
Subpixel motion computing architecture

J. Dı́az, E. Ros, S. Mota, F. Pelayo and E.M. Ortigosa

Abstract: A pipelined optical-flow processing system that works as a virtual motion sensor has
been described. It is based on a field programmable gate array (FPGA) device enabling the easy
change of configuring parameters to adapt the sensor to different speeds, light conditions and
other environmental factors. It is referred to as a ‘virtual sensor’ because it consists of a conven-
tional camera as front-end supported by an FPGA processing device, which embeds the frame
grabber, optical-flow algorithm implementation, output module and some configuration and
storage circuitry. This is the first fully stand-alone working optical-flow processing system to
include both accuracy and speed of measurement of the platform performance. The customisability
of the system for different hardware resources and platforms has also been discussed, showing the
resources and performance for a stand-alone board and a PCI co-processing board.
1 Introduction

Optical flow computation consists in extracting a dense
velocity field from an image sequence assuming that inten-
sity is conserved during displacement. This result may then
be used for other applications such as 3-D reconstruction,
time interpolation of image sequences, video compression,
segmentation from motion, tracking, robot navigation,
time-to-collision estimation and so on. The technical
problem with estimating the motion of objects in 3-D is
that, in the image formation process, because of the perspec-
tive projection of the 3-D world onto the 2-D image plane,
some of the information is lost. There are several ways of
recovering the 3-D information from 2-D images using
various cues. These cues are motion, binocular stereopsis,
texture, shading and contour. In this paper, we will describe
the implementation of a real-time motion flow system,
leaving the potential applications for future studies.

Optical-flow algorithms have been widely described in
the literature. Some authors have addressed a comparative
study of the accuracy of different approaches with synthetic
sequences [1]. Their evaluation using real-life sequences is
difficult to address because the real optical flow of such
sequences is unknown. We have focused on a classical
gradient model based on Lucas and Kanade’s (L & K)
approach [1, 2]. Several authors have emphasised the satis-
factory trade-off between accuracy and efficiency in this
model, which is an important factor when deciding which
model is most suitable to use as a real-time processing
system. For a comparative study [1], the L & K algorithm
provides very accurate results, added to which, other
authors specifically evaluating the efficiency against accu-
racy trade-off of different optical-flow approaches [3] also
regard the L&K model as being quite efficient. Finally,

The Institution of Engineering and Technology 2006

IEE Proceedings online no. 20050207

doi:10.1049/ip-vis:20050207

Paper first received 19th July 2005 and in revised form 23rd June 2006

J. Dı́az, E. Ros, F. Pelayo and E.M. Ortigosa are with the Department of
Computer Architecture and Technology, University of Granada, Spain

S. Mota is with the Department of Computer Science and Numerical Analysis,
University of Cordoba, Spain

E-mail: jdiaz@atc.ugr.es
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
McCane et al. [4] also give L & K a good score and con-
clude that the computational power required by this
approach is affordable. This has prompted later researchers
to focus on the L&K algorithm [5].

We describe here a hardware implementation of the L&K
algorithm. Other authors have recently described the hard-
ware implementation of optical-flow algorithms [6–10],
but most of them provide no results to evaluate the perform-
ance of the system, that is the accuracy and the computation
speed.

The hardware implementation of an algorithm requires a
detailed study of the model. After this preliminary stage,
simplification strategies are adopted. Finally, it is necessary
to evaluate how the adopted simplifications affect the results
(Section 5).

We define our system with a high-level hardware descrip-
tion language such as Handel-C [11]. This high-level
language enables the easy parameterisation of the design,
thus we present a system that can be customised to accom-
plish different requirements for diverse applications.

2 Optical-flow model

Although the original algorithm was proposed as a method
to estimate the disparity map in stereo-pair images [2], we
have applied Barron’s description of the L&K algorithm
to optical-flow computation [1]. We have also added
several modifications to improve the feasibility of its hard-
ware implementation, we have used IIR temporal filters as
described by Fleet and Langley [12] and we have included
bias estimations in the detection of maximum gradient when
aperture problem appears [13].

In the following equations, we describe briefly the com-
putations upon which the L&K approach is based. A
detailed description of the model is provided in previous
studies [1, 2].

The algorithm belongs to gradient-based techniques
characterised by a gradient search performed on extracted
spatial and temporal derivatives. Upon the assumption of
constant luminance values through time, the first-order
gradient constraint equation (1) is obtained as

rxy Iðx; y; tÞ � ðvx; vyÞ þ I tðx; y; tÞ ¼ 0 ð1Þ
869

This equation only allows us to estimate velocity in the
direction of maximum gradient, that is in the normal direc-
tion of moving surfaces. To overcome this limitation, the
L&K method constructs a flow estimation based on the
first-order derivatives of the image. By least-square
fitting, the model extracts an estimation of motion on the
basis of the hypothesis of similarity of velocity values in
the neighbourhood of a central pixel. This is described
mathematically in (2)

min
X
x[V

W
2
ðxÞ½rxyIðx; y; tÞ � ðvx; vyÞ þ I tðx; y; tÞ�

2
ð2Þ

where W(x) weights the constraints with values near the
centre of the spatial neighbourhood V.

The known solution to this problem is expressed in (3)
and (4).

~v ¼ ½ATW 2A��1ATW 2~b ð3Þ

where

ATW 2A ¼

P
x[V

W
2
I

2
x þ a

P
x[V

W
2
IxIy

P
x[V

W 2IxIy

P
x[V

W 2I2
y þ a

2
64

3
75

A
T
W

2~b ¼

�
P

x[V

W 2IxI t

�
P

x[V

W
2
IyI t

2
64

3
75 ð4Þ

An inherent limitation to these models appears in blank
wall or aperture problem situations. In these cases, the
problem has no solution (matrix ATW2A is not invertible)
and the model cannot provide any estimation of motion.
To overcome this, we have added a small constant, a, to
the matrix diagonal, as suggested by Simoncelli et al.
[13], which allows us to estimate the normal velocity field
in situations where 2-D velocity cannot be extracted
because of the lack of contrast information. In summary,
we have to compute the 2 � 2 matrix of (4-left), its
inverse and the 2 � 1 matrix indicated in (4-right).

Before computing the image derivatives in the matrix
elements of (4) they are pre-processed by Gaussian smooth-
ing, which reduces image noise and generates a higher
correlation between adjacent pixels. Typically, Gaussian
space-time filters of 2 pixels variance plus a temporal
derivative of 5 pixels are used. All the temporal operations
require storage of 15 images for the entire process. This
is hardly affordable in embedded hardware systems.
Therefore as indicated in the work of Fleet and Langley
[12], a more efficient tactic can be implemented by using
IIR temporal recursive smoothing and derivative filters. In
this way, the temporal storage requirement is reduced to
three frames and the computation time improved at a cost
of only slightly reduced accuracy. The temporal filter can
be computed as follows.

Let us consider a separable space-time smoothing filter.
After the spatial filtering operation, we can use a causal
temporal filter based on a truncated exponential.

EðtÞ ¼
expð�t=tÞ=t t � 0

0 t , 0

�
ð5Þ

where t is the time constant of the filter. The temporal
derivative of the images can be calculated using this filter.
870
The digital filter equations [12] are

wðtÞ ¼ IðtÞ � 2rwðt � 1Þ � r
2
wðt � 2Þ

R2ðtÞ ¼ q2wðtÞ þ 2q2wðt � 1Þ þ qwðt � 2Þ

yðtÞ ¼ R2ðtÞ � ryðt � 1Þ

ð6Þ

where we store and update: w(t 2 1), w(t 2 2), y(t 2 1). The
parameters q and r are calculated from t according to (7)

q ¼
1

1þ 2t
r ¼

1� 2t

1þ 2t
ð7Þ

Finally, the smoothed temporal image and its derivative are
computed with (8)

I smoothðtÞ ¼ qyðtÞ þ qyðt � 1Þ

I tðtÞ ¼
ðI2ðtÞ � I smoothÞ

t

ð8Þ

3 Hardware implementation

Nowadays real-time computation of simple optical-flow
algorithms for small images is possible by software
because of the outstanding computational power of PCs.
The drawback is that it is difficult to adapt these systems
to use as embedded solutions, for instance, in robotics appli-
cations. Optical-flow can provide to robots navigation infor-
mation, time-to-contact or tracking capabilities. Current
robots incorporate simple motion information extraction
schemes [14] that limit unnecessarily the potential appli-
cations of the system. In interactive robotic tasks, high
temporal resolution is crucial, and this requires high
power computation to extract reliable motion information
in real-time. The presented approach fulfils this require-
ment, as the processing is done at conventional frame
rates with different spatial resolutions.

For recovering 3-D structure from motion [15], large
images, dense information and high accuracy is needed.
The huge computational power required for this task
makes this application difficult to address with conventional
computing platforms.

Encoding standards also use motion information. The
actual implementations typically use block-matching
methods and try to minimise the total coding error (often
measured as signal-to-noise ratio). However, this does not
take into account the subjective appearance of the coding
artefacts, which can significantly affect the video quality.
High-quality motion estimation methods [16, 17] lead to
higher quality pictures compared with the use of a simple
‘best match’ motion estimator.

As it can be seen from earlier discussions, diverse poten-
tial applications can benefit from the development of a cus-
tomisable optical flow system of high computational power
and high quality. The customisation feasibility is the key-
factor to address several applications with the same technol-
ogy. The possibilities of working for a specific-application
while managing design trade-offs (such as different frame-
rate against spatial resolution and customised flow-accuracy
against system cost) are very advantageous. The solution we
propose is based on the use of programmable logic circuits
(FPGAs), where the motion computation chip can be
regarded as part of a smart sensor. These circuits allow us
to design a customised DSP circuit in a single chip of
high computational power based on an intensive use of
their intrinsic parallelism and pipeline resources. As we
will show in later sections, the solution described here
uses this technology to implement a real-time hardware
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006

device capable of working as a PC co-processor or as a
smart sensor in embedded applications.

3.1 Hardware development

For our design, we have used two platforms: the first one is
the RC1000-PP board from Celoxica [18]. This is a PCI bus
board connected to the PC and can be used as a hardware
accelerator board or as a prototype board. It contains a
Virtex 2000E-6 Xilinx FPGA and four 2 MB SRAM
memory banks accessible in parallel. This platform uses a
client–server scheme. A host program written in C/Cþþ
sends image data to the FPGA through the PCI bus and
then receives data processed by the FPGA. Because we
are interested in stand-alone hardware devices, all the com-
putations have been made with the FPGA, but this platform
is also flexible and capable of working within more complex
co-design schemes. The second platform is the stand-alone
RC203 board from Celoxica [18]. This board includes
camera input, video/VGA output, two 2 MB SSRAM
memory banks and a XC2V3000-4 FPGA. It is a very suit-
able test system for embedded applications.

We have used Handel-C [11] as hardware specification
language to generate the Edif input to the Xilinx ISE
environment. This high-level hardware language allows us
to describe register transfer level (RTL) circuits in a very
algorithmic-like way. This is relevant because of the algo-
rithmic nature of the proposed method that makes an RTL
approach more difficult to adopt. The drawback is the cost
in terms of number of gates, but the design time is
reduced significantly. Finally, the Xilinx tool generates
the programming file for the FPGA.

3.2 System implementation overview

The processing schemes of the PCI co-processing board and
the stand-alone platform are illustrated in Figs. 1a and b.
The efficient implementation of the algorithm with an
FPGA device requires the intensive exploitation of the
intrinsic processing parallelism of this kind of device. We
use segmented architecture, as shown in Fig. 1c.
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
The basic computational stages in Fig. 1c can be summar-
ised as follows.

† S0. The frame-grabber receives the pixels from the
camera and stores them in one of the memory banks,
using a double-buffer technique to avoid temporisation
problems.
† S1. Spatial-Gaussian-filter smoothing stage.
† S2. The IIR temporal filter computes temporal derivative
and space-time smoothed images.
† S3. Spatial derivatives stage.
† S4. Construction of least-square matrices of (4).
† S5. Custom floating-point unit. Final velocity estimation
requires the computation of a matrix inversion, which
includes a division operation. At this stage, the resolution
of the incoming data bits is significant and expensive arith-
metic operations are required. Thus fixed-point arithmetic
becomes too expensive, prompting us to design a custo-
mised floating-point unit.

The computation bit-width increases throughout the
pipeline structure. For example, for a high-precision
system with low accuracy degradation, we use 8 bits in
the first two stages, 12 bits in the third and fourth stages,
24 in the construction of the least-square matrices and 25
for the floating-point unit. The computation of the
least-square matrices (S4) is the most expensive stage in
terms of computational resources. Different parallelism
strategies can be adopted at this point. We have in fact
tested a less expensive approach in terms of hardware
with good qualitative results.

The basic parameters of the pipeline structure are latency
(L) and the maximum number of cycles (MNC) required
during the longest stage, which is the limiting factor of
the computing speed. The pipeline circuit scheme provides
a computing speed (data throughput) in pixels per second
(pps) that depends on the MNC and the frequency clock
according to the expression pps ¼ fclk/MNC.

3.2.1 Bit-width estimation: The bit-width at each stage
is a very important parameter because it significantly
Fig. 1 Boards schemes and FPGA pipeline architecture

a PCI-board scheme
b Stand-alone board scheme
c Coarse pipeline processing architecture for optical flow computation
871

affects system quality and hardware requirements. Several
decisions have to be arrived at:

1. The data bit-width for data registers.
2. Arithmetic data representation: integer, fixed point or
floating point.
3. Rescaling data or data range compression after operations:
by truncation, wrapping or nonlinear range compression
such as saturation or logarithmic data range compression.

All the design decisions summarised above have been
taken after several trials to obtain a balanced design in
which the degradation of the results along the data-path is
minimised and hardware resources are kept to affordable
levels. The following considerations have been taken into
account.

1. Convolution operations can be implemented efficiently
with integer or fixed-point arithmetic.
2. Operations such as division or multiplication with high
bit-widths are more efficiently implemented with floating-
point arithmetic. This is necessary to process data with
reasonable bit-width precision during some stages.
3. Nonlinear range compression such as logarithmic data
range compression (for rescaling data after arithmetic oper-
ations) is not well suited to FPGA devices because of its
complex implementation, unless lookup tables are used.
The effects on system quality have not been studied yet,
so we use truncation and wrapping techniques. A statistical
study can be made to evaluate how this operation affects the
quality of the results.

3.3 Critical stages

There are two main critical stages: S4 and S5. The construc-
tion of least-square matrices is done in S4 where the trade-
off between efficiency and cost can vary widely. Equation
(4) requires the computation of five products: Ix

2, Iy
2, IxIy,

IxIt, IyIt. Thus we make a weighted sum in a window (V)
over a neighbourhood of size wx � wy. Owing to memory
limitations, we save the Ix, Iy and It values instead of the
five crossed products. Therefore the operations made are:

† computation of the products for all the elements within
a neighbourhood. We need to calculate five wx � wy

multiplications;
† row-convolution operation. We compute five multiply by
wy convolutions;
† column-convolution operation, requiring the compu-
tation of five convolutions.

This is an important stage where we can bias the trade-off
between efficiency and hardware cost. For example, if we
use a 3 � 3 neighbourhood, we need between 1 to 45 mul-
tipliers, 1 to 15 row-convolution units and 1 to 5 column-
convolution units. This choice allows us to compute the
weighted sum values in one clock cycle with a highly
parallel hardware unit or to compute it sequentially.

This has been schematically represented in Fig. 2 for
three implementations with different levels of parallelism
and with an integration area of 3 � 3 for the least-squares
neighbourhood. Fig. 2a represents a very parallel datapath
that we call high-speed (HS) version and which achieves
MNC ¼ 10 cycles. A slower version was implemented
with less parallelism (reducing the number of parallel mul-
tipliers and row/column convolution units) as shown in
Fig. 2b, thus resulting in a medium speed (MS) version.
This configuration leads to a limiting data throughput
872
stage with MNC ¼ 26. Finally, we implemented a low-
speed (LS) version represented in Fig. 2c with just one
column and one row convolution unit and MNC ¼ 42.

The second critical stage is the computation of final vel-
ocities using a custom floating point unit. At this stage, (3) is
computed. Until now, the arithmetic operations have been
done using integer or fixed-point arithmetic with truncation
operations. Convolution operations work well with this rep-
resentation but when bit-width is too large, a floating-point
representation of the data is better suited for hardware
implementation. This is done with a customised superscalar
floating-point unit. As during the previous stage (S4), a high
bit-width (24 bits) is used to preserve computational accu-
racy, the current stage (S5) becomes very expensive in
terms of hardware resources. Therefore the design of S5 is
critical as it exerts an important influence on the accuracy
against processing speed trade-off.

The calculations in this stage involve the following basic
arithmetical operations: subtraction, multiplication and
division. When arithmetical operations are made with
high bit-width, the signal delays associated with carry
lines degrade overall performance, decreasing the
maximum system frequency. To avoid this, pipeline arith-
metic operators or sequential iterative operators can be
used. The first approach allows us to make the computation
in 1 or 2 clock cycles, after a given latency at a high cost in
terms of hardware resources. The second option takes
several clock cycles therefore degrading the MNC of the
system, but allows us to use the same hardware for each iter-
ation. We define a system that uses one-cycle floating-point
hardware circuits, because this works at the desired
maximum clock frequency (without becoming the limiting
stage) for all the operations except the division. We have
used a hardware sequential divisor instead of a pipelined
divisor that needs 21 cycles to compute the division of 25
bits of floating numbers. But in this case, the MNC is too
high and imposes a considerable limit on pipeline perform-
ance. To counter this, we use up to three-way division units
and, depending on the performance required, we can syn-
thesise more or less ways. Each floating-point unit needs:

1. one to five fixed-point to floating-point converter units;
2. one to six 25-bit floating point multipliers;
3. one to three subtractors;
4. one or two divisor units. If an n-ways divisor scheme is
chosen, we use n to 2n divisor units.

The hardware consumption resources using different con-
figurations are represented in Fig. 3. More concretely, in
Fig. 3a, we consider a high parallel implementation with
several multipliers, adders, division units as well as fixed
to floating point converters (all these are used in the HS
version). Fig. 3b represents an implementation with less
parallelism used for MS and LS versions. The high MNC
values of MS and LS versions (using a limited parallelism
level) allow a high degree of resources sharing.

4 Hardware performance and resources
consumption study

The system is designed in modules, so that parallelism and
bit accuracy at different stages can be easily modified.
Owing to the high level of abstraction that Handel-C
provides [11], it is easy to manage the parallelism of the
computing circuits and the bit-width at the different stages.

One important aspect is that of the various possibilities
for configuring the system. We have evaluated several con-
figurations to explore different trade-offs between accuracy,
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006

Fig. 2 Stage S4 architecture, parallelism levels of the different versions are schematically shown

a Architecture of the HS version (S4).
Note the large number of parallel scalar units and multipliers that are used
b Architecture for the MS version (S4).
Row convolution units are shared for each derivative product and only one group of multipliers is used
c Architecture for the LS version (S4)
Only one group of multipliers, one row and one column of convolution units are used for this version
hardware cost and computing speed. In all these configur-
ations, we have used the same basic architecture but with
different levels of parallelism as shown in Figs. 2 and 3.
Table 1 summarises the main properties of the different con-
figurations. The one using a 5 � 5 average window for the
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
least-square-matrix neighbourhood is the one we have
called high-quality (HQ) approach, and the ones using a
3 � 3 window, medium quality (MQ). Other modifiable
parameters are the smoothing and spatial derivative filter
sizes. HQ and MQ approaches include 5-pixel derivative
873

Fig. 3 Architecture description of stage S5, different numbers of scalar units are used depending on the target parallelism level

a HS version with a larger number of parallel scalar units
b MS and LS versions
MNC value of the previous stage S4 allows sharing most of the processing units used at this stage as well as the fixed point to floating point con-
verters, multipliers adders or the division unit which only requires one way
filters and 9-pixel Gaussians. In a more economical way, the
low cost (LQ) version uses 3-pixel Gaussian and derivatives
filters.

If we fix the optical-flow quality of the system, another
factor to take into account is the performance against hard-
ware cost trade-off. As commented in Section 3.3, we have
designed datapaths with different levels of parallelism and
which lead to different performances (i.e. diverse MNC
values). Table 1 summarises the performance of the
systems and hardware costs.

It is important to note that in our experiments data
transmission of the images to the prototyping board
through the 33 MHz PCI bus takes about 30–40% of the
total processing time and therefore higher frame rates
might be expected using a direct connection between the
camera and the FPGA. Furthermore, as explained in
Section 1, the data-throughput of the HSHQ is 2.700 Kpps
at 27 MHz of clock frequency (in Table 1 this is limited
to 1776 by the PCI bandwidth). This topic is discussed in
the work of Benitez [19].
874
We have tested the design using the stand-alone
prototyping platform RC203 from Celoxica [18] to avoid
the PCI bus bottleneck. This platform includes an
XC2V3000-4 FPGA with embedded multipliers. In this
approach, we have implemented the whole optical flow
system plus Video input, VGA and a memory arbitration
controller. A LUT for visual colour representation of the
velocities vector for the VGA output has also been included
in the FPGA. The optical flow system implemented is based
on the HSHQ version but uses the embedded multipliers and
several clock domains. Table 2 shows the hardware costs
and the system performance.

The computing speed measured with fclk ¼ 41 MHz was
4100 kpps (53 fps of 340 � 280 images, MNC ¼ 10). Now
the system is faster due to the improved technology of the
Virtex II. The use of a customisable approach with a high-
level description language facilitates the implementation of
this system on different platforms. In fact, the optical flow
processing algorithm only consumes 80% of the number
of slices while the rest is occupied by the I/O controllers.
Table 1: Performance and hardware cost of different configurations on a Virtex 2000-E
FPGA (2 million gates, 43 200 logical cells (LC) and 640 Kbits of embedded memory)

Version % device

occupation

% on-chip

memory

Kpps Image

resolution

Fps,

fclk ¼ 27 MHz

Maximum fclk,

MHz

HSHQ 99 17 1776 160 � 120 95 35

31 320 � 240 24

HSMQ 65 16 1776 160 � 120 97 35

31 320 � 240 24

MSMQ 43 16 625 160 � 120 33 35

LSLQ 36 8 400 120 � 90 38 35

K, �1000; Kpps, kilopixels per second; Fps, frames per second
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006

Table 2: Performance and hardware costs of a stand-alone system with camera input and VGA output on a Virtex II
XC2V3000-4 FPGA (3 million gates and 1728 Kbits of embedded memory)

Version % device

occupation

% on-chip

memory

% embedded

multipliers

Kpps Image

resolution

Fps Maximum fclk,

MHz

Stand-alone RC203 board 99 29 41 4100 340 � 280 53 41
The use of the embedded multipliers saves 1324 LCs (about
the 4.6% of the resources of the device).

A critical design issue is the internal and external
memory management of our system. The communication
bandwidth shall be high enough not to degrade the comput-
ing performance. Internal memory [called embedded
memory blocks (EMBs)] can be arranged with a high
degree of flexibility, allowing a high-communication band-
width but only with very small capacity (640 Kbits for the
device used in the PCI board). Owing to this fact, we
have only used this resource for the internal convolution
units designed in our system and synchronisation buffers.
For a 320 � 240 image resolution, 44 EMBs are required
in the HS version, 32 in the MS approach and 24 in the
LS implementation. Increasing the image resolution
means obtaining longer rows. For example, a VGA image
resolution requires multiplying by two the number of
EMBs, but this is not a problem because we have plenty
of EMBs available.

The real bottleneck may be the external memory access.
In our system, the PCI board version includes four parallel
memory banks with 4-byte memory words each. We have
designed an efficient memory management unit with an
MNC ¼ 1 that allows reading or writing these 4 bytes in
just one clock cycle. This produces a memory bandwidth
of 16 bytes per clock cycle, which completely fulfils our
requirements (we require ten accesses in ten cycles).
Furthermore, this efficient management of the external
memory resources is a key factor that allows using just
the only two memory blocks available in the stand-alone
system or replicating the number of processing cores if
further performance is required.

We have shown the system’s flexibility and the trade-off
between the number of gates and performance. Another
important subject is that of scalability at the level of func-
tional units. All our results work on the assumption that
only one computational unit is used. A local image proces-
sing algorithm can take advantage of the possibility of split-
ting the FPGA. We can synthesise some computational
units in the same FPGA or in several of them and
compute larger images in real-time. If a memory buffer is
used, it is straightforward to assign a small area to each
computational unit and run it in parallel. The computational
power is then increased by a factor close to the number of
computational units running in parallel. See a more detailed
example in Section 6.

4.1 Comparison with other approaches

The implementation of the optical-flow algorithm with
FPGA has only been addressed by some authors in very
recent years. Table 3 summarises the results from different
approaches. On the basis of iterative algorithm of Horn and
Schunk (H&S) [20], Martin et al. [10] makes a system
implementation that fits quite well the specification of an
optical flow system but just simulation results are presented.
The main disadvantage of this approach is that performance
of H&S model is poor compared with other alternatives [1].
For example, the evaluation of the Yosemite sequence with
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
the L&K method leads to results with 4.288 of average
errors (density 35.1%), whereas with the Barron improved
version of H&S, taking more than 100 iterations, the
average error is 5.598 (density 32.9). This represents a rela-
tive error 23% higher than the L&K algorithm adopted in
the approach presented here considering that the density is
similar. This is also the case in Cobos and Monasterio
[21], which uses the same algorithm but addressing an
implementation with less resources and therefore with
worse performance. Using the block-matching approach,
the implementation described by Niitsuma and Maruyama
[6] achieves 30 fps of image size 640 � 480 but with high
hardware cost (90% slices of a XC2V6000 FPGA) and
without sub-pixel accuracy. Another study has been pub-
lished recently [8], in which the hardware requirements
are lower but no information about the system performance
is provided.

On the basis of the L&K approach, Correia and Campilho
[9] recently presented a real-time implementation of the
system using a MaxVideo200 pipeline image processor.
With this accelerator board, the performance and accuracy
are similar to our results (we obtained a maximum perform-
ance of 1776 Kpps with our PCI board system, 4100 Kpps
with the stand-alone, whereas they obtained 1692 Kpps).
However, the use of an acceleration processor makes it dif-
ficult to be transferred to embedded applications. Finally,
the model described here, running in software on an
AMD 1800þMHz, can compute 1666 Kpps (for instance
arranged in 25 fps of 160 � 120 pixels) and this could be
optimised using MMX and SSE instructions. The problem
is that in this case it consumes all the computing resources
of the machine.

5 System accuracy evaluation

As commented in the introduction, the accuracy of the
computation of the optical flow in real-life sequences is
difficult to assess because the real flow of these sequences
is unknown. Therefore to evaluate the accuracy of our
design, which depends on the bit-width of the different
stages, we have adopted two different evaluation

Table 3: Comparison with prior approaches

Implementation Throughput,

Kpixels/s

Image size,

pixels

Image rate,

frames/s

L&K stand-alone board

(described here)

4100 320 � 240 53

L&K PCI-board ([22]

and described here)

1776 320 � 240 30

H&S [10] 3932 256 � 256 60

Block-matching [6] 9216 640 � 480 30

L&K [9] 1692 256 � 256 26

H&S [21] 47 50 � 50 19

Our data has been obtained using the maximum available
system clock frequency
875

methods. First, in Section 5.1, we use the test scheme and a
synthetic sequence from the comparative study made by
Barron et al. [1], with the error measurement proposed
by Fleet and Jepson [23]. This error measurement has
been widely used in the literature, being therefore appro-
priate to compare our results with previous works. This
measurement can be used with high- and low-velocity
modules with the same estimators but with some bias. A
more detailed explanation about this issue can be found
in Barron et al. [1]. Secondly, Section 5.2 shows some
qualitative results that illustrate the accuracy of our system.

5.1 Synthetic sequences with known optical flow

In the hardware implementation some simplifications are
made to the original model. Table 4 shows the accuracy
of the model after the modification of several parameters.
Unthresholded results (100% density) are included to
enable an easy comparison between the hardware and soft-
ware versions. The second row in Table 4 includes the
evaluation results with reliable estimations as indicated
in Barron et al. [1].

The fourth and fifth rows include results of the
implementation of the algorithm with IIR filters computed
with fixed point arithmetic using 12 bit-width. In the sixth
row of Table 4, the accuracy of the L&K algorithm (with
hardware-system parameters) is computed by a standard
PC using double precision variables and unthresholded
results. Finally, the seventh row includes the performance
achieved with our hardware implementation. It can be
seen that accuracy is reasonably high, bearing in mind
that fixed-point variables and restricted bit-widths are
used in this approach. It can be seen that the performance
of the hardware is only slightly worse (2.488 increase
in error) than the software version with a data precision
of 64 bits. Furthermore, the results of the hardware
implementation described here are comparable with other
software approaches evaluated by Barron et al. [1].

We have also compared the performance of the software
and the hardware implementations using sinusoidal grating
sequences. We used different stimulus frequencies (f0 ¼
0.02 and f0 ¼ 0.05) and velocities (V ¼ 0.25 ppf and
V ¼ 1 ppf). With these tests, the hardware achieved
results very similar to those of the software (less than 5%
error in the speed of calculation).
876
5.2 Real sequences: qualitative optical
flow results

Only qualitative differences were estimated with both the
hardware and software optical-flow approaches using real
sequences (as the real flow is unknown). In this section,
we include some real-image sequences for a qualitative
evaluation.

Fig. 4 contains the image of an overtaking-car sequence,
together with the results of software (LK IIR version) and
hardware optical-flow estimations. This is a good example
of how optical flow can be used for certain real-life appli-
cations in a very straightforward way. In the example, the
goal is the segmentation of the overtaking car, which can
easily be done relying on optical flow, as the motion
pattern of the overtaking car (moving rightward in the
images) contrasts sharply with the landmarks, moving
leftwards due to the egomotion of the host car.

As shown in Figs. 4b and c, the software results are
smoother than those produced by the hardware. This is
due to the Bit-width restriction of the hardware approach.
Nevertheless, the results are quite similar and the accuracy
of the hardware seems to be enough to obtain good qualitat-
ive results.

Fig. 5 shows illustrative results using the different version
qualities (HQ, MQ and LQ) also in the framework of the
rear-view mirror (refer to Section 6 for a numerical data
evaluation with synthetic data). Note that there is no signifi-
cant quality degradation for MQ with respect to HQ though
the latter produces smoother results. Software results are
also quite similar to the hardware ones, which also validate
our bit-width decisions. LQ version leads to larger errors but
requires only very moderate computing resources.

6 System cost evaluation: accuracy against
performance trade-off

The comparison of the different system versions requires
defining some homogeneous resources utilisation metric
that takes into account logic and embedded memory. We
will focus on the PCI board version because only results
for the HSHQ are presented for the stand-alone system.
Table 1 provides detailed information about the resources
consumption for the different approaches using percentage
of occupation of LC and embedded memory. This infor-
mation can be easily converted to system gates as in the
work of Ortigosa et al. [24]. Each LC is equivalent to 12
Table 4: Yosemite sequence results using the angle error measurement of Fleet and Jepson [23]

Model Average

error,

degree

Standard

deviation,

degree

Density,

%

Parameters

LK FIR 11.29 17.72 100 lmin ¼ 0, a ¼ 0, sxyt ¼ 1.5

LK FIR 4.54 11.31 33.3 lmin ¼ 0.75, a ¼ 0, sxyt ¼ 1.5

LK IIR 11.97 16.027 100 lmin ¼ 0, sxy ¼ 1.5, t ¼ 2, a ¼ 0

LK IIR (with hardwarised filters) 11.47 15.34 100 lmin ¼ 0, sxy ¼ 1.5, t ¼ 2, a ¼ 0

LK IIR (with hardwarised filters) 13.71 15.99 100 lmin ¼ 0, sxy ¼ 1.5, t ¼ 2, a ¼ 1/16

LK IIR (version implemented in

hardware)

15.918 11.58 100 lmin ¼ 0, sxy ¼ 0.8, t ¼ 2, a ¼ 1

Hardware system 18.308 15.88 100 lmin ¼ 0, sxy ¼ 0.8, t ¼ 2, a ¼ 1

Comparison between software models (including FIR and IIR filters, and computed with double precision
variables) with different parameters [1, 12]. Final row also includes the hardware system accuracy. The fourth,
fifth and sixth rows use the simplifications adopted in the hardware implementation (these simplifications are
described in Section 3.)
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006

Fig. 4 Optical flow for the overtaking car, software against hardware estimations

a Original image extracted from the sequence
b Software result
c Hardware result
Left-hand images use arrows to represent velocity vectors
In the right-hand images, for the sake of clarity, only leftwards (light shades) due to the landscape and rightwards (dark shades) due to the overtaking-
car are used to indicate the motion
From this information the car segmentation is straight-forward
system gates and each memory bit to four system gates. This
allows translating the resources consumption into system
gates [24]. This facilitates the analysis of the different ver-
sions and the generalisation of the results. The system gates
estimated for the different versions of Table 1 are presented
in Table 5. This metric allows us to define the performance
cost (Pc) and accuracy cost (Ac) as described by (9) and
(10), respectively.

Pc ¼
system gates

Data throughput
ð9Þ

Ac ¼ b �
system gates

1=ðangular errorÞ
ð10Þ

where b is normalisation constant to scale the Ac to the same
range as Pc to facilitate results comparison (we have used
b ¼ 175 for our data).
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
We have used these parameters to compare the different
system alternatives. The results regarding performance
and accuracy costs are plotted in Fig. 6. Fig. 6a illustrates
that the approach with better trade-off between resources
and performance is the HSMQ. This is so because it is
very parallel but with a reduced least-squares neighbour-
hood of 3 � 3 pixels. Fig. 6b shows that the best approach
in terms of accuracy cost is the MSMQ version, with similar
cost for the HSMQ and LSLQ.

We can also combine these two performance parameters
and define the system cost (Sc) as described in (11).

Sc ¼ a � Pc þ ð1� aÞ � Ac ð11Þ

where a is a parameter between 0 and 1 that weights the
different cost contributions. Depending on our target appli-
cation, we can use different values for this parameter as rep-
resented in Fig. 7. We shall take into account that our goal is
to minimise the required system gates and maximise
877

Fig. 5 Optical flow results of overtaking sequences

a Car
b Truck
Motion is represented with only leftwards (light shades) and rightwards (dark shades), but speed is not presented to facilitate image interpretation
c and e, respectively, present their optical flow computed with software (double floating point data representation)
d and f show the results computed with the presented hardware
c, d, e and f show the different quality versions (left to right: HQ, MQ, LQ)
Note that, configuring the hardware and software by using the same parameters leads to very similar results
Qualitatively, we see that HQ version is smoother than MQ and LQ versions, which is explained due to the larger least squares neighbourhood
Accuracy evaluation cannot be carried out on these images (as the ground truth is unknown), and because of this fact, we have numerically calculated
it with synthetic images, being these results presented in Table 5
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006878

Table 5: Analysis of the performance cost Pc and accuracy cost Ac of the different system
versions described in Sections 3.2 and 3.3

System gates,

Kgates

Performance,

Kpps

Performance

cost, gates/pps

Mean error,

degree

Accuracy cost,

gates . degree

HSHQ 1234 1776 0.69 15.149 1.79

HSMQ 861 1776 0.48 16.17 1.33

MSMQ 747 625 1.2 16.17 1.16

LSLQ 580 400 1.45 23.33 1.3

System gates count the FPGA logic dedicated to processing operations and the embedded memory
utilisation. The accuracy of the different system versions is also shown in this table considering an
optical flow density of the hardware version of 91%. Note that in terms of accuracy there are no
significant differences between HQ and MQ versions, but the error value significantly increases in
the LQ approach

Fig. 6 Performance and accuracy costs of different system gates

a Performance cost
b Accuracy cost
From these figures, HSMQ and MSMQ are respectively highlighted as the approaches with best accuracy against performance trade-off
performance and accuracy. Fig. 7 shows that the minimum
is obtained in most cases for the HSMQ version, which rep-
resents the best trade-off between resources consumption,
accuracy and performance. The HSHQ approach demands
high resources consumption, and therefore is not the best
choice for a low-cost device. In contrast, LSLQ produces
low accuracy therefore not being a good choice for high
precision systems. Finally, MSMQ is the best option if we
focus on reducing the accuracy cost.

Though the previous analysis presents the HSMQ version
as the best trade-off version, the final decision relies on the
target accuracy and on the available resources.

After this comparison, we can evaluate the required
resources for a real-time VGA computing performance
using the HSMQ version. A simple core replication tech-
nique can be used to increase the computing performance
as discussed in Section 4. A real-time VGA resolution
version requires computing 640 � 480 � 25 ¼ 7680 Kpps.
Our PCI system is able to process up to 1776 Kpps and
therefore it is necessary to increase the resources by a
factor of 4.3 in order to achieve the target performance.
This is a significant increment, which makes this approach
hardly affordable, but the main limitation is imposed by
the PCI data transmission that consumes about the 35% of
the processing time. Current PCI transmission rates (using
PCI-Express or PCI-X) are more than four times faster
than the used PCI version and allow increasing the perform-
ance in a factor of 27%. This can be combined with increas-
ing the system clock frequency. Our design implemented in
the Virtex II FPGA family is 17% faster than Virtex-E (as
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
shown in the maximum clock rates included in Tables 1
and 2). These modifications increase the global performance
43% and thus, we only need to replicate the processing core
three times.

The stand-alone version does not suffer from the data
transmission limitation. Its performance is 41 000 Kpps

Fig. 7 System cost representation for the different system
alternatives

Each line represents different values of a which weights the perform-
ance and accuracy costs
Extreme cases are a ¼ 1 (optimises only performance cost) and a ¼ 0
(focusing only on accuracy cost)
Most of the cases show that the minimum is achieved by the HSMQ
version, and therefore this should be pointed out as the version with
the best performance against accuracy cost trade-off
879

and allows achieving real-time VGA resolution at 26 fps
with just two cores. This is affordable and fits in current
FPGA devices such as the XC2V6000 Virtex II, whereas
by being a stand-alone approach it can be used for mobile
applications such as robotics or embedded sensors too.

7 Conclusions and future work

Reconfigurable computing is a very active research field,
which architectures and design methods evolve fast [25].
The system described here shows how an optical-flow esti-
mation circuit can be implemented as a customised DSP
system using this technology. The paper describes a scal-
able architecture that can work with large image data at a
conventional video-frame rate (30 fps). System perform-
ance, customisation feasibility and scalability, due to the
FPGA technology and design strategy, allow the use of
the system in diverse application fields as explained in pre-
vious sections.

The accuracy of the estimated flow is essential for some
of the possible applications outlined in this paper. The
results of the hardware implementation are in the range
of other software approaches considered in the study of
Barron et al. [1]. Therefore the performance of the hardware
is of reasonable quality provided that it computes in real-
time (at a speed of 1776 Kpps with our PCI board system
at 27 MHz, 4100 Kpps with the stand-alone platform).
These results outperform in accuracy and computing pre-
vious power approaches.

The described computing platform can be fully
implemented on a single chip (as a System-on-Chip),
requiring only external memory support for temporal
partial results. This has been implemented on an FPGA
device efficiently exploiting its inherent computing paralle-
lism and pipeline resources. Furthermore, the modularity of
the system enables the easy alteration of the computing
scheme to target different computing speed against hard-
ware cost trade-offs.

We have studied how the restricted bit-width of the
different computations affects the quality of the extracted
optic flow and compared the results obtained with software
implementations of the algorithm computed with double
precision.

In the future, we plan to apply the described approach in
different applications such as tracking systems, robot navi-
gation, video compression and so on. We will evaluate the
system requirements for these applications. We will also
explore the implementation of multiscale approaches to
obtain more reliable flow for different velocity scales.
Finally, we also plan to further extend the parallelism
level, decreasing the MNC values by adopting a fine-grain
pipeline design strategy to increase the computing perform-
ance. This will make feasible the utilisation of this kind of
specific purpose computing circuits with high frame-rate
cameras to increase the optical flow accuracy.

8 Acknowledgments

This work has been supported by the V EU research frame-
work funds through the European Projects DRIVSCO
(IST-016276-2), SENSOPAC (IST-028056) and the
National Spanish Grant DEPROVI (DPI2004-07032).
880
9 References

1 Barron, J.L., Fleet, D.J., and Beauchemin, S.: ‘Performance of
optical-flow techniques’, Int. J. Comput. Vis., 1994, 12, (1)
pp. 43–77

2 Lucas, B.D., and Kanade, T.: ‘An iterative image registration technique
with an application to stereo vision’. Proc. DARPA Image Understanding
Workshop, April 1984, pp. 121–130

3 Liu, H.C., Hong, T.S., Herman, M., Camus, T., and Chellappa, R.:
‘Accuracy vs efficiency trade-offs in optical flow algorithms’,
Comput. Vis. Image Underst., 1998, 72, (3), pp. 271–286

4 McCane, B., Novins, K., Crannitch, D., and Galvin, B.: ‘On
benchmarking optical flow’, Comput. Vis. Image Underst., 2001, 84,
pp. 126–143

5 Baker, S., and Matthews, I.: ‘Lucas–Kanade 20 Years on: a unifying
framework’, Int. J. Comput. Vis., 2004, 56, (3), pp. 221–255

6 Niitsuma, H., and Maruyama, T.: ‘Real-time detection of moving
objects’, Lect. Notes Comput. Sci., 2004, 3203, pp. 1153–1157

7 Cobos, P., and Monasterio, F.: ‘FPGA implementation of Camus
correlation optical flow algorithm for real time images’. Proc. and
14th Int. Conf. on Vision Interface (VI2001), 2001, pp. 32–38

8 Maya-Rueda, S., and Arias-Estrada, M.: ‘FPGA processor for real-time
optical flow computation’, Lect. Notes Comput. Sci., 2003, 2778,
pp. 1103–1016

9 Correia, M.V., and Campilho, A.C.: ‘Real-time implementation of an
optical flow algorithm’. Int. Conf. on Pattern Recognition
(ICPR2002), 2002, pp. 247–250

10 Martín, J.L., Zuloaga, A., Cuadrado, C., Lázaro, J., and Bidarte, U.:
‘Hardware implementation of optical flow constraint equation using
FPGAs’. CVIU(98), June 2005, vol. 3, pp. 462–490

11 Celoxica Limited.: ‘Handel-C language reference manual’ (dk2.0
Edn, 2003), RM-1003-4.0

12 Fleet, D.J., and Langley, K.: ‘Recursive filters for optical flow’, IEEE
Trans. Pattern Anal. Mach. Intell., 1995, 17, (1), pp. 61–67

13 Simoncelli, E.P., and Adelson, E.H., and Heeger, D.J.:
‘Probability distributions of optical flow’. IEEE Conf. on Computer
Vision and Pattern Recognition, Mauii, Hawaii, June 1991,
pp. 310–315

14 Yamada, H., Tominaga, T., and Ichikawa, M.: ‘An autonomous flying
object navigated by real-time optical flow and visual target detection’.
Proc. IEEE Int. Conf. on Field-Programmable Technology, 2003,
pp. 222–227

15 Jebara, T., Azarbayejani, A., and Pentland, A.: ‘3D structure from 2D
motion’, IEEE Signal Process. Mag., 1999, 16, (3), pp. 66–84

16 Thomas, G.A., and Dancer, S.J.: ‘Improved motion estimation for
MPEG coding within the RACE ‘COUGAR’ project’. IEE Int.
Broadcasting Convention, IBC 95, September 1995, vol. 413,
pp. 238–243

17 Tabatabai, A.J., Jasinschi, R.S., and Naveen, T.: ‘Motion estimation
methods for video compression. A review’, J. Franklin Inst., 1998,
335B, (8), pp. 1411–1441

18 www.celoxica.com
19 Benitez, D.: ‘Performance of reconfigurable architectures for

image-processing applications’, J. Syst. Archit., Euromicro J., 2003,
49, (4–6), pp. 193–210

20 Horn, B.K.P., and Schunck, B.G.: ‘Determining optical flow’, Artif.
Intell., 1981, 17, pp. 185–204

21 Cobos, P., and Monasterio, F.: ‘FPGA implementation of the Horn &
Shunk optical flow algorithm for motion detection in real time
images’. Proc. XIII Design of Circuits and Integrated Systems
Conf., Madrid, España, November 1998, pp. 616–621

22 Díaz, J., Ros, E., Mota, S., Carrillo, R., and Agís, R.: ‘Real time
optical flow processing system’, Lect. Notes Comput. Sci., 2004,
3203, pp. 617–626

23 Fleet, D.J., and Jepson, A.D.: ‘Computation of component image
velocity from local phase information’, Int. J. Comput. Vis., 1990,
5, (1), pp. 77–104

24 Ortigosa, E.M., Cañas, A., Ros, E., Ortigosa, P.M., Mota, S., and
Dı́az, J.: ‘Hardware description of multi-layer perceptrons with 3
different abstraction levels’, Microprocess. Microsyst., 2006, 30, (7),
pp. 435–444

25 Todman, T.J., Constantinides, G.A., Wilton, S.J.E., Mencer, O.,
Luk, W., and Cheung, P.Y.K.: ‘Reconfigurable computing:
architectures and design methods’, IEE Proc., Comput. Digit. Tech.,
2005, 152, (2), pp. 193–207
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006

	1 Introduction
	2 Optical-&?h 0,14;flow model
	3 Hardware implementation
	4 Hardware performance and resources consumption study
	5 System accuracy evaluation
	6 System cost evaluation: accuracy against performance trade-&?h 0,14;oﬀ
	7 Conclusions and future work
	8 Acknowledgments
	9 References

