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The estimation of motion from image sequences has been widely studied by the
scientific community but it is rarely used in real-time applications mainly due to
the high computational requirements. A large number of interesting applications
(such as robotics, vigilance, sequence compression, etc.) require embedded
processing systems which are not yet available. The presented approach
implements a novel superpipelined and fully parallelized architecture for optical
flow processing with more than 70 pipelined stages that achieve a data
throughput of one pixel per clock cycle. The whole system has been implemented
into reconfigurable technology to facilitate its adaptation to different application
specifications. It achieves high performance computation (148 frames per second
at VGA resolution). In this contribution we justify the optical flow model chosen
for the implementation, we analyse the presented architecture, and measure the
system resource requirements. In particular, we present a massive parallelism
design methodology that makes these high performance systems possible. Finally,
we evaluate the system comparing its performance with other previous
approaches. To the best of our knowledge, the obtained performance is more
than one magnitude higher than any previous real-time approach described in the
literature.

Keywords: Pipeline architecture; Real-time; FPGAs; Image motion processing;
Optical flow

1. Introduction

Optical flow is a well known research field used to recover 2-D motion from image
sequences. There are different approaches based on image block-matching, gradient
constraints, phase conservation or energy models (Barron et al. 1994). Until now,
most of the comparative studies focused on the different estimation approaches and
their accuracies (Barron et al. 1994, McCane et al. 2001). Nevertheless, some of them
also covered the implementation feasibility (Liu et al. 1998). They show that best
accuracy is achieved by using phase-based and differential methods but, even though
these models work fine for low motion velocities, they fail when trying to estimate
fast motion (their accuracies are significantly degraded due to the temporal aliasing)
(Weber and Malik 1995, Lim et al. 2005). The temporal aliasing problem is a
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complex topic where we cannot isolate the temporal sampling rate and the
image structure. The spatial frequency has significant importance to calculate
the maximum speed which can be recovered from an image sequence according to
the Nyquist–Shannon theorem (Weber and Malik 1995, Lim et al. 2005).

Our approach focuses on the utilization of digital cameras of high frame-rate
acquisition as a valid alternative to reduce temporal aliasing. Advances in imaging
sensor technology make it possible to acquire more than 1000 frames per second
(fps) (see products from: http://www.coreco.com, http://www.hitachi-service.net/,
http://www.ims-chips.com) prompting us to develop processing architectures
running at higher frame-rates than standard video at 30 fps. Although the 1000 fps
is still far away from our processing capabilities, an over-sampled factor of 4 or 5
dramatically reduces the motion aliasing presented in most common scenarios.
The utilization of high frame-rate cameras reduces the motion range presented at the
video sequence, allowing gradient models to achieve an outstanding accuracy.

In previous works, Lucas and Kanade (L&K) gradient based method (Lucas and
Kanade 1984, Barron et al. 1994) is highlighted as a good candidate to be
implemented on hardware with affordable hardware resources consumption
(Liu et al. 1998, McCane et al. 2001, Dı́az et al. 2004, 2006b). The comparison of
L&K with other differential approaches (Bainbridge-Smith and Lane 1996, 1997),
(also of feasible hardware implementation as indicated in Maya-Rueda and
Arias-Estrada (2003)), concludes that the L&K least-squares fitting approach
achieves the best accuracy.

In this work, we describe a novel superpipelined processing architecture capable
of computing one pixel per clock cycle. This architecture significantly improves our
previous works (Dı́az et al. 2004, 2006b) thanks to the new fine-grain pipeline,
a novel memory management unit which enables the utilization of FIR temporal
filters and an improved image differentiation technique. It allows real-time
processing of oversampled frame-rates, which opens the door to use the advanced
image sensors to achieve high accuracy of optical flow. In the next sections,
we describe in detail the computing architecture, we evaluate its performance and
system resources utilization, and we compare our results with other previous
approaches.

2. High accuracy optical flow model description

On the previous discussion, we have presented the L&K model as a good candidate
for real-time optical flow computation. The L&K algorithm belongs to gradient-
based techniques, which means that the estimation of pixel velocities is based on
image derivatives, and the assumption of constant luminance over a temporal
window is required. The velocities Vx and Vy are computed using a convolution with
separable kernels operating as discrete derivatives. We note It to the temporal
derivative of the sequence and Ix and Iy to the spatial image derivatives
along columns and rows. L&K method constructs a flow estimation based on
these first-order derivatives of the image. Using least-square fitting, the model
extracts an estimation of pixel motion based on the hypothesis of velocity similarity
on spatial neighbourhoods � of each pixel, typically of 5� 5 pixels, for details
see Lucas and Kanade (1984) and Barron et al. (1994). Using this notation, the final
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velocity estimation is computed from equation (1), where W stands for the weights

used to properly integrate estimations over the neighbourhood � (which typically

represent a five taps Gaussian kernel)

Vx ¼ Axy � Ayt � Ayy � Axt

Vy ¼ Axy � Axt � Axx � Ayt

Akj ¼
X
�

W2IkIj

9>>>>=
>>>>;

ð1Þ

Most of works in the literature use the derivative kernels and model parameters

presented in Barron et al. (1994) but, as described in Brandt (1997), they are

susceptible of significant improvement. For instance, Brandt proposes derivative

kernels based on complementary derivation-smoothing operations that significantly

improve the derivation process accuracy. Furthermore, this leads to reducing the

temporal pre-smoothing filter length from 15 to 3 taps, which is of significant

importance for embedded systems and also play an important role in terms of

accuracy. This allows computing higher spectral frequencies because they are

not filtered. In that work, he also analysed different neighbourhood � windows.

These modifications lead to an improvement of 31.3% for a similar density of

estimations with respect to the version given in Barron et al. (1994) (see x 3.2 for

more details).
To summarize, the processing stages including the modifications proposed in

Brandt (1997), are the following.

1. Pre-filtering with a separable kernel of 3� 3� 3, P¼ [1, 2, 1]/4. The utilization

of this small smoothing kernel allows high optical flow estimation density,

as it does not reject the high frequency terms and at the same time contributes

as anti-aliasing filter too.
2. Complementary derivative kernels (2-D smoothing and 1-D derivation for

each axis derivative) as designed by Simoncelli (1994). These kernels increase

the architecture complexity compared with previous approaches (Dı́az et al.

2004, 2006b), but significantly improve the accuracy of the system (Brandt

1997). In terms of performance, they represent a computation load increment

of a factor of 3 but this is not a problem when designing customized hardware,

due to the fact that it can be implemented in the pipeline structure without

throughput degradation.
3. The image derivatives Ix, Iy and It (subscript stands for axis direction

derivative) are cross-multiplied to get the five products Ix � Ix, Iy � Iy, Ix � Iy,

Ix � It, and Iy � It and then, they are locally weighted on a neighborhood area �.

The weighting operation is implemented as separable convolution operations

over the derivatives products using the 2-D spatial central-weighting separable

kernel [0.0625, 0.25, 0.375, 0.25, 0.0625].
4. Finally, the weighted image derivatives products are combined to get each

pixel velocity estimation (Barron et al. 1994).

The overall support of the system is 11� 11� 7 pixels using the parameters described

above. Thus, just a 7 images storage is required, which is feasible on systems

embedded on a single chip. In a previous implementation of the L&K model

Architecture for motion sequence extraction 437
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(Dı́az et al. 2004, 2006b), we used the Fleet and Langley (1995) IIR temporal filter,
which requires just 3 images storage. The drawback of such an approach is that IIR
filters produce lower accuracy in the estimated optical flow and need higher
fixed-point bit-width to compute filter values (see x 3.2 for more details).

We have numerically evaluated the accuracy of the different approaches using
the synthetic sequence of the through-flow across the Yosemite Valley (sequence
available at: ftp://ftp.vislist.com/SHAREWARE/CODE/OPTICAL-FLOW/). Using
a flow density of 36.4% and the error measurement of Fleet (1992), the angular error
is 4.6� using the implementation described on Barron et al. (1994), 6.4� using the
approach of Fleet and Langley (1995), and 3.4� using the modifications of Brandt
(1997). We conclude from these measures that the modifications of L&K model
adopted by Brandt (1997) improve the accuracy and therefore, this is the option
whose implementation in specific hardware is presented in this paper.

3. Hardware architecture considerations

Nowadays, standard PC processors have significant computing performance thanks
to the high system clock frequency and to the MMX and SSE instruction extensions,
which give them DSP capabilities. Nevertheless, although there are some optical flow
approaches running on software in near real-time (Bruhn et al. 2005), the intensive
computation required to process optical flow makes it non-viable to process
oversampled sequences in real-time and the large incoming data needs that specific
hardware be processed on real-time. DSP and multimedia processors are specifically
suitable for embedded high-load processing (Dumontier et al. 1999), but their
computing performances are still far from allowing real-time computing of optical
flow at more than 30 fps. The high performance required makes DSP unviable.
A feasible solution is the implementation of a custom ASIC, but this alternative is
quite expensive for prototyping purposes and limits its adaptation to different
application specifications. Because of that, we focus on a FPGA-based approach.
This is a technology that is being used in very different research fields, such as mobile
robotics (Bonato et al. 2006), network intrusion detection (Clark et al. 2006),
cryptography (Kerins et al. 2006), etc. They are able to achieve significant computing
power. Furthermore, their reconfiguration capability allows correcting the design
‘‘if the specifications change’’. Furthermore, since FPGAs are based on general
purpose digital technology (following Moore’s law), systems developed for FPGAs
benefit from the continuous technology advances, avoiding the possibility of
becoming obsolete within short periods of time. Therefore, we have chosen
reconfigurable hardware as our target technology.

3.1 Coarse grain pipeline structure

We use a pipelined architecture (figure 1). The basic computational stages represent
the different steps of L&K algorithm briefly described on x 2. The system has been
designed as an embedded processing platform which can be used on mobile
applications and thus, user interface, hardware controller for memory,
VGA visualization, and input camera interface have been embedded on the

438 J. Dı́az et al.
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same FPGA device, a preliminary version has been presented in Dı́az et al. (2006a).
This strategy enables the utilization of the system combined with a high frame-rate
camera as a smart sensor on diverse potential applications. The different elements
that form the system are represented on figure 1. Note that the thin dotted line marks
the optical flow, processing core the stages which are summarized as follows.

. S0. Gaussian-filter smoothing stage.

. S1. The FIR temporal filter computes the temporal derivative and space-time
smoothed images.

. S2. Spatial derivatives and complementary Gaussian filtering operations.

. S3. Construction of least-square matrices for integration of neighbourhood
velocity estimations.

. S4. Custom floating-point unit. Final velocity estimation requires the
computation of a matrix inversion, which includes a division operation.
At this stage, the resolution of the incoming data bits is significant and
expensive arithmetic operations are required. Thus, fixed-point arithmetic
becomes unaffordable, prompting us to design a customized floating-point
unit.

3.2 IIR vs. FIR temporal filters in a hardware implementation

The approach described by Fleet and Langley (1995) requires the storage of 3
processed intermediate images. In this way, the temporal storage requirement is
reduced to 3 frames. The temporal filter can be computed as follows.

OPTICAL FLOW COMPUTATION SYSTEM 

CAMERA Bank 0 Bank 1

EXTERNAL MEMORY BANKS

Frame
Grabber

Frame
Grabber

Gaussian
smoothing

Gaussian
smoothing

FIR temporal
filters

FIR temporal 
filters

FIR Spatial
derivatives

FIR Spatial
derivatives

matrices 

Construction of 
least-squares 

matricesmatricesmatrices

Construction of 
least-squares 

matrices 
Floating 
point unit

Floating 
point unit

s0 s1 s2 s3 s4

MMU0MMU0 MMU1MMU1
r

VGA
Controllerrr

VGA 
Controller

USER INTERFACEUSER INTERFACE FPGA

VELOCITIES 
ESTIMATION

Figure 1. Optical flow system structure. Thin dotted line marks the processing core.
Light-color blocks indicate hardware controllers inside the FPGA and external memories.
The user interface consists of an LCD display plus mode-selection buttons. All the
computation has been accomplished inside the FPGA device.
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. Let us consider a separable space-time smoothing filter. After the spatial

filtering operation, we can use a causal temporal filter based on a truncated

exponential.

EðtÞ ¼
expð�t=�Þ=� t � 0

0 t < 0

�
ð2Þ

where � is the time constant of the filter. The temporal derivative can be

calculated using this filter.
. The digital filter equations described in Fleet and Langley (1995) are the

following:

wðtÞ ¼ IðtÞ � 2rwðt� 1Þ � r2wðt� 2Þ

R2ðtÞ ¼ q2wðtÞ þ 2q2wðt� 1Þ þ qwðt� 2Þ

yðtÞ ¼ R2ðtÞ � ryðt� 1Þ

9>=
>; ð3Þ

In equation (3), I(t) stands for the image at instant t, q and r are constant

parameters that depend on � according to equation (4). Finally, w(t), R2(t)

and y(t) stand for intermediate processed images at instant t used in the

final computation (equation (5)). In our system, we store and update: w(t),

w(t� 1), y(t).

. The parameters q and r are calculated from � according to equation (4):

q ¼
1

1þ 2�
r ¼

1� 2�

1þ 2�
ð4Þ

. Finally, the smoothed temporal image and its derivative are computed with

equation (5), where Ismooth and It stands for the temporally smoothed image

and its temporal derivative

Ismooth ¼ qyðtÞ þ qyðt� 1Þ

ItðtÞ ¼
R2ðtÞ � IsmoothðtÞ

�

9=
; ð5Þ

We have implemented this approach in Diaz et al. (2006a) with typical � values of

0.5, 1, 2 or 3. Intermediate images were computed using fixed-point representation

of 12 bits and 18 bits for q and r parameters This allows packing three pixels in

each memory address because we use 36 bit words to match the memory bit-width

(IDT 2006). As shown in the last part of x 2, the error is increased almost by a factor

2 (from 3.4� to 6.4�) with respect to the FIR filters approach (using �¼ 1). Using the

fixed point version of this recursive filters, the degradation due to quantization error

is negligible (less than 0.1�), which justifies this bit width choice. The FIR filter based

approach requires storing 4 images to compute filters of 5 taps. We also evaluate the

hardware resources utilization of both alternatives as shown on table 1. Note that

these results generated with the DK are pre-place and route and therefore, they

should be considered just to evaluate the complexity of different approaches.

Final results are slightly different in terms of resources consumption and maximum

clock timing due the FPGA place and route process.

440 J. Dı́az et al.
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The design strategy (IIR vs. FIR temporal filters) relies on the number of taps
required for some specific environments and tasks, as difference in hardware
resources is not very significant. If low frame rate cameras are used, we need to filter
temporal high frequency information to avoid aliasing and therefore a larger number
of taps is required, making the IIR approach a better option (no extra external
memory resources are required). Nevertheless, this means that the motion and light
conditions should be continuous and this is not always a realistic situation.
Therefore, we consider that a high frame-rate camera with FIR filters is a better
choice, because it provides higher accuracy and can be used in more generic
environments.

4. Implementation of a highly parallelized architecture

We have described the coarse pipelined system of 5 stages. Now, we describe the
number of parallel units used at each stage and the number of fine-grain pipeline
stages per unit. In fact, previous approaches used a coarse pipeline processing
architecture able to process up to 41Kpps (Kpps�kilo pixels per second) (Dı́az et al.
2004, 2006b). The previous scheme, with a pipelined structure divided on 5 basic
stages, leads to high performance, but is still far from high frame-rate processing
requirements. The main reason is that the coarse architecture in figure 1 utilizes a
structure similar to that of DSP processor. There is a trade-off between pipeline
length and system performance based on the dependence problems (in DSPs, branch
conditions often stop the pipeline, which represents a significant time loss).
Therefore, long pipelines are not presented on standard DSPs and microprocessors.
On the other hand, we hereby describe a specific purpose processing architecture that
highly benefits from a fine grain pipeline datapath. According to Forsell (2002), the
best architecture is a superscalar and superpipelined structure. This design strategy
has been adopted in our approach and is one of our novel contributions compared
with Dı́az et al. (2004, 2006b). Furthermore, this processing strategy leads to an
outstanding processing performance. In figure 1, we present the global scheme.
Each coarse stage has been finely pipelined leading to a processing datapath of more
than 70 stages just for the optical flow computing core. The number of scalar units
grows at stages in which L&K model requires to maintain the system throughput.
This parallelism expansion represents the following.

(a) Stage S0 uses one scalar unit for spatial smoothing with 12 pipeline stages.

Table 1. Resources consumption for 2 temporal filter approaches implementation of stage
S1 on a Virtex II XC2V6000-4 (results taken from the DK synthesizer (Celoxica 2006)).

The IIR filters require about 22% more resources. Although they achieve a faster clock rate,
it is not the clock frequency limiting stage, and therefore, it is not a significant improvement

in the framework of the optical flow system.

Pipelined stages
Equivalent

gates FFs Memory bits
Max clock

frequency (MHz)

S1 (FIR temporal filters) 156 266 529 73 728 68
S1 (IIR temporal filters) 193 984 642 92 160 73

Architecture for motion sequence extraction 441
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(b) Stage S1 uses two scalar units, one for temporal smoothing and another one
for temporal differentiation. Each one requires 9 pipeline stages.

(c) Stage S2 uses 3 parallel scalar units of 12 pipeline stages, corresponding to
the 3 dimensions (Ix, Iy and It) in which the image derivatives are computed.

(d) Provided that 5 cross-products (Ix � Ix, Iy � Iy, Ix � Iy, Ix � It and Iy � It) are
computed at stage S3, the system uses 5 parallel units of 12 pipeline stages to
comply with this requirement. These scalar units compute the weighted sum
of these cross-products needed at the least-squares fitting.

(e) Finally, stage S4 uses one scalar unit of 25 pipeline stages to compute the
final motion for each pixel, but internally, several parallel pathways drive
the data process.

In the next subsections, we describe the architecture details that allow implementing
the motion processing circuit and all these parallel datapaths.

4.1 Memory management unit

In x 3.2, we conclude that the FIR temporal filter is the best solution for our
system, but its specifications have a special effect on the designing process
considerations. The limited number of memory banks accessible on board
constraints the available system parallelism (which translates in performance
degradation) and increments the design complexity. Therefore, an efficient
memory management unit (MMU) becomes of great interest to abstract the
sequential access inherent to this kind of devices. For this purpose, we create virtual
memory ports (VMP), whose behavior emulates parallel independent real memory
ports. The main idea for this implementation is to combine the following concepts/
properties.

1. Nowadays, long memory words (36 bits) make it feasible to store up to
four 9-bit-width data at each memory address with more than 512Kaddress
(IDT 2006) (up to 5 images of 720� 576 pixels per memory chip).

2. A throughput of one pixel per cycle is possible by using pipelined packing and
unpacking circuits, which only requires to access memory once in 4 clock
cycles.

We have designed an MMU which benefits from the previous architectural
descriptions. Depending on the number of VMPs required and packing/unpacking
possibilities (provided by the memory word bit-width), a state machine is used to
feed the VMP registers sequentially, achieving a final performance of one data per
cycle. Furthermore, this architecture is scalable because an increment of N in the
number of VMPs available on one memory only modifies the required access cycles
on a factor of N. This can be further optimized by incrementing the MMU clock
frequency by this factor with respect to the global system clock frequency. There is
only one limitation, due to the packing/unpacking circuits, random access is limited
to a multiple of 4. Besides, for an efficient data management, they should be stored in
memory in a consecutive packed way.

The MMU architecture is illustrated in figure 2 for a four VMP case. Note that a
VMP is composed of a 4 addresses register (read or write type) plus a data-write

442 J. Dı́az et al.
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register with packing circuits or by a data-read register with unpacking circuitry.

Previous implementation of L&K used IIR filters to reduce the memory
access, but the drawback was the accuracy degradation (Fleet and Langley 1995,
Dı́az et al. 2004, 2006b). The presented architecture allows the easy management

of a large number of read-write processes necessary for FIR temporal filters with
a minimum FPGA logic, which clearly justifies the design of the presented
MMU architecture.

4.2 Stage S3 architecture

Section 5 evaluates the resources consumption of the different circuit stages and
highlights this stage as the one which requires more hardware resources. As shown
in figure 3, this stage is expanded to compute the five cross-products utilized for the

least squares fitting process. This is implemented as five parallel segmented scalar
units. Furthermore, incoming data for this stage require 18 bits, which makes the
arithmetic circuits consume a considerable circuit area. As illustrated in figure 3,

the main computing circuit of this stage is the separable convolution unit which
implements the weighted average calculation.

State Machine:
Multiplexing

:State Machine:
Multiplexing 

MMU

SSRAM

A
d

d
re

ss

D
at

a

cl
k

R
/N

W

Address-Read0

Address-Write0

Address-Read1

Address-Write1

Data-Write0

Data-Write1

Data-Read0

Data-Read1

s
LowLowLowLow level memory controlevel memory controlevel memory controlevel memory controlllLow level memory control

clock

Packing

Unpacking

Figure 2. MMU schematic for a 4 VMPs expansion-case. VMPs are represented by
one address register (type Read or Write) and a Data-Write or Data-Read register. Low level
memory control manages the data and address signals as well as the SSRAM clock,
read-no-write signal (R/NW), etc. The state machine feeds four VMPs sequentially and
manages the low level memory access. Packing/Unpacking circuits achieve a total throughput
of one pixel per clock cycle. This architecture allows us to multiply the equivalent memory
parallel access by 4 .
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4.3 Stage S4 architecture

Stage S4 is critical in terms of system frequency, resources, and accuracy.

The incoming data use fixed point representation of 18 bits, and this stage requires

the operations of multiplication, addition/subtraction and division without losing

accuracy. From our previous analysis (Dı́az et al. 2004, 2006b), we have decided to

use floating point data which allows obtaining the required precision with reasonable

resources consumption (as is shown in table 2). Figure 4 presents the architecture

of this stage, based again on a high pipelined and parallel datapaths to achieve

a high system throughput. The whole stage requires 25 steps. Data conversion,

multiplication, addition, and subtraction are computed in just one cycle, but division

requires 15 steps. This is the stage limiting the system clock frequency and it could be

even further pipelined to increase the clock frequency if necessary.

Figure 3. Architecture schematic of the least squares matrices construction. Pipeline stage S3.

Table 2. Basic pipeline stages resources consumption on a Virtex II XC2V6000-4
(results taken from the DK synthesizer (Celoxica 2006)). Non-motion core indicates
the logic associated to the MMU, Video input controller, VGA signal generation,
user interface, etc. Last rows indicate the implementation of stage S4 with different

parameters and data representation, where man stands for mantissa and exp for exponent.

Pipelined stages
Equivalent

gates FFs
Memory

bits
Max clock

frequency (MHz)

S0 Gaussian smoothing
þNon-motion core modules

66 213 2081 20 208 45

S1 FIR temporal filters 156 266 529 73 728 67
S2 FIR spatial derivatives 454 087 639 221 184 60
S3 Construction of least squares matrices 478 034 1873 221 184 51
S4 Floating point unit (11 manþ 7 exp) 57 167 3488 0 45
S4 Floating point unit (17 manþ 7 exp) 131 193 4938 0 36
S4 Floating point unit (23 manþ 7 exp) 207 428 7698 0 34
S4 Fixed point unit (36 bits) 345 981 1080 0 31
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4.4 Global system superpipelined datapath description

We have described the main computing stages on the previous subsections.

The parallelism of the system is expanded according to the algorithmic structure

and the final architecture is described in figure 5. Note that the MMU units are

critical allowing the management the memory accesses of the different elements as

described on the figure.
The synchronization among the different processing units (frame-grabber,

motion processing, VGA, and user interface) is accomplished by using specific

Deep pipeline structure (70 stages)
S0 (12) S1 (9)

SRAM 0SRAM 0

32

MMU 0
R W
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d

d
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cl
k

R
/N

W

MMU 1
R W
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R
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32

SRAM 1SRAM 1

9

9

9

VGA 
Controller

VGA 
Controller

Frame-grabberFrame-grabber
8

S2 (12) S3 (12) S4 (25)

Figure 5. Architecture schematic of the global system. We represent the number of
functional units (as parallel pathways), fine grain pipeline stages (indicated as rectangular cells
and in brackets in the top labels corresponding to each coarse grain pipeline stage), and
memory access elements (MMU channels are included).

Figure 4. Architecture schematic of the floating-point unit. Pipeline stage S4.
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external memories as data buffers, which solves the problem associated with the
different clock frequencies. The memory interchange strategy makes use of delays
between processing units as a synchronization technique. As described in x 4.1, VMPs
requires a constant number of cycles to feed the data input register. If we use an
exactly constant number of cycles for all the processing units, our circuits can make
use of this to properly access input/output data registers without requiring additional
synchronization logics. In order to maximize processing performance, we have used
one cycle in all our processing stages which is feasible thanks to the MMU packing
and unpacking data strategy which eliminates all the technology dependencies. This
enables the design of a very deep pipeline processing structure without using branch
predictions that would degrade the overall performance. The high system throughput
is based on this deep pipeline and on the parallel scalar units of different stages
designed according to the Lucas and Kanade algorithmic complexity. Well balanced
units are used to achieve a final system throughput of one estimation per clock cycle.
Only on specific points (for example VGA controller) interprocess communication is
needed. In these situations, we use an interface module between the two processes,
with a synchronized and buffered point-to-point communication scheme. This
module blocks the communication until both modules (sender and receiver) are
ready and data are transferred, allowing synchronizing hardware controllers with
different clocks or other characteristics.

5. System resources and performance

The whole system has been successfully implemented and tested on a stand-alone
board for image processing applications (Celoxica 2006). This board is provided with
a Virtex II XC2V6000-4 Xilinx FPGA as processing element, also including video
input/output circuits and user interfaces/communication buses. Table 2 summarizes
the estimation of the system resources utilization for each pipeline stage to determine
the critical circuits in terms of frequency and resources cost. Note that these results
generated with DK are pre-place and route. The key-idea of this work methodology
is to give a quick overview of the complexity of the different processing stages.
DK synthesizer allows a fast look into the resources consumption and timing which
helps to accelerate the designing process of very complex designs.

The computations use fixed point arithmetic on stages S0 to S3, and floating
point on stage S4. We include the values of the requirements for pipeline stage S4

with different approaches. Rows number 5, 6 and 7 include an approach using a
customized floating point representation. It uses one bit for the sign and customized
bits for the mantissa and the exponent as indicated on table 2. The final row presents
an implementation using fixed point arithmetic. Due to the fact that the input data to
this stage uses 18 bits data, its implementation with fixed point arithmetic requires
at least 36 bits to avoid loss of accuracy. This large bit-width reduces the maximum
achievable clock rate and therefore our performance. Of course, further pipelining of
this stage can improve the performance but resources consumption is already quite
high and, from table 2 it is clear that floating point representation is a better choice
for this stage. The dynamic range of the floating point version is larger, which is
very important to represent small numbers after the division operation without
requiring bits extensions. Several bits configurations of the floating point data have
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been implemented. The number of bits dedicated to the mantissa allows us to define

the accuracy vs. performance of the system. In the final version, we have employed a

mantissa of 11 bits because, due to the fact that optical flow is prone to noise, good

results can be achieved only by using the most significant bits of the data as can be

seen from the illustrative results of figure 6. We numerically evaluate representations,

fixed point and floating point (11 bits case). Using the Yosemite flow-through

synthetic sequence with known ground truth, we found an angular error of 3.42� and

3.37� respectively, which represents a fairly similar accuracy. This indicates that

the customized floating point version is a better candidate for our computing

architecture.
Figure 6(a) corresponds to a diverging tree sequence produced by the simulated

approaching of the camera to the tree. All the spurious deviations of the flow from a

central expansion are artifacts produced in areas with low image structure.

Figure 6(b) corresponds to a driving scenario. We have tested the global accuracy

of the flow using the configurations of S4 indicated in table 2 and they lead to similar

results (using the benchmarking sequences of Barron et al. (1994)).
After the previous pre-place and route resources estimations (tables 1 and 2),

table 3 shows the final hardware costs of the whole designed system (processing

motion core, MMUs, frame-grabber, VGA output, and user-interface) and

its performance. These final results are obtained after the place and route

process. The image resolution can be selected according to image input camera

standard or processing capabilities. This architecture is scalable, being possible to

reduce the system parallelism (and performance) to fit on a smaller device.

(a)

(b)

Figure 6. Optical flow processing results (11 bits for the mantissa in S4) for two sequences.
(a) Translating tree sequence, synthetic sequence used in Barron et al. (1994) and available at:
ftp://ftp.vislist.com/SHAREWARE/CODE/OPTICAL-FLOW/. Note that, although the
movement is to the right, some flow vectors have vertical components. These components
mainly appear on image areas where the aperture problem is present and only normal flow
to the image edges can be computed. (b) Real sequence of a camera mounted on a car and
looking forward. The expanded flow represents the ego-motion pattern and is useful for
computing heading information.
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Furthermore, the processing core can be replicated (more than 75% of system
resources of a Virtex II XC2V6000 are available) and the frame-grabber can be easily
modified (thanks to the MMU architecture) to split the image and send it to several
processing units. This high level scalability allows multiplying the processing
performance on this board. However, since the architecture already fulfils the
requirements to compute in real-time sequences at a high frame-rate, we have not
addressed this issue.

5.1 Performance comparison with other approaches

The implementation of the optical-flow algorithm with FPGAs has only been
addressed by some authors in very recent years. In our previous work (Dı́az et al.
2004, 2006b), a basic implementation of the L&K model was proposed, and we
presented a detailed study about the performance vs. system resources trade-off.
Although the performance was quite high (1776Kpps), neither the image resolution
nor frame-rates perform the high frame-rate requirements addressed here.
The iterative algorithm of Horn and Schunck (1981) (H&S), has also been
implemented by different authors. Martı́n et al. (2005) presented a system
implementation that fits quite well the specification of a standard frame-rate optical
flow system capable of processing up to 3932Kpps. The main disadvantage of that
approach is that the model itself obtains poor accuracy as shown by Barron et al.
(1994). Using the block-matching approach, the implementation described by
Niitsuma and Maruyama (2004) achieves 30 fps of image size 640� 480 but with high
hardware cost (90% slices of a XC2V6000 FPGA) and without sub-pixel accuracy.
Finally, the model described here, running in software on an Intel Pentium 4 HT,
3200MHz has been tested. This software was implemented in simple plane C, using
the main compiler options to tune the processor but without addressing
optimizations using MMX and SSE instructions. It is able to compute 3 fps of
640� 480 pixels (914Kpps). Though the software can be further optimized, the main
problem is that it consumes all the computing resources of the machine.

Our system has been experimentally tested running up to 45MHz and due to the
fine-grain pipelined architecture, we have computed 45Mpps, which is more than
one order of magnitude higher than previous approaches. Since the referenced works
are very recent (some of them using the same evaluation devices), the outstanding
performance of our approach does not rely on the technological improvements but
rather on a very efficient processing architecture that uses extensively the parallel
resources of the FPGA device.

Table 3. Complete system resources required on a Virtex II XC2V6000-4 after place
and route. The system includes the optical flow processing unit, memory management unit,
camera Frame-grabber, VGA signal output generation and user configuration interface.
(Mpps: mega-pixels per second at the maximum system processing clock frequency,

EMBS: embedded memory blocks.).

Slices (%) EMBS (%)
Embedded

multipliers (%) Mpps
Image

Resolution Fps

8250 (24%) 29 (20%) 12 (8%) 45.49 640� 480 148
1280� 960 37
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6. Conclusions

This paper presents a high parallelized architecture for high frame-rate motion
estimation, carefully designed to provide one pixel motion estimation per clock cycle.
We have analysed the different processing stages, design alternatives and illustrated
the system results. To the best of our knowledge, the presented system outperforms
in more than one order of magnitude any previous approach, validating the
proposed architecture. The necessity of a system for high frame-rate optical flow
processing has been clearly motivated because of two main reasons: it decreases
temporal aliasing and it fits better the first order gradient constraint assumption.
Current image sensors allow a very fast image acquisition and simple gradient based
optical flow approaches seem to be one of the most suitable alternatives for real-time
processing systems onto customized hardware.

According to this, we have implemented an improved version of the L&K model
(Brandt 1997), which complements the capabilities of high frame-rate cameras
providing real-time image motion analysis. We have presented a novel architecture
that addresses the real-time optical flow computation of high frame-rate and high
resolution sequences using a FPGA device as processing element. We have described
the architecture and illustrated how parallelism and superpipelined structures can be
defined for image processing applications. This work presents an optic flow specific
datapath of 70 pipelined stages which is able to compute more than 45Mpixels/s.
The system consumes less than 25% of the hardware resources of a 6 million gates
FPGA device. Furthermore, the system design is very modular and the computing
parallelism and precision can be easily changed to adapt the datapath to low cost
FPGA devices.

Finally, we have evaluated the system resource consumption and performance
of an implementation on a stand-alone platform which fulfils the high frame-rate
optical flow requirements. The comparison with previous works clearly shows the
outstanding performance of the system and opens the door to a wide range of
application fields.

Future works will cover the utilization of such systems on real-world applications
using moving robotics platforms, such as robot navigation, tracking, as well as
structure extraction from motion analysis.
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