orange to white.

are found by K-means clustering, first on the set of voxels that
were selected by our method, and second, on the set of voxels
that were selected based on Kendall’s concordance coefficient.

II. SPATIALLY REGULARIZED CANONICAL

CORRELATION ANALYSIS

In this section, we introduce our spatially regularized CCA
algorithm. The aim is to find subsets of voxels from the given
regions, the representative signals of which are maximally cor-
related. As an illustration, consider Fig. 1. Two sets of voxels
are given, one based on prior neurophysiological knowledge, to
include the motion area MT in the temporal sulcus (right panel),
and one broadly defined cube in the frontal lobe to include the
frontal eye field, FEF (left panel). Spatially regularized CCA
delineates the two ROIs in both predefined sets of voxels such
that the representative signals of both ROIs are maximally corre-
lated. In the next subsections, this idea will be worked out more
formally. We start with the case of two regions, and extend it
later to multiple regions.

A. CCA on Two ROIs

Let be a -dimensional data ma-
trix consisting of the fMRI signals of length . Each signal
corresponds to one voxel in ROI . Let
be a -dimensional data matrix consisting of the fMRI
signals of length of region . All the time signals are stan-
dardized to zero mean and unit variance. With CCA, we obtain
the weight vectors and so that the correlation be-
tween the two resulting linear combinations is maximal

(1)

(2)

Due to [23] this problem can be reduced to two eigenvalue
problems: the weight vector is found as the eigenvector
belonging to the largest eigenvalue of

and is found as the eigenvector belonging
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to the largest eigenvalue of .
The resulting signals and can then be taken as the
representative time signals for the ROIs and , respectively.
However, these representative signals cannot be interpreted as
a weighted mean of the original time signals since the weight
vectors could be positive or negative. Therefore, we impose
nonnegativity constraints and on the weight
vectors. Furthermore, it is known from fMRI analysis that true
neural activation typically tends to occur in a functional cluster
[28], [29] or, in other words, that true fMRI activation is more
likely to occur in clusters of spatially connected voxels than in
a single voxel or in small groups of isolated voxels. However,
due to the presence of spatial correlations in fMRI signals of
neighbouring voxels, the weight vectors and will not
reflect this spatial organisation, but will tend to yield scattered
weight patterns with high variances on each individual weight
value. This phenomenon is analogous to the multicollinearity
problem in regression analysis: the matrices and
become more singular with higher spatial correlations, and
the inverse operations on them, and , lead
to increased variances. In order to have weight vectors which
are more compliant with the spatial structure of the data, we
impose spatial regularization constraints. For each voxel ,
we basically impose that , with
the neighbourhood of voxel and the size of this neig-
bourhood. The regularization parameter lies in the interval

and controls the degree of spatial regularization: with
there is no spatial smoothing, while with all the

weight values in one weight vector are equal and the resulting
signals are the unweighted means of the original signals. The
spatial regularization constraints on the voxels of one region,
say region , can be summarized as . For the

square matrix , the diagonal elements are equal to
, and , the element on is equal to . The

optimization problem for the spatially regularized CCA can
then be formulated as

(3)

(4)

(5)

(6)

(7)

We developed an active-set algorithm that exploits the special
characteristics of this optimization problem. An active set algo-
rithm is based on binding and nonbinding constraints: if the so-
lution does not violate a given constraint after it has been deleted
from the formulation, this constraint is called nonbinding, oth-
erwise it is a binding constraint. The general principles of an
active set algorithm are as follows (for a more general descrip-
tion of active set algorithms we refer to [30]).

• A binding inequality constraint becomes an equality con-
straint (it is called an active constraint).

• A nonbinding inequality constraint has no influence and
can be safely removed from the problem formulation (it is
called a passive constraint).

• An active constraint (= equality constraint) can become
passive in a next iteration, depending on the value of its
Lagrange-multiplier.

• A passive constraint can be violated in a next iteration. A
line search is then performed between the previous solu-
tion and the current solution, until the solution is back at
the borders of the feasible region. The violated inequality
constraint then becomes an equality constraint (the con-
straint becomes active).

For one region, say , there are inequality constraints:
nonnegativity constraints and regularization constraints.

However, if a nonnegativity constraint becomes active, then
the corresponding value becomes 0, which is the same as
removing the corresponding time signal (and voxel) from the
analysis. Furthermore, if a time signal has been removed, also
the corresponding row and column has to be deleted in the
regularization matrix . Thus, the equality constraints (active
constraints) can only come from the regularization constraints.
The optimization problem with active constraints can now be
formulated as

(8)

(9)

(10)

(11)

(12)

in which the denominator of the objective function has been re-
placed by unit variance constraints. The Lagrange-formulation
is then

(13)

which we solve by setting its partial derivatives to zero

(14)

(15)

Subtracting times (14) from times (15) and given the
constraints (9)–(12) one must conclude that .
After premultiplying (14) by and given (9)–(12),
one obtains

(16)

We define such that

(17)

and we define and in a similar way. Putting and
in (14)–(15), we find, after some algebraic manipulations, that

(18)

(19)
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with

(20)

(21)

Equations (18)–(19) are two eigenvalue problems. Hence, the
optimization problem with active constraints has a closed-form
solution. In the active set algorithm, (14) and (15) determine
whether an active nonnegativity constraint becomes passive,
i.e., whether a variable (voxel) enters the formulation, while
(16) determines whether a spatial regularization constraint
becomes passive, since the Lagrange multipliers and can
be considered as shadow costs of the regularization constraints.

B. CCA on Multiple ROIs

Thus far, we have applied CCA between two brain regions.
Formally, generalizations to three or more sets have been pro-
posed by [31] and [32], for unconstrained CCA. We adopt the
maxvar approach in which the first eigenvalue of the correla-
tion matrix of the resulting signals has been maximized, sub-
ject to the nonnegativity and spatial regularization constraints.
The intuition behind the maxvar approach is the same as in
PCA on the correlation matrix of a set of signals: the first prin-
cipal component (first eigenvector) makes a linear combination
of the signals so that the new signal after projection has max-
imum variance. This maximum variance will be obtained if the
signals that are most correlated also have the largest values in
the eigenvector. However, the maxvar approach goes a step
deeper than PCA, since not only the eigenvector of the correla-
tion matrix has to be determined (to make the linear combina-
tion that yields a signal with maximum variance), but also the
signals on which the correlation matrix is calculated, have to
be determined, by calculating optimal weight vectors . More
formally, this approach can be formulated as follows.

Let be brain regions with data matrices
, then the optimization problem is

(22)

(23)

(24)

(25)

(26)

with

...
. . .

(27)

This problem is solved by iterating the above described active
set algorithm in which, at each iteration, one weight vector is
optimized given the eigenvector and the other weight
vectors. If , this formulation is equal to the CCA formula-
tion in the previous section. For , the eigenvector gives
an indication of the importance of each region and, hence, can
be interpreted as a measure of functional connectivity between
the brain regions.

C. Removing Correlated Noise

Nonwhite noise in fMRI has been a known problem for a long
time. The sources are many: low-frequency drift due to hard-
ware imperfections, oscillatory noise due to respiration and car-
diac pulsation, residual movement artefacts not accounted for by
(non)-rigid body registration, and so on. These noise contribu-
tions give rise to temporal autocorrelations in the fMRI signals.
Furthermore, it is also known [33] that the nonwhite noise is
structured in space. It is clear that the proposed CCA-solution
will be sensitive to this spatial correlation in the noise, and that
we have to take these noise correlation into account if we want
to measure the connectivity between ROIs.

Let and be 2 unobservable fMRI signals. Due to the noise,
we only observe and with

(28)

(29)

in which and are the noise components. In the CCA-
approach, we determine the weight vectors and so that
the correlation between and is maximized. We now change
the goal function to maximize , which is the part
of correlation that is not due to the correlated noise. More in
detail, this goal function is an approximation of in which we
assume zero-correlation between and , and between and

. We keep the constraints and
unchanged. For the CCA with multiple regions, the matrix
in (22) has been changed to (30), shown at the bottom of the
page. The matrices contain the noise signals. If the fMRI
data is obtained in a block design, the following procedure can
be followed: first, take for each signal the mean over all runs,
next calculate in each run the noise as the difference between
the signal in that run and the mean signal over runs. However,
any noise estimation method (e.g., [34] and [35]) can be used to
fill in the matrices .

III. REDEFINING THE ROIS

The analysis in Section II occurs within the given sets of
voxels. In order to incorporate voxels in the analysis which are
not included in the initial ROIs, we developed a procedure to
redefine the ROIs. This procedure works as follows. First, we
identify local maxima in the weight vectors of the CCA, and

...
. . .

... (30)

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on July 15, 2009 at 05:05 from IEEE Xplore.  Restrictions apply.



1764 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 8, AUGUST 2009

take a large cube of voxels around each local maximum. If the
weight vector of a ROI has a single (global) maximum,
then the region can still move. If has multiple local maxima
then the region will be splitted into separate regions. In order to
avoid an explosion of new regions, we test whether nearby re-
gions (i.e., if some of their voxels overlap) can be merged into
one region. Finally, overlapping voxels between two or more re-
gions are assigned to one local maximum in order to end up with
a new set of nonoverlapping ROIs. These new ROIs can then be
used as inputs to a new CCA-stage. The algorithm stops when
it has converged to a stable solution i.e., when the position of
the local maxima and the assignment of voxels to these maxima
is the same in two consecutive iterations. In the next two sec-
tions, we first describe the test for region merging, and then the
assignment of voxels to regions.

A. Merging Local Maxima

Let and be the time signals of two neigbouring local
maxima in the weight vectors of the canonical correlation anal-
ysis. These two weight vectors can come from one weight vector
(from one ROI) or from different weight vectors (from different
ROIs). If CCA had been performed on regions, let be the
data matrix that contains the representative time signals of the
ROIs that were not the source for or . Thus, the dimension
of is or , depending on whether
and come from the same or different ROIs, respectively. The
connectivity patterns from and to the other regions can
be modelled as regression coefficients and from the two
regression models

(31)

(32)

These two regression models can be summarized by the model

(33)

In order to test whether the connectivity patterns and
are similar, we impose equality constraints on
(33) and compare the sum of the squared residuals of the con-
strained model with that of the unconstrained model. One can
easily verify that the solution of the constrained model can be
obtained as

(34)

and the solution of the unconstrained problem is identical to that
of the two separate regression models (31) and (32)

(35)

(36)

which is the standard OLS solution. Let eer and eeu be the sums
of the squared residuals in the constrained and the unconstrained
models, respectively, the test for equality of the two models is
then

(37)

Fig. 2. Illustration of the voxel assignment problem. Three overlapping regions
are defined (black border: � , green border: � , dark blue border: �) and labels
are assigned to the voxels (red: � , yellow: � , blue: �). The left panel shows
an initial labeling with isolated voxels, the right panel shows a desired solution
consisting of contiguous parts.

where is equal to or , i.e., the number of
columns in .

B. Assigning Voxels to ROIs Using Graph-Cuts Optimization

The retained local mimima are further used as seeds around
which a (large) spherical or cubical set of voxels is defined.
However, since these large regions may consist of many over-
lapping voxels, we are now concerned with the problem of as-
signing each voxel to exactly one seed (and, hence, to one ROI).
As a first labeling, we could assign a voxel to the seed with
which it has the largest correlation. However, since no spatial
regularization has been included yet, this labeling will yield re-
gions consisting of isolated voxels or unconnected groups of
them. This is conceptually shown in Fig. 2(a). In this figure,
three overlapping regions are defined, say region defined by
the black border, region defined by the green border and re-
gion defined by the dark blue border. The labels that are cur-
rently assigned to the voxels are shown by a color code: red
means that a voxel has been assigned to region , yellow that
is has been assigned to region , and light blue that is has been
assigned to region . Fig. 2(b) shows a desired solution with
regions consisting of contiguous parts without isolated or un-
connected voxels. In order to obtain such a solution, we in-
clude a spatial smoothness term in the labeling. The assignment
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problem can then be formulated as the minimization of the fol-
lowing well-known energy function

(38)

in which is the label of voxel , or in other words, the label
of the local maximum to which voxel has been assigned. The
first term, measures the cost of labeling voxel as

, or the cost of assigning voxel to the seed . The second
term, controls the spatial regularization,
where is the set of all pairs of neighboring voxels. This energy
function can efficiently be minimized using graph-cuts.

Graph-cuts is basically an energy minimization technique
based on combinatorial optimization. It has many interesting
characteristics such as global minimization, solid theoretical
background and flexibility in the energy function. Many energy
functions can be minimized via graph-cuts as soon as the
problem can be formalized as a network flow problem. The
construction of such networks or graphs is fully described in
[36]. In our method, we used the -swap algorithm described
in [37]. In our application of the graph-cut algorithm, we define

as . For the regularization term, we adopt
the Potts model where equals 1
if its argument is true, and otherwise 0. The degree of spatial
regularization has been controlled by the parameter . The

-swap algorithm works iteratively on all pairs of labels. For
a given pair of labels, say and , the algorithm can switch
labels from to or vice-versa. Voxels that are not currently
labeled as or remain unchanged in that iteration. In prin-
ciple, the algorithm works on all pairs of labels, however, since
in the voxel assignment problem only the overlapping voxels
have to be (re-)assigned, the iteration must not go over all
pairs of ROIs. For each -swap, a graph has been constructed
consisting of nodes and links between them. Let be the
set of voxels, the labels of which may be switched during the
current iteration. The nodes in the constructed graph are then
the voxels in , together with a source node , and a sink
node . As an illustration, consider again Fig. 2. If an -swap
has been performed between region and , the voxels in

are [3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 18, 21, 23, 27, 29,
30, 33, 34, 35]. Two types of links are introduced in the graph,
first the and links which connect the voxels with
the source and sink nodes, and, second the links which
connect neighbouring voxels and . According
to [37], the weights assigned to these links are

for (39)

for (40)

for (41)

where is the neighbourhood of voxel , and the set of
all pairs of neighbouring voxels. A minimal cut on this graph
yields an optimal labeling for the swap, given the current
labeling of the other voxels which are not in . A minimal

cut on the graph can be computed in polynomial time via one
of the maximum-flow algorithms as proposed by [38]. We used
a more recent and efficient maximum-flow algorithm proposed
by [39].

IV. RESULTS

A. Synthetic Data Set

First, we demonstrate our method on a synthetic data set. In
order to make synthetic data compliant with the properties of
real fMRI data, we added simulated connected ROIs to a real
fMRI data set (which will be described in the next section). As
a ground truth we added 6 connected ROIs to the fMRI data.
Signals are generated simulating 10 runs of 3 conditions with 12
data points per condition (signals have length 360). The length
of the simulated runs is different from the length of the runs in
the real fMRI data, which is in this case considered as noise data.
We defined two underlying signals and and generated
signals for the 6 ground truth ROIs using the generator model
defined in Fig. 3 (where represents noise, coming from the
real fMRI data). Let be the ground truth ROIs
(shown in Fig. 3) and let the ROIs defined in the algorithm be
denoted by , whereby denotes the th ROI in iteration .
The -ROIs for the different iterations are shown in Fig. 4. For
example, is represented by the yellow blob in Fig. 4(a).
The right panels show the weight vectors of the CCA algorithm.
Since the eigenvector [see (22)] gives an indication of the im-
portance of the different ROIs, we multiplied the weight vectors
of the ROIs with this eigenvector for a more complete visualiza-
tion.

We started our algorithm with 7 cubical ROIs. The ROI
has been covered by two -ROIs: and and the CCA
weight vectors yield local maxima which are close to each other
[see Fig. 4(b)]. After testing the similarity of their connectivity
patterns these 2 local maxima are
merged into one ROI for the next iteration [see Fig. 4(c)]. An-
other interesting case is the weight vector of ROI , which
shows two local maxima. These caused a splitting of the ROI
in two new ROIs: and . A similar case happened
in ROI which also has been splitted in two new ROIs:

and . In the boundary between and we
see the effect of the graph-cut minimization algorithm for as-
signing voxels to neighbouring ROIs. After the third iteration,
there were no further splittings or mergings. Only small move-
ments of the ROIs still happened, and at the fifth iteration the
solution became stable. Finally, notice that the ROIs and

, which were not in the ground truth, had no influence on
the algorithm.

B. Real fMRI Data Set

We used contrast agent-enhanced fMRI in awake monkeys,
from a motion localizer study described in [40]. In the experi-
ment, random textured patterns (50% white 0.075 dots, 50%
black 0.075 dots) were presented in a circular aperture (14
diameter) either stationary or translating at five different speeds
(1, 2, 4, 8, and 16 /s). The monkeys were scanned in a horizontal
bore, 1.5T MR scanner (Sonata; Siemens, Erlangen, Germany)
equipped with echoplanar imaging. Each functional time series
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Fig. 3. Ground truth for the synthetic data set: underlying signals and generator model (right); connected ROIs are identified on the brain slice (left).

Fig. 4. Evolution of the algorithm on a synthetic data set. The left panels show
the selected voxels in each ROI, the right panels show the CCA-weight vectors.
Each row represents one iteration, with the top row being the first iteration.

consisted of gradient-echo echoplanar whole brain images: rep-
etition time (TR), 2.4 s; echo time (TE), 27 ms; 64 64 matrix;
2 2 2 mm voxels (32 sagittal slices). A block design was
used, with 7 conditions per run (5 speeds, 1 stationary and 1 fix-
ation condition). Within the same run, the presentation order of
conditions was repeated two times. Between the runs, the order
of the conditions was randomized. 10 runs were selected (only

runs in which the monkey fixated for more than 85% of the
time), which correspond to 1400 volumes.
As an example, 4 time signals (obtained after convergence, see
later) are shown in Fig. 8. The time signals are reordered so that
that the order of the conditions is the same in all runs: (1, 2, 4,
8, and 16 /s, static, fixation). The monkey functional volumes
were realigned and nonrigidly co-registered with the anatomy
of a template. The brain of the template has been scanned at a
spatial resolution of 1 mm . The monkey functional volumes
were subsampled to 1 mm , but not smoothed.

1) Start From a Small Set of Given ROIs: We start from 5
given ROIs which are known to be involved in motion obser-
vation [40]: the dorsal and the ventral part of region V2 in the
occipital lobe, namely V2d and V2v; two ROIs in the temporal
lobe: MT/V5 in the lower bank of the caudal superior temporal
sulcus (STS), and FST, the floor of the superior temporal sulcus;
and finally, the frontal eye field (FEF) in the frontal lobe. These
5 ROIs are shown in Fig. 5(a). The algorithm converged in nine
iterations to 11 new ROIs, which are shown in Fig. 5(b). Finally,
Fig. 5(c) shows the CCA weight vectors in these 11 ROIs mul-
tiplied with the eigenvector .

2) Start From a Full Parcellation: The final solution of the
algorithm may depend on the inital set of starting seeds. Pos-
sibly interesting ROIs that are too far away from the inital ROIs
may not be reached by the region-growing phase. In order to
get rid of this initial ROI selection, we divided the full data
on a blind manner into a lot of cubical ROIs that were only a
few millimeters apart from each other, so that the voxels that
were not covered by the initial ROIs are certainly reachable by
the region growing phase. In this manner, 104 cubical ROIs are
defined, as shown in Fig. 6(a) (color code represents labels).
From these 104 initial ROIs the algorithm converged in 16 iter-
ations to 40 final ROIs which are shown in Fig. 6(b). The evolu-
tion of the algorithm is plotted in Fig. 7. Subplot (a) shows the
number of ROIs in 20 subsequent iterations. Subplot (b) shows
for each iteration the value of the maximum eigenvalue on the
noise-corrected correlation matrix from the representative sig-
nals, divided by the number of ROIs. This value lies between 0
and 1, i.e., 0 if all the representative signals were totally uncor-
related, and 1 if they were all the same. In subplots (c) and (d),
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Fig. 5. (a) 5 starting ROIs; (b) 11 final ROIs; (c) CCA weight vectors in the 11 ROIs.

we show the eigenvector obtained on the 104 initial ROIs in
the first iteration, (c), and on the final ROIs in the last iteration,
(d). The componens of give a measure of the importance (the
contribution) of each ROI in obtaining a maximum eigenvalue.
The horizontal red line represents the value that all the compo-
nents of would have if they were all the same, i.e., if each ROI
had the same importance. This value is equal to , with
the number of ROIs. In order to get rid of the ROIs with a low
importance (low value in the eigenvector), we performed a sur-
rogate-based test to test the hypothesis of null-importance for
each ROI.

As an example, we show 4 representative time signals in
Fig. 8. The top panels (a,b) represent signals that are taken from
the inital set of 104 ROIs. Subplot (a) comes from ROI 41,

which is the ROI with the highest value in the eigenvector [see
Fig. 7(c)]. This signal shows already a clear repeating block par-
adigm, while the signal in subplot (b), which comes from ROI
50 and has a low value in , seems to represent only noise. The
bottom panels (c,d) in Fig. 8 are taken from the final set of 40
ROIs. The signal in (c) comes from the ROI with the highest
value in , while the signal in (d) comes from the ROI with the
smallest value in . However, also this latter still seems to show
a repeating block paradigm (hence, it is still in the final set of
ROIs).

3) Comparison With k-Means Clustering: In this last sec-
tion we compare our method with k-means clustering. In order
to have a noise correction phase, as we have in our method,
to correct for the spatially correlated noise, we take for each

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on July 15, 2009 at 05:05 from IEEE Xplore.  Restrictions apply.



1768 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 8, AUGUST 2009

Fig. 6. Initial parcellation of the brain in 104 ROIs (a), and final parcellation in 40 ROIs (b).

Fig. 7. Evolution of the algorithm with (a) number of ROIs, (b) the maximum eigenvalue divided by the number of ROIs, (c) the eigenvector in the first iteration,
and (d the eigenvector in the last iteration.

time signal the mean time signal over the runs. Thus, the clus-
tered time signals have length 140 . In order to
account for the spatial information in the data, as we also do
in our method, namely in the graph-cuts optimization phase, we
extend each signal with its 3 spatial coordinates, multiplied with
a parameter which controls for the weight that is given to this
spatial information. Each vector (data point) for the k-means
clustering has then 143 dimensions, and k-means will be per-

formed for different values of the spatial parameter . However,
due to the ill-balanced data problem in fMRI, i.e., the activated
regions represent a small proportion of the brain and can be em-
bedded in the large amount of nonactivated voxels [41], every
fMRI cluster analysis usually performs an initial voxel selection
procedure. As a first voxel selection procedure, we take the set of
voxels that are in our final set of 40 ROIs and that have a strictly
positive CCA-weight [see Fig. 6(b)]. This set consists of 8314
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Fig. 8. Representative time signals: top panels (a), (b) are time signals obtained from the initial set of 104 ROIs, bottom panels (c), (d) are taken from the final
set of 40 ROIs, left panels (a), (c) are “good” time signals (the ROI has a high value in the eigenvector), right panels (b), (d) are “bad” time signals (the ROI has
a low value in the eigenvector). (a) Signal 41 from the 104 initial ROIs, (b) Signal 50 from the 104 initial ROIs, (c) Signal 14 from the 40 final ROIs, (a) Signal
29 from the 40 final ROIs.

voxels. For the number of clusters in the k-means clustering, we
take the number of ROIs on convergence of our method, i.e.,
40. In order to have another voxel selection which is not biased
by our method, we calculate Kendall’s concordance coefficient

[42] on each voxel with its 26 neighbours. Kendall’s is
a measure of the intragroup homogeneity on a group of signals
(here 27 signals) and ranges between 0 and 1, with indi-
cates no concordance among the signals, and holds for a
perfect match. We calculated Kendall’s on the original time
signals of length 1400, and on the time signals that were aver-
aged over the runs (signals of length 140) and we selected each
time the 8314 voxels with the highest -value. K-means clus-
tering has been performed on the 3 sets of voxels, for different
values of the spatial parameter and with the number of clus-
ters equal to 40. The results are shown in Fig. 9. The blue curves

are the results on the set of voxels obtained by our method,
the green curves are the results on the set of voxels obtained
with Kendall’s on signals of length 1400, the red curves
are the results on the set of voxels obtained with Kendall’s on
signals of length 140. The horizontal axis represents the spatial
parameter . Subplot (c) shows the total intracluster error on the
time signals (140 dimensions), subplot (b) shows the total intra-
cluster error on the spatial coordinates (3 dimensions). We cal-
culated a representative signal for each cluster as the weighted
mean of its signals, where a voxel’s weight is the inverse of its
intracluster error to the cluster’s centroid. Next, the noise-cor-
rected correlation matrix is formed with these representative sig-
nals and the maximum eigenvalue of this correlation matrix is
plotted in subplot (a) for the 3 different methods. The dotted hor-
izontal lines in the three panels show the results when we apply
the parcellation of 40 ROIs that was obtained with our method.
We see that our results are comparable with those of k-means
clustering with a high influence on the spatial information, and
on a set of voxels obtained with a noise-corrected voxel selec-
tion procedure (Kendall’s on signals of length 140).

Fig. 9. Results of k-means clustering for different values of the spatial param-
eter � (horizontal axes) and with the number of clusters equal to 40. Three dif-
ferent sets of voxels are clustered: a set of voxels obtained by our method (blue
curves, �), a set of voxels obtained by Kendall’s concordance without noise
correction (green curves, �), a set of voxels obtained by Kendall’s concordance
with noise correction (red curves, ). Subplot (a) shows the maximum eigen-
value on the noise corrected correlation matrix of the representative signals from
the different clusterings, (b) shows the total intracluster error on the spatial coor-
dinates (3 dimensions), (c) shows the total intracluster error on the time signals
(140 dimensions).

V. DISCUSSION AND CONCLUSION

We introduced a novel method for defining ROIs in fMRI
data, based on their functional connectivity to other ROIs. In
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our method we used first spatially regularized canonical cor-
relation analysis for identifying maximally correlated signals,
hereby accounting for spatially correlated noise, second a test
for merging ROIs based on the similarity of their connectivi-
ties to other ROIs, third a graph-cuts optimization for assigning
voxels to ROIs.

Several parameters are included in the method. First, the pa-
rameter , which controls the spatial smoothness of the CCA
weight vectors. This parameter ranges between 0 and 1. With

there is no spatial smoothing, while with all the
weight values in one weight vector are equal and the representa-
tive signal is the unweighted mean of the original signals. In our
application we used . Second, the parameter , which
controls the spatial regularization in the graph-cuts optimization
for assigning voxels to ROIs. In our application we test at each
step a number of different values for and determine in each
ROI the voxels that are spatially connected with the local max-
imum (thus, we disregard the isolated voxels or islands). Next,
we take in each ROI the summation of the connected signals
and calculate the variance of this new signal. Finally, we se-
lect the smallest for which the sum of the variances is max-
imum. The intuition behind this heuristic is that we try to get as
much connected voxels as possible (in general, the more vari-
ables the higher the total variance), but without assigning bad
signals to ROIs (which do not help to increase the variance). The
last important parameter in the method is the threshold for re-
gion merging. This threshold is in terms of a -value and, hence,
has the classical statistical meaning. In our application, we set
this -value to 0.05.

Our method is based on functional connectivity in the
sense that a ROI will only arise if its representative signal is
correlated with the representative signals of other ROIs. This
functional connectivity-based character occurs in two stages
in the method: first, in the CCA step which seeks to find
maximally (noise-correted) correlated signals; and second,
in the test for region merging, which tests the similarity of
connection patterns to other ROIs. This functional connectivity
between ROIs is the main difference between our method and
other data-driven methods for defining ROIs, i.e., cluster anal-
ysis and region growing. These 2 latter methods only take the
within-cluster or intracluster performance into account, but
not the relatedness to other ROIs. Hence, a set of neighboring
voxels with highly correlated signals, but with the high corre-
lations only due to some artefact on that specific place, will
not form a ROI in our approach, since the representative signal
will not be correlated with other representative signals, while
it is likely to form a ROI in the other methods that look only
to the intracluster performance. Our method is also related to
PCA. However, in PCA on fMRI, the correlation matrix of (a
subset of) the voxels’ time signals is calculated and the first
eigenvector of this correlation matrix is the principal compo-
nent. In our method we calculate the correlation matrix of the
representative signals of the ROIs (not of the individual voxels)
and calculate its first eigenvector. The representative signals
are generated by our method in such a way that the subsequent
PCA can be performed in the most optimal circumstances,
i.e., so that a maximum value of the first eigenvalue can be
obtained.

Since our method for defining ROIs with corresponding rep-
resentative signals is based on functional connectivity, one could
argue that the results of a subsequent effective connectivity anal-
ysis (like SEM, DCM, BN, etc.) are biased. However, we can
decrease this possible bias if we split the data in two parts and
take one part to obtain the ROIs and the CCA weights, and next,
apply these weights on the other half of the data to generate the
representative signals for the further analysis.

We demonstrated our method on a synthetic and on a real
fMRI data set. We showed that our method can start from a set
of given ROIs, for example those that are known to be involved
in a particular task, or from a fully blind parcellation of the brain
to have a totally data-driven method for defining functionally
connected ROIs.
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