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FPGA-Based Real-Time Optical-Flow System
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Abstract—We describe a pipelined optical-flow processing
system that works as a virtual motion sensor. It is based on a
field-programmable gate array (FPGA) device enabling the easy
change of configuring parameters to adapt the sensor to different
speeds, light conditions and other environmental factors. We refer
to it as a ‘“‘virtual sensor” because it consists of a conventional
camera as front-end supported by an FPGA processing device,
which embeds the frame grabber, optical-flow algorithm imple-
mentation, output module, and some configuration and storage
circuitry. To the best of our knowledge, this is the first study that
presents a fully stand-alone optical-flow processing system to
include measurements of the platform performance in terms of
accuracy and speed.

Index Terms—Field-programmable gate arrays (FPGAs), image
motion analysis, image processing, pipeline processing, real-time
systems.

1. INTRODUCTION

HE optical flow computation consists in extracting a dense
velocity field from an image sequence assuming that inten-
sity is conserved during displacement. This result may then be
used for other applications such as three-dimensional (3-D) re-
construction, time interpolation of image sequences, video com-
pression, segmentation from motion, tracking, robot navigation,
and time-to-collision estimation. There are several ways of re-
covering the 3-D information from two-dimensional (2-D) im-
ages using various cues. These cues are motion, binocular stere-
opsis, texture, shading, and contour. In this paper we will de-
scribe the implementation of a real-time motion flow system,
leaving the potential applications for future studies.
Optical-flow algorithms have been widely described in the lit-
erature. Some authors have addressed a comparative study of the
accuracy of different approaches with synthetic sequences [1].
Their evaluation using real-life sequences is difficult to address
because the real optical flow of such sequences is unknown. We
have focused on a classical gradient model based on Lucas &
Kanade’s (L&K) approach [1], [2]. Several authors have em-
phasized the satisfactory tradeoff between accuracy and effi-
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ciency in this model, which is an important factor when deciding
which model is most suitable to use as a real-time processing
system. For a comparative study [1], the L&K algorithm pro-
vides very accurate results, added to which, other authors specif-
ically evaluating the efficiency vs accuracy tradeoff of different
optical-flow approaches [3] also regard the L&K model as being
quite efficient. Finally, McCane et al. [4] also give L&K a good
score and conclude that the computational power required by
this approach is affordable. This has prompted later researchers
to focus on the L&K algorithm [5], [6].

We describe here a hardware implementation of the L&K
algorithm. Other authors have recently described the hardware
implementation of optical-flow algorithms [7]-[10], but most
of them provide no results to evaluate the performance of
the system, i.e., the accuracy and the computation speed. We
describe a fully stand-alone working system at conventional
camera frame rates of 30 Hz, with image sizes of 320 x 240
pixels, which to the best of our knowledge is the first description
of such a system.

II. OPTICAL-FLOW MODEL

Although the original algorithm was proposed as a method to
estimate the disparity map in stereo-pair images [2], we have ap-
plied Barron’s description of the L&K algorithm to optical-flow
computation [1]. We have also added several modifications to
improve the feasibility of its hardware implementation.

Instead of temporal finite-impulse-response (FIR), filters we
have used infinite-impulse-response (IIR) filters. Temporal FIR
filter requires 15 frames which are hardly affordable in em-
bedded systems; therefore, as indicated in [11], a more efficient
tactic can be adopted by using IIR temporal recursive smoothing
and derivative filters. In this way the temporal storage require-
ment is reduced to three frames and the computation time im-
proved at a cost of only slightly reduced accuracy.

Another slight modification provides estimations when the
aperture problem appears in the direction of the maximum gra-
dient. We have added a small constant, « to the matrix diagonal
as suggested in [12], which allows us to estimate the normal ve-
locity field in situations where 2-D velocity cannot be extracted
due to the lack of contrast information.

III. HARDWARE IMPLEMENTATION

Diverse potential applications such as robotics [13], encoding
standards [14] or estimation of structure from motion [15] can
benefit from the development of a customizable optical flow
system of high computational power and high quality which

1051-8215/$20.00 © 2006 IEEE
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Fig. 1. Coarse pipeline processing architecture.

provides dense flow information and is suitable to be used as
an embedded sensor. The customization feasibility is the key
factor to address several applications with the same technology.
The possibilities of working for a specific-application whereas
managing design tradeoffs (such as different frame rate versus
spatial resolution and customized flow accuracy versus system
cost) are very advantageous. The solution we propose is based
on the use of programmable logic circuits [field-programmable
gate arrays (FPGAs)] where the motion computation chip can
be regarded as part of a smart sensor. These circuits allow us to
design a customized DSP circuit in a single chip of high compu-
tational power based on an intensive use of their intrinsic paral-
lelism and pipeline resources. As we will show in later sections,
the solution described here uses this technology to implement a
real-time hardware device capable of working as a PC co-pro-
cessor or as a smart sensor in embedded applications.

For our design, we have used two platforms: the first one is the
RC1000-PP board from Celoxica.! This is a PCI bus board con-
nected to the PC and can be used as a hardware accelerator board
or as a prototype board containing a Virtex 2000E-6 Xilinx
FPGA The second platform is the stand-alone RC200 board
from Celoxica. This board includes camera input, video/VGA
output, two 2-MB SSRAM memory banks, and an XC2V1000-4
FPGA. It is a very suitable test system for embedded applica-
tions. We have used Handel-C [16] as hardware specification
language to generate the Edif input to the Xilinx ISE environ-
ment. This high-level hardware language allows us to describe
the circuiuts at a register transfer level (RTL) in a very algo-
rithmic-like way. This is relevant due to the algorithmic nature
of the proposed method that makes an RTL approach more dif-
ficult to adopt. The drawback is the cost in terms of number of
gates but the design time is reduced significantly.

For our discussion, we will focus on the PCI board imple-
mentation. The version running on the stand-alone platform im-
plements the same processing architecture (including new I/O
controller modules). In Section IV, we will only outline the re-
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source requirements and the improvements for the design based
on the Virtex II FPGA family.

A. Hardware Development

The efficient implementation of the algorithm with an FPGA
device requires the intensive exploitation of the intrinsic pro-
cessing parallelism of this kind of device.

We use a pipeline architecture, as shown in Fig. 1, the basic
computational stages of which can be summarized as follows.

* So: The frame-grabber receives the pixels from the camera
and stores them in one of the memory banks, using a
double-buffer technique to avoid temporization problems.

* S;: Spatial-Gaussian-filter smoothing stage.

* So: The IIR temporal filter computes temporal derivative
and space-time smoothed images.

* S3: Spatial derivatives stage.

» S4: Construction of least-square matrices for integration
of neighborhood velocities estimations [1].

* S5: Custom floating-point unit. Final velocity estimation
requires the computation of a matrix inversion, which in-
cludes a division operation. At this stage the resolution of
the incoming data bits is significant and expensive arith-
metic operations are required. Thus fixed-point arithmetic
becomes too expensive, prompting us to design a cus-
tomized floating-point unit.

The computation bit width increases throughout the pipeline
structure. For example, for a high-precision system with low ac-
curacy degradation, we use 8 b in the first two stages, 12 b in the
third and fourth stages, 24 in the construction of the least-square
matrices, and 25 for the floating-point unit. The computation of
the least-square matrices (S4) is the most expensive stage in
terms of computational resources. Different parallelism strate-
gies can be adopted at this point.

The basic parameters of the pipeline structure are latency (L)
and the maximum number of cycles (MNCs) required during
the longest stage, which is the limiting factor of the computing
speed. The pipeline circuit scheme provides a computing speed
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TABLE I
DETAILED SUBCIRCUIT HARDWARE REQUIREMENTS ON A VIRTEX XCV2000E. NOTE THAT THE SUM (% OF THE DEVICE IN THE FIRST COLUMN) IS LARGER
THAN 100%, THIS CAN BE EXPLAINED BECAUSE THESE DATA HAVE BEEN OBTAINED BY PARTIAL COMPILATIONS AND THE SYNTHESIS TOOL
MAKES A WIDE USE OF THE AVAILABLE RESOURCES. WHEN THE WHOLE DESIGN 1S COMPILED IT CONSUMES 99% OF THE DEVICE

Computing cycles
Number of slices / Memory
/ ISE maximum
(% of the device) / requirements /
Clock frequency
equivalent gates (% of the device)
(MHz)
Spatial Gaussian
17 20/ 8/292 16/ (10%
taps .
i 270.175 g
S
IIR filter 134/ (1%) /
717385 3/(1%)
S, 51,971
Spatial derivative
287/ (1%) /
convolution ) 71728.0 7/ (4%)
121,296
S3
Least square matrices 15.288 / (79%)
construction / 10/20.3 24/ (15%)
S, 642,705
Superscalar floating
5,720/ (29%) /
point unit 10/17.4 0
90,993
S5

(data throughput) in pixels per second (pps) that depends on the
MNC and the frequency clock ( f.1x ) according to the expression
pps = fex/MNC.

S, and S5 critical stages are the ones that most affect the
tradeoff between efficiency and cost. We can modify the
neighborhood area, number of convolution units, multipliers,
and floating-point parallel operations. We design one-cycle
floating-point hardware circuits because this works at the
desired maximum clock frequency (without becoming the
limiting stage) for all of the operations except the division. We
have used a hardware sequential divisor instead of a pipelined
divisor that needs 21 cycles to compute the division of 25 b
of floating numbers. However, in this case, the MNC is too
high and imposes a considerable limit on pipeline performance.
To counter this we use up to three-way division units and,
depending on the performance required, we can synthesize
more or less ways. These different alternatives lead to diverse
system versions described in Section I'V.

IV. HARDWARE RESOURCES CONSUMPTION STUDY

The system is designed in modules so that parallelism and bit
accuracy at the different stages can be easily modified. Due to
the high level of abstraction that Handel-C provides [16] it is
easy to manage the parallelism of the computing circuits and
the bit width at the different stages. Table I summarizes the
hardware resources of the different stages using a XCV2000E
Virtex FPGA for a specific implementation called HSHQ in the
Table II.

The last two stages have the larger MNC values. Note that a
lower MNC is possible for other stages, but there is no reason
to improve them due to the other existing limiting stages. The
results of the Xilinx timing analyzer are not always accurate.
In fact it usually underestimates the speed at which a circuit
can run: the maximum frequency allowed by the system has
been experimentally measured, and it is 10-20 MHz higher than
the very conservative results given by ISE. This arises because
the analyzer looks at the static logic path rather than the dy-
namic one (cf. [17]), and, because of that, we measure exper-
imentally the maximum working frequency. As can be seen in
Table I, we have designed a system with a pipeline structure
which has a global latency of 42 cycles and a maximum working
frequency of 17.4 MHz evaluated by ISE (35 MHz measured
experimentally).

One important aspect is that of the various possibilities for
configuring the system. We have evaluated several configura-
tions to explore different tradeoffs between accuracy, hardware
cost, and computing speed. In all of these configurations, we
have used the same basic architecture but with different levels
of parallelism, mainly customizing stages .S4 and Ss.

Table II summarizes the main properties of the different
configurations. The ones using a 5 x 5 average window for
the least-square-matrix neighborhood are called high quality
(HQ) approaches, and the ones using a 3 x 3 window are called
medium quality (MQ) approaches. Other modifiable parameters
are the smoothing and spatial derivative filter sizes. HQ and
MQ approaches include 5-pixel derivative filters and 9-pixel
Gaussians. A low-cost (LQ) version uses 3-pixel derivatives
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TABLE 11
PERFORMANCE AND HARDWARE COST OF DIFFERENT CONFIGURATIONS ON A
VIRTEX 2000-E FPGA (2 MILLION GATES AND 640 Kb OF EMBEDDED
MEMORY). (kpps — KILOPIXELS PER SECOND, fps — FRAMES PER SECOND).
ALL OF THE PERFORMANCE VALUES WERE MEASURED USING A CLOCK
FREQUENCY OF fclk = 27 MHz. THESE MEASUREMENTS (kpps AND fps) ARE
UNDERESTIMATIONS BECAUSE THE COMPUTING TIME MEASURED ALSO
INCLUDED DATA TRANSMISSION TO THE PROTOTYPING BOARD

Version HSHQ HSMQ MSMQ LSLQ
% device
99 65 43 36
occupation
% on-chip
17/31 16 /31 16 8
memory
Kpps 1776 1776 625 400
Image 160x120/ 160x120/
160x120 120x90
resolution 320x240 320x240
Fps
95/24 97/24 33 38
(f=27MHz)
Max. fy (MHz) 35 35 35 35

and a Gaussian filter of the same size. If we fix the optical-flow
quality of the system, another factor to take into account is
the performance vs. hardware cost tradeoff. If the system
works with maximum parallelism the MNC is 10. Lower cost
approaches are possible if we reduce the parallelism level, thus
increasing MNC. For example, we implemented a high-speed
(HS) version with MNC = 10 cycles using a three-way di-
vision unit and maximum parallelism. A slower version was
implemented reducing the parallelism and thus resulting in
a medium speed (MS) version. Finally, we implemented a
low-speed (LS) version. Table II summarizes the performance
of the systems and hardware costs.

It is important to note that, in our experiments, data transmis-
sion of the images to the prototyping board through the 33 MHz
PCI bus takes about 30%—40% of the total processing time and,
therefore, higher frame rates might be expected using a direct
connection between the camera and the FPGA. Furthermore,
as explained in Section I, the theoretical data throughput of the
HSHQ is 2700 Kpps at this clock frequency. This topic is amply
discussed in [18].

We also have tested the design using the standalone proto-
typing platform RC200 to avoid the PCI bus bottleneck. This
platform includes an XC2V1000-4 FPGA with embedded mul-
tipliers. In this approach we have implemented the whole optical
flow system plus Video input, VGA, and memory arbitration
controller. A look-up table (LUT) for visual color representa-
tion of the velocities vector for the VGA output has also been
included in the FPGA. The optical flow system implemented is a
customization for this specific platform. It shares the main prop-
erties of HSHQ PCI board version but uses the embedded mul-
tipliers and several clock domains. It has a limited level of par-
allelism and bit-width in the floating-point unit getting a MNC
value of 14 cycles.

The computing speed measured at the maximum clock fre-
quency (40 MHz) was 2857 kpps (30 fps of 340 x 280 images).
Now the system is faster due to the improved technology of the
Virtex II and the elimination of the PCI bus. The use of a cus-
tomizable approach with a high-level description language facil-
itates the implementation of this system on an FPGA of only one
million gates (99% of resources was used). In fact, the optical
flow processing algorithm only consumes 80% of the number
of slices whilst the rest is occupied by the I/O controllers. The
use of the embedded multipliers saves 662 slices (13% of the
system resources).

V. PERFORMANCE EVALUATION

A. Comparison With Other Approaches

The implementation of the optical-flow algorithm with
FPGA has only been addressed by some authors in very recent
years. Using the block-matching approach, the implementation
described by Niitsuma and Maruyama [7] achieves 30 fps
of image size 640 x 480 but with high hardware cost (90%
slices of a XC2V6000 FPGA) and without subpixel accuracy.
Another study has been published recently [9] in which the
hardware requirements are lower but no information about the
system performance is provided. Based on the L&K approach,
Correia and Campilho [10] recently presented a real-time
implementation of the system using a MaxVideo200 pipeline
image processor. With this accelerator board the performance
and accuracy are similar to our results (we obtained a max-
imum performance of 2303 Kpps with our PCI board system,
2857 Kpps with the stand-alone and 1666 Kpps for their ap-
proach). However, the use of an acceleration processor makes
it difficult to be transferred to embedded applications. Finally,
the model described here, running in software on an AMD
1800 + MHz, can compute 25 fps of 160 x 120 pixels and this
could be optimized using MMX and SSE instructions. The
drawback is that it consumes all the computing resources of the
machine.

B. System Performance

As commented in the introduction, the accuracy of the com-
putation of the optical flow in real-life sequences is difficult to
assess because the real flow of these sequences is unknown.
Therefore, to evaluate the accuracy of our design, which de-
pends on the bit-width of the different stages, we have adopted
the test scheme and synthetic sequence from the comparative
study made by Barron et al. [1], with the error measurement
proposed in [19], [20]. This error measurement has been widely
used in the literature and therefore it is appropriate to compare
our results with previous works.

In the hardware implementation, some simplifications are
made to the original model. The first row of Table III shows the
accuracy of the hardware friendly L&K algorithm computed
by a standard PC using double precision variables with un-
thresholded results. The second row includes the performance
achieved with our hardware implementation. It can be seen that
accuracy is reasonably high, bearing in mind that fixed-point
variables and restricted bit widths are used in this approach.
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TABLE III
YOSEMITE SEQUENCE RESULTS USING THE ANGLE ERROR
MEASUREMENT OF FLEET et al. [19], [20]

Average Standard | Density
Model - Parameters
Error® deviation * (%)
Aain=0,
LK 1IR software
15.91° 11.5° 100 04, =0.8,
vs. real flow
=2, o=l
. . Ain=0,
Hardware implementation
18.30° 15.8° 100 6,,=0.8,
vs. real flow
=2, 0=1

Fig. 2. Optical flow for the overtaking car. Software versus hardware
estimations. (a) Original image extracted from the sequence. (b) Software result
and (c) hardware result. The left-hand images use arrows to represent velocity
vectors. In the right-hand images, for the sake of clarity, only leftwards (light
colors) due to the landscape and rightwards (dark colors) due to the overtaking
car are used to indicate the motion.

From Table III also can be seen that the performance of the
hardware is only slightly worse (2.48° increase in error) than
the software version with a data precision of 64 b. Furthermore,
the results of the hardware implementation described here
are comparable with other software approaches evaluated by
Barron et al. [1].

We have also compared the performance of the software
and the hardware implementations using sinusoidal grating
sequences. We used different stimulus frequencies (fp = 0.02
and fy = 0.05) and velocities (V' = 0.25 ppf and V' = 1 ppf).
With these tests the hardware achieved results very similar
to those of the software (less than 5% error in the calculated
speed).

C. Real Sequences: Overtaking-Car Segmentation

Only qualitative differences were estimated with both the
hardware and software optical-flow approaches using real
sequences (since the real flow is unknown). In this section we
include some real image sequences for a qualitative evaluation.

Fig. 2 contains the image of an overtaking-car sequence seen
from the rear-view mirror, together with the results of software
and hardware optical-flow estimations. This is a good example
of how optical flow can be used for certain real-life applications
in a very straightforward way. In the example the goal is the
segmentation of the overtaking car, which can easily be done re-
lying on optical flow, since the motion pattern of the overtaking
car (moving rightward in the images) contrasts sharply with the
landmarks, moving leftwards due to the egomotion of the host
car.

As shown in Fig. 2(b) and (c), the software results are
smoother than those produced by the hardware. This is due
to the bit-width restriction of the hardware approach. Never-
theless, the results are quite similar, and the accuracy of the
hardware seems to be enough to obtain good qualitative results
and address further processing stages such as car tracking.

VI. CONCLUSION

The system described here shows how an optical-flow esti-
mation circuit can be implemented using an FPGA platform as
a customized DSP for a specific purpose. The paper describes
a scalable architecture that can work with large image data at
a conventional video-frame rate (30 fps). System performance,
customization feasibility, and scalability, due to the FPGA tech-
nology and design strategy, allow the use of the system in di-
verse application fields as explained in previous sections. The
modularity of the system also enables the easy alteration of the
computing scheme to target different computing speed vs. hard-
ware cost tradeoffs.

The accuracy of the estimated flow is essential for some of
the possible applications outlined in the paper. We have studied
how the restricted bit width of the different computations affects
the quality of the extracted optic flow and compared the results
obtained with software implementations of the algorithm com-
puted with double precision. The results of the hardware im-
plementation described are in the range of other software ap-
proaches considered in the study of Barron et al. [1]. Therefore,
the performance of the hardware is of reasonable quality pro-
vided that it computes in real time (at a speed of 2303 Kpps
with our PCI board system and 2857 Kpps with the stand-alone
platform).

In the future, we plan to apply the described approach in dif-
ferent applications such as tracking systems, robot navigation,
and video compression. We will evaluate the system require-
ments for these applications. We will also explore the imple-
mentation of multiscale approaches to obtain more reliable flow
for different velocity scales.
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