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Abstract

A novel method is introduced for the stabilization of short image sequences.

Stabilization is achieved by means of fixation of the central image region using a

variable window size block matching method. When applied to a sliding temporal

window, the stabilization improves the performance of standard optic flow tech-

niques. Due to the unique choice of fixation as the main stabilization mechanism,

the proposed method not only increases the flow field density but renders certain

global structural properties of the flow fields more predictable as well. This in turn

is advantageous for egomotion computation.
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1 Introduction

Visual motion is one of the more important sensory cues that are used by humans to

guide behavior or to navigate a dynamical environment. The instantaneous velocity or

optic flow field contains a tremendous amount of information related to the self-motion of

the observer, the three dimensional (3D) structure of the environment, and the presence

and motion of independently moving objects. Extracting this velocity field from the tem-

poral evolution of image intensity values is a highly complex and ill-posed problem. In

order to obtain unique solutions, a variety of assumptions have been used to constrain the

problem. One important assumption, adopted by many optic flow algorithms proposed in

the literature, states that the local velocities remain constant over a short time span [5].

If this assumption holds, multiple frames can be used in the estimation process. This
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allows for the application of more stable numerical differentiation techniques, the reduc-

tion of temporal aliasing [5] or the extraction of more reliable confidence measures [10].

When both observer and moving objects undergo smooth motion, this velocity constancy

assumption is valid (except at motion boundaries). In realistic situations however, the

computation of optic flow has to cope with undesired motion of the camera due to shocks

or vibrations of the vehicle or robot on which it is mounted. These perturbations typ-

ically manifest themselves as fast, rotational camera movements [8] that induce large

local motions over very short time spans [11]. Consequently, the assumption of locally

constant velocities is often violated. A possible solution is to use optic flow algorithms

that do not make this assumption [11], such as correlation-based matching techniques.

Since the performance and reliability of these techniques on stable sequences, is typically

much lower than those of a differential or phase-based approach [5], a better solution is to

stabilize the image sequence first. After stabilization, the velocity constancy assumption

is met more closely, and consequently, a differential or phase-based approach can be used

to compute optic flow.

1.1 Stabilization

Image sequence stabilization is defined as the process of modifying an image sequence

from a moving or jittering camera so that it appears stable or stationary [4]. Traditional

stabilization techniques estimate the camera motion first and use it to render the se-

quence stable. This egomotion or rigid self-motion of the camera can be decomposed into

a 3D translation and a 3D rotation. Due to motion parallax, the translational motion

field depends on the scene structure, while the rotational motion field is fully determined

by the camera parameters only. The superposition of these two components can result in

complicated motion fields. Although much progress has been made to date, extracting

the camera motion from such optic flow fields is nontrivial and most algorithms perform

well only in specific domains [26]. A distinction can be made between 2D and 3D tech-

niques for electronic image stabilization. The former proceed by fitting an affine model to

all motion in the sequence [23]. This renders them very efficient but limits their validity

to scenes with minimal depth variation (e.g. aerial images). In contrast, 3D stabilization

techniques operate on the camera rotation only and consequently do account for a rich

scene structure. This approach is effective since in normal situations (such as driving or

walking), the effects of unwanted translations are negligible compared to the effects of un-

wanted rotations [8]. These 3D techniques stabilize by de-rotating the frames, in this way

generating a translation-only sequence [14], or by temporally smoothing the rotational

component of the camera motion [8]. Note that this involves estimating the rotation in

the presence of general motion, with all its associated difficulties and ambiguities.
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1.2 Fixation

The stabilization strategy adopted by humans and primates is quite different: motion

in the fovea or central, high-resolution part of the retina is nullified by means of eye

movements. These gaze stabilization eye movements use vestibular, proprioceptive, or

visual signals to achieve this task [18]. For the present work we use the term fixation

to describe the effect of such eye movements, that is to hold the gaze direction towards

the same environmental point through time [7,9, 19]. Contrary to other 3D stabilization

techniques, fixation does not require estimation of the rotational component of self-motion

and is hence much simpler. Instead, on the basis of foveal motion only, a compensatory,

3D rotation (eye movement) is determined and superposed on the motion field. Since

rotational jitter acts on every part of the image or retina, this procedure effectively

removes its effects.

The stabilization method introduced here is very similar and aims at fixating the

central image region in a short image sequence. A novel variable window size block

matching procedure, that allows for joint feature selection and feature tracking, enables

the fixation point to remain at this location. By using a correlation-based matching

technique, velocity constancy is not required at this stage. Since the method specifically

aims at improving the computation of optic flow by increasing the temporal velocity

constancy, the length of the sequence is determined by the temporal support required by

the optic flow algorithm. The choice of fixation as the mechanism for stabilization not only

renders the procedure relatively simple (as compared to other 3D stabilization methods)

but has a number of additional advantages as well. First of all, it is well known that

fixation reduces the number of parameters that determine the egomotion from five (two

for the heading or translation direction and three for the rotation) to four [2]. The reason

for this is that the horizontal and vertical rotations that stabilize the fixation point (e.g.

the image center) are fully determined by the (relative) depth of that point and the current

translation. This observation has been exploited in numerous algorithms [7,9,19,25] that

compute egomotion from optic or normal flow. A second advantage is related to the

global structure of flow fields obtained during fixation. Typically, during fixation and

self-motion, the singular point of the optic flow field is near the center of the visual field

(fovea) [19]. Therefore, this central area contains many different local motion directions

that are important for the analysis of the flow field. In contrast, in the periphery speed

and homogeneity of the flow increase with distance from the center (cf. center flow field

in Fig. 1B). This allows spatial averaging over a larger scale without losing too much

information about the local motion directions [17]. In other words, fixation results in

a consolidation of information near the fovea. These global properties are quite robust

to scene changes, heading changes, and small fixational errors and are therefore a good
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basis for the development of space-variant filtering techniques that improve egomotion

computation [6]. Furthermore, they can directly benefit the computation of optic flow

itself. By fixating prior to flow estimation, the parameters for the estimation (e.g. filter

sizes) can be predicted to scale with eccentricity, to a certain extent. In this way, the

performance of single-scale algorithms can be improved and the increased complexity of,

and computational resources required by multi-scale algorithms avoided.

A number of artificial fixation systems have been proposed in the past. Most of these

systems are active (they control the camera motion) and employ feedback to fixate a

region of interest [9]. Besides being active, they differ from the proposed method in

that these regions need to be selected either manually or by means of ‘interest point

detectors’. A passive tracking/fixation system is discussed in [25]. This latter method

however fixates two images to simplify egomotion estimation and is not suitable for image

sequence stabilization.

2 Proposed Method

In this section we give a brief overview of the proposed stabilization method and explain

in what way it alters classical optic flow computation. Figure 1 illustrates both the

classical (A) and proposed (B) approach graphically.

Typical approaches to compute optic flow for each frame of a long image sequence

involve the use of a sliding temporal window. A short window, the length of which

depends on the temporal support required by the optic flow algorithm, is moved over the

sequence one frame at a time and the instantaneous velocity field is computed for the

central frame of the window (Section 2.3). This window is marked by the dashed boxes

in Fig. 1 and contains three frames in this example. As illustrated in Fig. 1A, when optic

flow is extracted from these frames directly, the obtained flow field is often sparse and

noisy. The proposed stabilization method operates on the images in these short windows,

and optic flow is computed only after all images within the sliding window are stabilized.

Stabilization consists of a simulated fixation (Section 2.1) of the central part of the short

image sequence. The feature that is at the image center at time t is marked by the small

filled squares in Fig. 1. Fixation involves detecting and tracking this feature over the

current temporal window (Section 2.2). After stabilization, its location remains fixed in

the image center. Next, optic flow is computed on this ‘fixated’ image sequence. Due

to the stabilizing effect of this fixation, the resulting flow field is typically less noisy and

denser than the one computed directly on the original image sequence. As discussed in the

introduction, certain global structural properties of the fixated flow field differ from those

of the original flow field. Note how the fixation has added a rotational curl to the center
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Figure 1: Classical optic flow computation (A) and the proposed method (B). The dashed
box marks the sliding temporal window used in computing the optic flow at time t.
Without stabilization, the flow field is sparse and noisy (right flow field in A). The small
filled squares mark the location of the feature that is at the image center at time t. After
fixation, this feature is motionless in the warped images (B). Note how a rotational curl is
present in the flow field computed on the stabilized images. An optional de-fixation step
can transform the flow field into one that more closely resembles the flow field computed
on the original sequence.

flow field in Fig. 1B and rendered the image center (indicated with the small square)

motion-free. Although not necessary for most purposes, certain applications require flow

fields that more closely resemble those computed on the original image sequence. For this

reason, the stabilization procedure contains an optional de-fixation step (Section 2.4) that

removes the rotational stabilization effects from the optic flow field. The resulting flow

field is shown to the right in Fig. 1B and looks very similar to the original one from

Fig. 1A, except that the former is less noisy and denser.

2.1 Image Sequence Stabilization

Similar to other active and passive systems that exploit foveal representations [7, 9], the

optical image center (the intersection of the optical axis with the image) is chosen as

the fixation point in our method. This is similar to the biological case in the sense

that it corresponds to the direction of gaze. Although the location of the fixation point

does not affect the generality of the method, choosing the center has certain advantages,

such as allowing for the same amount of warping in all directions. Keeping this location

fixed renders the procedure conceptually simple and yields more stable global structural

properties of the flow field (Section 4.4), which in turn can be exploited efficiently by
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Figure 2: Stabilization by means of fixation. The central image region of frame 3 is
backward and forward tracked to frames 1 and 5 respectively. In this way, the individual
displacements dij, denoting the movement of the feature from frame i to frame j, are
determined.

hardware architectures.

Fixation is achieved by means of simulated 3D rotations around the x- and y-axes

of the observer-centered coordinate system1. Although relevant in the context of stabi-

lization, z-axis rotations are not considered here (see also Section 2.2), without loss of

generality of the fixation procedure. Figure 2 illustrates the stabilization method for an

example sequence consisting of five frames. To transform the sequence into a fixated

sequence, i.e. a sequence in which the central image part is motion-free, the central part

of the middle frame (the ‘template window’, indicated by the small solid square) needs to

be localized in all frames of the sequence. A straightforward way to achieve this tracking

would be to block match the central part of frame 3 directly to all other frames. How-

ever, to allow for gradual texture changes and to limit the size of the search windows

(dashed squares), tracking is performed iteratively in our method. To match backward

from frame 3 to frame 1, the texture in the center square of frame 3 is first matched

to the area within the search window in frame 2. The obtained displacement (arrow in

frame 2) is used to move the search window in frame 1 and the texture found in frame 2

(small square) is then matched to this search window. A similar procedure is followed

to match forward to frame 5. These displacements uniquely determine a 3D rotation for

each frame that warps the texture most similar to the central texture of the middle frame

to the center of the respective frame.

As an example, we determine the rotation for frame 1 from Fig. 2. The center co-

ordinates of the template window in frame 1 equal: (x1, y1) = d32 + d21. Since the

stabilization operates on short temporal windows, a velocity-based scheme yields a rea-

sonable approximation of the 3D rotation [1]. In this scheme, the instantaneous velocity

1In this coordinate system the x-axis is horizontal, the y-axis vertical and the z-axis coincides with
the line of sight. The origin corresponds to the optical center of the camera.
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(ẋ, ẏ) of image point (x, y) resulting from the camera rotation (ωx, ωy, ωz) equals:

ẋ = ωx
xy

f
− ωy

(
f +

x2

f

)
+ ωzy (1)

ẏ = ωx

(
f +

y2

f

)
− ωy

xy

f
− ωzx , (2)

where f is the focal length of the camera. Consequently, the compensatory 3D rotation

that warps (x1, y1) to the center pixel (0, 0) should result in the following motion vector

at (x1, y1):

ẋ1 = −x1 (3)

ẏ1 = −y1 . (4)

Since we only consider x- and y-axis rotations in the stabilization, a unique compensatory

3D rotation satisfies this requirement:

(ωx, ωy, ωz) = (− y1f

f 2 + x2
1 + y2

1

,
x1f

f 2 + x2
1 + y2

1

, 0) . (5)

This rotation is now used to warp every pixel (x, y) in frame 1 according to Eqs. (1) and

(2). Cubic convolution interpolation [16] is used to perform these warps with subpixel

accuracy.

After warping each frame (except the middle frame) according to the stabilizing ro-

tations, the central part of the image sequence is motion-free. Note that the interframe

rotations are not necessarily identical. In case there is a need to reconstruct the original

flow fields, these rotations must be averaged in the de-fixation step (Section 2.4).

2.2 Variable Window Size Matching

As discussed in the previous section, the stabilization method requires tracking the central

region of the middle frame over the short image sequence. All matching is performed using

the normalized cross correlation method [20]. Since the location of the fixation point is

set in advance, the use of a fixed window size at this location can result in a textureless

template window. This is contrary to most approaches to feature tracking which use

interest point detectors to first localize regions in the image that contain certain types of

textures or features that simplify matching. Fixed-window block-matching techniques are

then typically used to track these regions over different frames. Although the proposed

method is not allowed to change the location of the fixation point, the size of the template

window can be chosen freely. To ensure the general applicability of the method, the
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window size should be increased in the absence of texture or in ambiguous situations due

to a repetitive pattern. In the context of stereo matching, Kanade and Okutomi [15]

proposed an adaptive window method that optimally balances between signal-to-noise

ratio or intensity variation maximization and projective distortion (due to variations in

the depth of scene points) minimization. This technique is however unable to deal with

repetitive patterns. It is very important to take such ambiguities into account, since

they can result in large estimated displacements that may deteriorate the subsequent

computation of optic flow. A possible approach to detect spurious matches is to analyze

the cross-correlation surface in terms of its peakedness [3]. However, such analysis requires

a set of relatively arbitrary thresholds, so that its reliability can be called into question [5].

On the basis of two heuristics, we propose a simple and robust matching algorithm

that effectively combines feature selection and feature matching. The first heuristic is

founded on the observation that when a repetitive pattern is accidentally matched to

a wrong instance, it is unlikely that an identical displacement is obtained when the

matching is repeated with a slightly larger window. The heuristic consists of increasing

the window size until two successive matches result in the same displacement vector. This

yields excellent results in most cases and typically results in very small template windows.

However, there still remain situations where the procedure is confused by strong repetitive

patterns. Most matching techniques validate local matches by means of global constraints

inherent to the problem (e.g. stereo or rigid body motion). A constraint we can employ

here is the following: if we track a feature over three consecutive frames 1, 2, and 3,

the displacements from frame 1 to 2 (d12) and from 2 to 3 (d23) should add up to the

displacement obtained when directly matching frame 1 to frame 3 (d12 +d23 = d13). The

combination of these heuristics results in the following matching algorithm for matching

frame 1 to frame 2, using frames 1, 2, and 3:

INITIALIZE

template window size w = 0
search window size s = 0
displacements d0

12,d
0
23,d

0
13 = NaN

iteration i = 0

DO

w = w + 10 ; s = w + 50 ; i = i + 1
match frame 1 to frame 2 → di

12

match frame 2 to frame 3 → di
23

match frame 1 to frame 3 → di
13

UNTIL

di−1
12 = di

12 ; di−1
23 = di

23 ; di−1
13 = di

13

di
13 = di

12 + di
23
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In the next frame, matching is performed using the constraint d23 +d34 = d24. This is

continued until the complete short sequence is stabilized. In a single step of the algorithm,

the same template and search window sizes are used for all three matches. Note that this

simple algorithm requires only two parameters: the increase in the template window size

after each iteration and the size of the search window, relative to the template window

size.

Since this matching component is a crucial part of the proposed method, we apply

an additional subpixel refinement step after all pixelwise displacements are estimated.

Assuming that the above-mentioned matching procedure correctly computes the integer

parts of the displacements, we further refine these estimates by computing the least-

squares fit to the gradient constraint equation [12]. The subpixel displacement (sx, sy)

is chosen that minimizes the constraint deviation over the smallest template window Ω

that yields the correct (pixelwise) displacement estimates:

∑

x∈Ω

(
Ix(x, t)sx + Iy(x, t)sy + It(x, t)

)2
, (6)

where Ip(x, t) is the partial derivative of the image intensity function to parameter p

at pixel x = (x, y) and time t. These partial derivatives are approximated by forward

differences (after compensating for the pixelwise motion). Instead of Eq. (6), a more

complex motion model that also incorporates rotations around the line of sight (z-axis)

could be used at this stage. This has not been included here for two reasons. First of

all, a richer model might reduce the accuracy of the displacement estimates. Secondly,

contrary to the determination of the fixational rotation, which is restricted to a small area

surrounding the fixation point, the extraction of z-axis rotation can exploit information

located anywhere in the image. Consequently, instead of increasing the model complexity

at the template window, an even more sophisticated procedure, not restricted to this

window, is more appropriate.

In certain situations, it is possible that relatively large template windows are necessary

and that the stabilized sequence no longer fixates exactly on the image center. Imper-

fections in the tracking, however, only result in imperfect fixation, but not in incorrect

flow or egomotion computation, since the performed warps are known and can be used

to reconstruct the original flow (see Section 2.4). Therefore, only algorithms that build

on a perfectly fixated flow field are affected by this.

2.3 Optic Flow

To demonstrate the consistency of our results, we use two fundamentally different optic

flow algorithms. The first algorithm is the well-accepted differential-based algorithm by
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Lucas & Kanade (LUC) [22]. As suggested in [5], the image sequence is first smoothed

with a spatiotemporal Gaussian filter with a standard deviation of 1.5 pixels-frames

before computing the derivatives. We use image sequences of length 13 to have sufficient

temporal support. The second algorithm is a more recent phase-based algorithm by

Gautama & Van Hulle (GAU) [10]. This algorithm uses spatial filtering to compute

phase components of oriented filters at every time frame. The temporal phase gradient

is estimated from this sequence of phase components using linear regression. Finally, an

intersection-of-constraints step extracts the full velocity from the component velocities.

The resulting optic flow fields have been shown to be much denser and more accurate

than those obtained with LUC [10]. For this algorithm, we use the parameters suggested

in [10]. No pre-smoothing is required here and the algorithm uses only five frames.

2.4 De-fixation

Figure 3 contains flow fields for an example frame of one of the sequences (Section 3)

used in the analyses. The top and bottom row flow fields have been extracted using

LUC and GAU respectively. The optic flow in the center column has been computed

directly on the original sequence whereas the left column flow has been computed after

fixation. When comparing these two columns, it is clear that the flow fields can look

very different. A comparison of these two flow fields is important for the validation

of the stabilization method. Even though it is not required for the computation of

the translational egomotion parameters and the subsequent recovery of structure from

motion, certain applications may also prefer operating on flow fields that more closely

resemble the flow fields computed on the original sequence, or may require knowledge of

the true rotational egomotion parameters. To achieve these goals, the fixating rotation

needs to be determined and the original flow reconstructed by ‘de-fixating’ the stabilized

flow fields, i.e. removing the effects of this fixating rotation. Since the interframe rotations

that stabilize the short image sequence are not necessarily identical, de-fixation requires

their summarization into a single rotation.

The most sensible way to proceed is by averaging the individual rotations in the same

way as the optic flow algorithm averages the temporal information over the sequence.

For the phase-based algorithm, all five frames are equally weighted, so a simple aver-

aging of the four interframe rotations yields the best results. In our Lucas & Kanade

implementation 13 frames are spatiotemporally convolved with a Gaussian of standard

deviation 1.5 pixels-frames, and the five central frames are retained. On the basis of these

five frames, derivatives are computed with four-point central differences by convolution

with the mask: 1
12

(−1, 8, 0,−8, 1). We apply a similar transformation to compute the

average rotation. In this way, each individual rotation influences the computation of the
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stabilized original de-fixated

Figure 3: Flow fields computed for the city3 frame shown in Fig. 4. The flow has been
computed using LUC (top row) and GAU (bottom row). The left and middle columns
contain the flow fields computed respectively with and without stabilization. The right
column contains the stabilized flow fields after removal of the stabilizing rotation. All
flow fields have been subsampled and scaled 10 times.

average rotation in a similar way as the respective frame influences the computation of

the temporal derivatives. This is achieved by first convolving the interframe rotations

with the same Gaussian used in the flow computation, and then computing the average

rotation as the weighted average of the four central interframe rotations, with weights

equal to 1
18

(1, 8, 8, 1).

The de-fixation procedure has been applied to the flow fields in the left column of

Fig. 3 and the results are shown in the right column. It is clear that for both algo-

rithms the de-fixated flow fields very closely resemble the ones computed on the original

sequences (except that the former are denser and less noisy). In conclusion, we can see

that, although stabilization can arbitrarily change the inter-frame rotations over a short

sequence, it is still possible to extract a single fixating rotation and to reconstruct the

flow, as corresponding directly to the original sequence.
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city1 city2 city3

Figure 4: Example frames from the three sequences used. All sequences consist of 450
frames and contain a wide variety of driving situations and illumination conditions.

3 Sequences

Three real-world driving sequences are used in the analyses. The sequences have been

recorded with a camera rigidly installed behind the front shield of a moving car2. All

sequences are 18 seconds long and contain 450 frames at a resolution of 638 × 508 pix-

els. The sequences contain a wide variety of inner-city driving situations. An example

frame from each sequence is shown in Fig. 4. Stabilizing these sequences is nontrivial,

as the scenes exhibit large depth variability and stable features (e.g. the horizon) are

lacking. The sequences differ with respect to the curvature of the trajectory, illumination

conditions, and the overall condition of the road. The latter directly relates to camera

jitter. Note that even though the camera is fixed relative to the car, this does not im-

ply a constant heading. When the car moves along curves or overtakes other cars, the

heading strongly deviates from a forward translation. Although only driving sequences

are used in the evaluation, no characteristics specific to this kind of sequences (such as

the high speed or the presence of a road) are exploited by the method. Consequently,

the method is applicable in more general situations involving self-motion (e.g. walking in

natural scenes).

4 Results

In this section, the effects of stabilization on the computed optic flow are investigated

by comparing density and global structure of the optic flow fields computed before and

after stabilization. To show the merits of our proposed fixation approach, two other sta-

bilization methods are included in the comparison as well. Both techniques are explained

next.

2All sequences have been recorded in the context of the ECOVISION project. Courtesy of Dr. Norbert
Krüger, Aalborg University Copenhagen, and HELLA Hueck KG, Lippstadt.
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4.1 Alternative Stabilization Techniques

The first technique (TRA) registers two images by estimating a 2D translation globally,

using the whole images. This mechanism is typically used in electronic stabilization sys-

tems of commercial cameras. In our implementation, images are matched by applying the

normalized cross correlation technique to the entire images. Although time-consuming,

this is effective.

The second technique (PHC) is more sophisticated and estimates the best-fitting affine

transformation (2D translation, 2D rotation, and scale) between two images. As men-

tioned in the introduction, for scenes with minimal depth variation this transformation

largely accounts for the camera motion. The affine transformation is found by performing

phase correlation, both in the original space (to find the 2D translation) and in log-polar

space (to find the rotation and scale) [24].

Both registration techniques are applied in the stabilization framework explained in

Section 2.1. In a similar fashion as the proposed method, all frames of the short sequence

are matched to the center frame. Only consecutive frames are registered and the estimated

transformations are accumulated. A similar procedure to the one described in Section 2.4

is used to compute the average transformations for TRA and PHC, which can be used to

reconstruct the original flow fields from the stabilized if desired.

4.2 Optic Flow Reliability Measures

When evaluating the density and global structure of the optic flow fields, only reliable

flow vectors are considered. Two different reliability measures are computed for each flow

vector and only if both agree, the flow vector is retained.

A first measure of reliability is provided by the optic flow algorithms themselves.

For LUC, a velocity estimate is retained if the least-squares matrix used in solving the

gradient constraint equation (a weighted version of Eq. 6) is invertible [5]. GAU considers

a full velocity estimate to be reliable if at least five component velocities are used in its

determination (a total of 11 component velocities are computed at each location). A

component velocity is rejected if the corresponding filter pair’s phase information is not

linear over the short sequence.

In addition to this first measure, a second reliability measure is computed. This mea-

sure, the image reconstruction quality, is independent of the flow algorithm and allows for

flow field transformations (e.g. de-fixation) before evaluation. Given the optic flow vector

(ẋ, ẏ) at location (x, y) and time instant t, we define the image reconstruction quality

as the normalized correlation between the intensity values of small windows centered at

(x, y) and (x + ẋ, y + ẏ) in frames t and t + 1 respectively. A flow vector is considered
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Table 1: Average flow field density (in percent) obtained on the original sequence (ORG)
and after stabilization using 2D translation (TRA), phase correlation (PHC), and fixation
(FIX). The mean density is underlined if all pairwise differences in which the respective
algorithm occurs are significant. For each combination of sequence and optic flow algo-
rithm, the joint significance level of all pairwise differences is 0.05.

LUC GAU
seq ORG TRA PHC FIX ORG TRA PHC FIX

city1 21.3 21.6 26.8 22.0 24.2 18.4 19.4 27.6
city2 21.5 21.8 24.7 23.0 22.1 20.4 21.2 27.0
city3 15.9 17.6 23.2 19.3 14.8 15.1 15.6 23.0

reliable when this correlation exceeds 0.9. The correlation is computed over windows of

size 15 × 15 pixels and cubic interpolation is used to achieve subpixel accuracy in the

comparison. Measures based on the reconstruction quality have been shown to yield

adequate performance in evaluating flow vector quality [21].

4.3 Optic Flow Field Density

The flow field density is the number of reliable flow vectors divided by the number of

pixels. For the original flow fields, the image reconstruction quality is evaluated directly

on the original images. For the stabilized flow fields, the average effect of the stabilizing

transformations is first removed from the flow fields, using the de-fixation procedure for

FIX and similar reconstruction procedures for TRA and PHC. In this way, the recon-

struction quality is also evaluated on the original images. This allows for a more direct

comparison between the different flow fields. Note that this also validates that the sta-

bilization and reconstruction procedures preserve the dynamic aspects of the sequence.

Table 1 contains the average density of reliable flow vectors before and after stabilization

for all algorithms on all three sequences. Since the density varies widely across frames,

the frame index is included as a factor in a two-way ANOVA. Using a Tukey multiple-

comparison test [13], the significance of all individual pairwise differences in mean density

is assessed at the joint significance level of 0.05. The mean density is underlined in the

table if all pairwise differences in which the respective algorithm occurs are significant.

This analysis is repeated for each combination of sequence and optic flow algorithm.

For the proposed method FIX, stabilization results in a significant increase in flow

density as compared to the original sequence on all occasions. For optic flow algorithm

LUC, we see that FIX performs better than TRA but is outperformed by PHC on all

sequences. This is due to the estimation of scale by the registration component of PHC,

which results in smaller displacements in the stabilized sequences on average (see also

Fig. 5). As a consequence of this, the number of flow vectors that are within the acceptable
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magnitude bounds of the single-scale flow algorithm increases. Even though this is also

the case for optic flow algorithm GAU, a very different result is obtained. Here PHC

and TRA perform much worse than FIX, and the obtained densities are not significantly

different from those computed on the original sequence (they are even smaller for city1).

The reason for this weak performance is that both PHC and TRA are whole-image

techniques that lack a tracking component. In other words, they do not guarantee that

the same features are matched over the entire short sequence, as does the proposed

method. This is not a problem if the model employed by the registration technique is

a good approximation of the camera movement, but due to the rich scene structure of

the sequences used, this is not the case here. Although PHC yields good results when

registering two frames, inconsistencies occur in longer sequences. As a result, the local

velocities no longer remain constant and the estimates are rejected by the reliability

measure of GAU. It is clear from the results that this effect strongly outweighs the

advantages resulting from the average magnitude reduction. This effect is weaker for

LUC since this optic flow algorithm strongly smooths the sequences before estimating the

gradients. As a consequence, the reliability measure is less sensitive to small inaccuracies.

This smoothing however leads to less accurate flow estimates [10].

4.4 Global Flow Field Structure

As discussed in the introduction, fixation renders certain global flow field properties more

predictable. In particular, speed and homogeneity of the flow vectors tend to increase with

distance from the fixation point. The speed effects can be quantified by evaluating the

mean and standard deviation of the flow vector magnitude as a function of eccentricity

(the fixation point is the image center). These values are computed by averaging, for

each frame, the flow vector magnitudes within specific eccentricity rings and summarizing

these values over all sequences. The results are shown in Fig. 5. The mean and standard

deviation of the magnitudes are shown in the left and right columns respectively. The

results are qualitatively similar for both optic flow algorithms.

For the original sequence (dashed lines) and TRA (dotted lines), the mean magnitude

increases slightly with eccentricity and the standard deviation remains large throughout,

as compared to the other algorithms. As expected, for PHC (dash-dotted lines) the mean

magnitudes are strongly reduced at all eccentricities. The standard deviation is also much

smaller. This renders the magnitude of the velocity vectors well-predictable, but less so

near the fovea.

Finally, the results for the proposed method FIX (solid lines) show a very strong up-

ward trend in the mean motion magnitudes and a small standard deviation throughout.

Note that this does not necessarily imply that after stabilization, the flow field is purely

15



LUC

0 5 10
0

0.5

1

1.5

2

ecc. (in degrees)

m
ea

n 
(in

 p
ix

el
s)

ORG
TRA
PHC
FIX

0 5 10
0

0.5

1

ecc. (in degrees)

st
d.

 (
in

 p
ix

el
s)

ORG
TRA
PHC
FIX

GAU

0 5 10
0

0.5

1

1.5

2

ecc. (in degrees)

m
ea

n 
(in

 p
ix

el
s)

ORG
TRA
PHC
FIX

0 5 10
0

0.5

1

ecc. (in degrees)

st
d.

 (
in

 p
ix

el
s)

ORG
TRA
PHC
FIX

Figure 5: Mean (left column) and standard deviation (right column) of the optic flow
vector magnitude as a function of eccentricity with and without stabilization. The results
have been summarized over all sequences and are shown in the top and bottom row for
LUC and GAU respectively.
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translational with focus of expansion in the center (see e.g. the stabilized flow field in

Fig. 1B). Differences with PHC occur near the fovea, where FIX results in smaller mag-

nitudes and standard deviations, and at large eccentricities, where the mean magnitudes

are larger for FIX.

In conclusion, both the proposed stabilization by fixation and PHC render the global

structure of the optic flow fields more predictable. The structure imposed by the proposed

method is however much more pronounced. As can be expected from a fixation-based

system, the image is very well stabilized near the center. In this way, static image

processing in general becomes much easier at this location. For a system that has to

perform many tasks at once, this may be very important.

5 Conclusion

The proposed method achieves stabilization by fixating short image sequences. After

stabilization, optic flow computation is greatly facilitated. It has been argued that this

processing order and the techniques developed to achieve it, can provide important ad-

vantages that enable a more robust extraction of behaviorally relevant information, such

as camera motion, structure from motion, and independent motion. First, the improved

flow density allows for a more accurate egomotion estimation using egomotion algorithms

that are proven consistent [27]. Second, during fixation, the number of parameters re-

quired to describe the egomotion is reduced from five to four. Last, fixation renders the

global flow field structure better predictable and results in a consolidation of informa-

tion near the fovea, which is advantageous for the application of optimized noise filtering

and/or data compression techniques. This increased structural consistency also enables

one to define, in advance, sensible space-variant parameters for single-scale optic flow

algorithms.

Although possible extensions related to the compensation of z-axis rotation have not

yet been included in the algorithm, significant quantitative improvements of stabilization

with respect to optic flow density and global flow structure have been demonstrated. In

an extensive comparison with established stabilization procedures, it has been shown that

sequences stabilized with the proposed method are better conditioned for highly accurate

optic flow algorithms. Furthermore, the global structure of the resulting flow estimates

is much more pronounced.
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