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Abstract: Image processing systems require high computational load that motivates the design 
of specific hardware architectures in order to arrive at real-time platforms. We adopt 
innovative design techniques based on the intensive utilisation of the inherent parallelism 
available on devices based on reconfigurable hardware. We customise fine-grain pipelining 
and superscalar units to implement specific computing architectures for motion and  
stereo-vision computing circuits. This high parallelism level allows us to achieve a high data 
throughput (one pixel feature estimation per clock cycle). This paper extensively uses these 
techniques for designing high performance image processing systems which fit early cognitive 
vision models specifications. Furthermore, it highlights the necessity of on-chip integration 
mechanisms, since the data throughput (bandwidth requirements) of the full system requires a 
very large bandwidth. 
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1 Introduction 

Visual perception is a complex process that transforms 
(translates) signals (images) into cognitive information. 
Computer vision is a mature research field that has evolved 
significantly in the last decade and that studies how the 
translation process takes place. According to Ratha and 
Jain (1999), the main problem which computer vision  
tries to solve is the understanding of the content of 
different kinds of images: static (e.g. pictures) or dynamic 
(video sequences); two-dimensional or three-dimensional 
(e.g. images from a 3D scanner) and from one source 
(monocular) or from multiple sources (e.g. binocular 
stereo images). 

Nevertheless, after many years of research work, we 
are still far away from achieving outstanding vision skills 
similar to biological systems. Though significant results 
have been reported in specific domains, where the 
properties of the expected content lie within a certain 
range (e.g. edge detection, motion processing, stereo 
vision, etc.), there are no general-purpose image 
interpretation applications yet or they have a limited 
performance. 

Though, we have focused in this paper at the early 
computing stage of the vision system, in order to fully 
understand the vision process, we should try to 
schematically represent the main levels in which the  
vision process can be structured. The complexity of vision 
systems comes out from the multiple levels of abstraction 
that should be taken into account to achieve the  
scene understanding. Vision researchers tend to  
classify vision algorithms and representations into  
three levels: low (sensory), intermediate (symbolic) and 
high (knowledge based) (Díaz, 2006; Rares et al., 1999; 
Weems, 1991). 

1 Low level vision deals with local operations and is 
composed of spatio-temporal filters. Biological 
systems use cells whose receptive fields project onto 
the retinas. From a set of basic spatio-temporal filters 
of different size and temporal characteristics, vision 
models generate information about stereopsis, motion 
in the scene, local contrast, etc. 

2 At intermediate level vision, the integration and 
segmentation mechanisms take place. This allows 
efficient and constructive combination of different 
visual modalities (motion, stereo, orientation, etc.) or 
segment emerging abstracted information such as 
Independent Moving objects (IMOs). 

3 High level vision: this is a very high level processing 
stage where scene interpretation is performed through 
more specific subtasks, such as object recognition, 
effects prediction, comparison with already perceived 
scenarios, etc. 

For a computer architect, a vision system presents 
therefore three distinct sets of requirements. At each level, 
their requirements can be broken into three categories: 
computation, communication and control which 
correspond to the different levels of abstraction of the 
vision systems. It is important to note that early cognitive  

vision is inherently dense, that is, that it requires 
processing each pixel in the scene, while higher level  
tasks deal with discrete entities with well defined  
semantic meaning. Furthermore, medium and high levels 
vision algorithms are still at development stages and 
therefore, the best architectural processing strategy should 
be able to maximise generality and flexibility at this 
processing level. 

Clearly, no homogeneous processor can 
simultaneously support all levels with optimal efficiency 
and this is one of the reasons that explains why computer 
vision has not advanced as further as expected. Although 
current standard processors have significantly improved 
their processing power in these last years, they are not very 
efficient for real-time complex vision models. They are 
well suited for high level vision tasks, because this level 
works with discrete data trying to maximise the generality 
and flexibility of the models. On the other hand, low level 
vision tasks require massive parallelism for regular  
pixel-wise computation. Sequential processors (even using 
current multicore architectures) are too constrained to 
achieve real-time. 

Although there is no general agreement about how to 
structure such a complex system, we propose a computing 
architecture as presented in Figure 1. 

In this contribution, we will focus on the way of  
using current digital technology for developing 
architectural solutions for two well known low level 
computer vision tasks: motion and binocular  
depth estimation. Typically, real-time systems work with 
limited spatial or temporal resolutions (Bruhn et al., 2005; 
Darabiha et al., 2006; Focus Robotics, 2006; Martín et al., 
2005) which significantly restricts system capabilities, 
specially if compared to biological systems which have 
very large visual resolution and motion perception  
(Curcio et al., 1990; García-Pérez and Peli, 2001; 
Goodchild et al., 1996; Watson et al., 1986).  
We consider that a stereo image resolution of 1024 × 1024 
at 30 fps and motion estimation of 512 × 512 at 100 fps are 
the primary specifications in order to develop  
powerful vision systems based on these features.  
In previous works, we presented motion and disparity 
estimation datapaths separately (Díaz et al., 2007, 2006b) 
and showed that this performance is feasible. This 
contribution goes one step further, showing how very 
complex processing cores can be integrated without 
degrading the system performance thanks to an efficient 
management of system resources. To the best of our 
knowledge, this is the first time that a real-time embedded 
device for computing stereo and motion information 
concurrently is presented. 

This paper is structured as follows. In Section 2, we 
will describe how to deal with bioinspired massive parallel 
computations thanks to finely defined datapath structures. 
Specific solutions are required in order to maximise results 
for low vision tasks. This design strategy will be illustrated 
in Section 3 with applications to motion and stereo 
disparity computation. Section 4 focuses on the properties 
and requirements of the whole system and finally,  
Section 5 presents the main conclusions achieved in this 
contribution. 
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2 Long pipelines as an architectural solution for 
bioinspired computing structures 

In the late 1980s, Carver Mead coined the term 
neuromorphic to describe Very Large Scale Integration 
(VLSI) systems containing electronic analog circuits that 
mimic neurobiological architectures present in the nervous 
system (Mead, 1989). Recently the term neuromorphic has 
been used to describe analog, digital or mixed-mode 
analog/digital VLSI systems that implement models of 
bioinspired neural systems (for different tasks such as 
vision, motor control or sensory processing) as well as 
software algorithms. 

These approaches assume the hypothesis that in 
biological systems, the computing structure is much 
related to the computation that is implemented. Therefore, 
neuromorphic engineers try to mimic the neural topologies 
in which the computations take place to investigate at 
which level they are related. In a similar way as 
neuromorphic Engineers, we consider that engineering 
processing architectures can benefit considerably by 
mimicking nature. However, we consider that neurons 
based topologies are not completely well suited  
for our aim datapaths, since the physical principles and 
constraints upon which biological tissues are based are 
very different from those characteristically used in 
electronic technology. 

Our approach tries to abstract the key-functional 
principles that contribute to the outstanding performance 
of biological systems, to formulate them in a more 
mathematical way and to translate them into silicon using 
well known designing techniques such as time-slicing, 
pipelining and superscalar units. For instance, bioinspired 
approaches for motion computation are usually based on 
energy models (Mota et al., 2005; Simoncelli, 1993). 
These models are based on a neural population of  
cells, each of them tuned to a different velocity. The 

velocity estimation process relies in the estimation of the 
winner cell. Nevertheless, as demonstrated by Simoncelli 
(1993), this process is fully equivalent to a least squares 
fitting process over a restricted cell population. This is 
used for instance in gradient methods as described by 
Barron et al. (1994) and based on that, motion can be 
computed from a more mathematical point of view which 
can be easier to implement on standard digital hardware. 
Then, taking full advantage of the fast clock rates and 
design techniques available on current technology, this 
mathematical scheme allows overcoming the restricted 
parallelism affordable in silicon devices. 

In particular, one innovative aspect is the utilisation of 
very deep pipelines. As showed in Hartstein and Puzak 
(2002), different applications fit in different parallelism 
levels and optimal pipeline depth. A proper selection of the 
low level vision algorithms and tasks translates into 
hazards-free architectures which allow very deep pipelines 
with outstanding data throughput. Most of the low level 
vision tasks mimic in more or less detail biological nets 
where inhibition/excitation mechanisms take place instead 
of branch conditions. The main limitation consists on how 
to efficiently plan the pipeline data feed to avoid stopping 
the processing modules, taking into account that most of 
the algorithms use local data and can therefore take full 
advantage of small and local memories. 

This design methodology requires that data arithmetic 
representation and bit-width should be carefully chosen. 
For instance, by using fixed point arithmetic, data  
bit-width linearly increases with additions and 
subtractions, doubles with multiplications and depending 
on target precision, significantly changes with divisions 
and trigonometric operations. In Díaz (2006), a new 
Matlab based tool called MCode for DSP Analyser is 
presented. This tool has been satisfactorily utilised to help 
the designer to properly balance the resources 
consumption versus performance trade-off. 

Figure 1 Schematic of the vision system architecture. Each of the three different computer vision levels suits better different 
computing devices. High level vision fits well on standard processors. Intermediate level vision shares requirements  
from the upper and lower levels. Therefore, a hybrid software–hardware platform is required. This scheme can be  
efficiently developed using current FPGAs devices which make feasible to design customised embedded processors  
and specific datapaths. Finally, low level vision fits quite well on highly parallel fine grain parallel architectures which  
are able to compute in a very parallel way multiple vision features, each of them computed in a single processing element 
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We illustrate here two examples of this design 
methodology. We have developed a system for real-time 
processing of optical flow and depth estimation that is able 
to extract these modalities at high frame rates with  
large image resolution. Pipelines with both more than 70 
stages and a high parallelism level have been accomplished 
in current reconfigurable devices to achieve an outstanding 
computing performance, as shown in Sections 3 and 4. The 
effect of this design methodology is quite relevant  
even when using low clock rates. In the optimal case, a 
system running, for instance, at 50 MHz, should be able to 
estimate one feature per clock cycle. This translates into a 
computing power of 50 million estimations per second.  
We can adapt the clock rate according to the target 
application by using the rate which fits our  
target application or reduce the parallelism level by 
sharing processing units, thus reducing the resources 
consumption. 

Though reconfigurable devices are able to achieve a 
very high parallelism level, their physical implantation is 
often constrained due to the limited transmission 
bandwidth available from external memory devices.  
This is usually one of the important bottlenecks for  
FPGA processing capability. An efficient management  
of external (large) and internal (small) memory  
resources is critical to achieve the maximum system 
performance. 

3 Local methods for solving the image 
correspondence problem 

The problem of image correspondence is a complex task 
which deals with matching image objects in different 
images taken under different conditions (for instance, 
taken from different points of view or in a different 
instant). Hereon, we will only consider pixel-wise  
features, which are the primitives presented at early  
vision stages. In a very coarse way, these methods  
can be classified into local or global methods (see for 
instance Brown et al. (2003) for the case of disparity 
estimation). 

On the one hand, global correspondence methods 
usually require storing the whole image into memory 
resources, which is not affordable into embedded  
memory of current silicon devices and therefore  
requires the utilisation of external memories. Furthermore, 
they are generally based on iterative operations which 
require a large number of accesses. This degrades 
significantly the performance of these approaches,  
which usually work at low clock rates (compared to 
standard PCs) and penalties its skills for real-time 
operations. 

On the other hand, local methods only use information 
available on small patches of the image which make 
feasible to use caching methods in optimising the system 
throughput. This scheme fits quite well on high parallel 
devices such as FPGAs and therefore, we will focus 
herewith on two well-known and efficient methods for 
image motion and disparity. 

3.1 Motion computation based on least squares 
fitting of image derivatives 

The method for computing motion from a sequence of 
images was proposed by Lucas and Kanade (1984) (L&K) 
and has been highlighted by several authors as a good 
alternative in terms of accuracy and efficiency trade-off 
(Barron et al., 1994; Liu et al., 1998). 

The key-idea is based on the assumption of  
luminance constancy over time. Luminance is 
approximated by its Taylor series expansion and truncated 
in the first order. This becomes an ill-posed equation 
usually known as first order constraint, which is expressed 
in Equation (1). 

( )( , , ) , ( , , ) 0xy x y tI x y t v v I x y t⎡ ⎤∇ + =⎣ ⎦  (1) 

In Equation (1), Vx and Vy stand for the two components  
of each pixel velocity; It represents the temporal derivative 
of the sequence and ∇xy stands for the spatial  
(x − y) gradient operator which computes the image 
derivatives Ix and Iy. Lucas and Kanade (19984) solved  
this problem by applying least squares fitting on a  
local neighbourhood Ω of each pixel, typically of  
5 × 5 pixels. 

The final velocity estimation is computed from 
Equation (2), where W stands for the weights used to 
properly integrate estimations over the neighbourhood Ω 
(typically a five taps Gaussian kernel). 
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According to Equation (2), the main steps required for this 
model can be summarised as follows: 

• S0: spatio-temporal image smoothing based on FIR 
Gaussian filters. 

• S1: temporal smoothing and derivative operations. 

• S2: spatio-temporal image derivatives computation 
from temporal data based on first order Gaussian 
kernels. 

• S3: image derivatives combination on a local 
neighbourhood to construct the basic elements for 
least squares fitting (Akj elements on Equation (2)). 

• S4: estimation of local velocity values. 

The corresponding data-flow is presented in Figure 2. The 
whole architecture is described in more detail in Díaz et al. 
(2007, 2006b). Each image operation is decomposed into 
simple microoperations (such as addition, subtraction, 
multiplexers, etc.), performed by different Simple 
Processing Stages (SPS) and structured in a long pipeline 
datapath. This is similar to systolic circuits, but in our 
system, each SPS is different and therefore, regular 
structures such as systolic systems are not feasible. 
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3.2 Phase difference computation of binocular 
images for depth estimation 

Most of the real-time systems for image disparity 
estimation are based on block-matching correspondence 
techniques (Brown et al., 2003) with some  
exceptions, such us Darabiha et al. (2006). We have 
focused on the phased-based computing model proposed 
by Solari et al. (2001). In a first approach, the  
positions of the corresponding points are related by a 1D 
horizontal shift, the disparity, along the direction of the 
epipolar lines. Disparity can be estimated in terms of phase 
differences in the spectral components of the binocular 
pair of images as described in Solari et al. (2001). 
Spatially localised phase measurements can be obtained by 
filtering operations with a pair of quadrature bandpass 
Gabor filters. 

The advantage of phase-based approaches, according 
to different authors, consists of their robustness to 
luminance variations and cameras imbalance problems. 
Furthermore, they lead to a better behaviour against  
affine transformations (for instance, due to different 
camera perspectives) (Cozzi et al., 1997; Fleet and  
Jepson, 1993). The phase difference is computed from 
Equation (3): 

L R R L L R

L R L R
0

( ) ( ) 1
( ) arctan 2

( )

x x C S C S
x

k x k C C S S

⎛ ⎞− −
= ≈ ⎜ ⎟+⎝ ⎠

φ φδ  (3) 

where we note with φL and φR the left and right local 
 image phases. CR and CL correspond to the values of left 

and right image pixels after convolving with the  
even part of the quadrature filter and SR and SL to the odd 
quadrature filter outputs. The arctan 2 stands for  
the principal part of the argument (i.e. the argument 
belonging to [−π, π]). Finally, k(x) is the average 
instantaneous frequency of the bandpass signal, which can 
be approximated by k0, the quadrature filter peak 
frequency. 

It should be noted that Equation (3) does not require 
the explicit calculation of the left and right phases and 
thus, we can compute the phase difference directly by 
avoiding the problem of phase wrapping. 

To address the hardware implementation of this 
approach, the basic steps can be summarised as follows: 

• S0: DC component image removal using the local 
image contrast I − Imean operator for the even Gabor 
filter. 

• S1: even (C) and odd (S) 1D Gabor filtering of  
left and right images. 

• S2: direct phase-difference calculation from (3). 

• S3: disparity computation, assuming k(x) ≈ k0  
(Figure 3). 

The corresponding data-flow is presented in Figure 3. The 
whole architecture is described in more detail in Díaz et al. 
(2007). In a similar way to the previous motion estimation 
system, each image operation is decomposed into simple 
microoperations, computed by SPS implemented in 
dedicated micropipeline stages. Note that there are some 

Figure 2 Simplified schematic of the motion extraction system. The coarse stages of a Gradient based optical flow computing  
circuit are represented. Each stage, S

i
, represents a coarse description of the pipelined and superscalar architecture  

developed for motion computation 

Figure 3 Simplified schematic of the disparity computation system. The basic stages of the circuit S
i
, represent a coarse description of 

the pipelined and superscalar architecture (some of them duplicated because the system is fed from 2 cameras). Note that 
there is a new module in stage S

2
 which decides if each disparity estimation passes or is rejected because it corresponds to a 

low contrast image area 
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common operations for left and right images (stages S0 and 
S1) which can broadly speaking be described as a two-ways 
scalar unit. This circuit parallel expansion is motivated by 
the hard constraints required to keep the throughput of one 
pixel estimation for each clock cycle. 

4 High performance motion and disparity 
estimation architecture 

We have implemented a high performance embedded 
system for motion and disparity estimation using 
reconfigurable hardware (FPGAs). This technology fits 
very well the requirements of low level vision systems as 
described in the introduction section and illustrated in 
Figure 1. Furthermore, current FPGAs are heterogeneous 
devices which do not only contain logic gates, but also 
distributed embedded memories and MAC units. Massive 
parallel simple units can be easily developed in these 
devices using the available logic gates. Caching techniques 
are implemented taking full advantage of the distributed 
memories. Besides, high efficient DSP operations can be 
defined thanks to the embedded multipliers and MAC 
units. 

Our system scheme is outlined in Figure 4. We use two 
input cameras whose images are digitised and stored into 
external memories by using a dual camera frame-grabber 
circuit. This frame-grabber is used to feed the motion and 
disparity datapaths. System output can be visualised by 
using a VGA output. The user interface units are used to 
transfer the user commands. For instance, this interface 

allows to modify confidence circuit thresholds or to switch 
the visualisation output (stereo or motion). 

Next sections deal with the system resources, the 
results and a qualitative evaluation of the whole 
architecture complexity. 

4.1 Feasibility of massive parallel circuits 
utilisation 

In the previous works, we presented the different 
processing units separately (Díaz et al., 2007, 2006b). 
However the integration of these complex processing  
cores without degrading the performance is not 
straightforward. This contribution shows that this 
integration is feasible and that fine pipeline operations can 
be scheduled in a non-interfering way to keep our 
architectural specifications, one estimation per clock pixel. 
In order to achieve this parallelism level, we should be 
able to provide arbitration circuits to the different SPS to 
properly feed each processing unit. In this line, a 
fundamental point is to control the memory resources 
efficiently, which is performed using a high performance 
MMU described in Díaz et al. (2006a). This allows to 
implement the whole architecture by using only three 
external memory banks. 

The whole system is a very complex and parallel 
architecture. To provide an idea of the complexity,  
Table 1 presents the number of SPS which are  
required for the motion and stereo processing cores.  
For each coarse stage Si described in Sections 3.1 and 3.2, 

Figure 4 Binocular stereo and motion estimation system architecture. External memories (3 banks), cameras and VGA  
output are schematically represented. Dark boxes represent the image processing cores developed for stereo  
and motion estimation 
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Table 1 indicates the number of fine pipeline stages as well 
as the number of scalar units. In total, 446 SPS are 
required for the image processing cores. In this table, we 
exclude the SPS used for interfacing and memory 
management. The whole architecture uses more than  
500 SPS. 

Table 1 Number of SPS used for the image processing 
cores. We indicate the number of fine pipeline 
stages as well as the number of scalar units  
used in each coarse stage S

i
. Note that stage  

S
2
 of the stereo units uses two independent 

datapaths, one for computing the disparity (D)  
and the other one for estimating the  
confidence threshold (C

T
). This is noted as  

D/C
T
 in the scalar unit column 

Processing unit (coarse 
pipeline stages)  

Pipeline 
stages 

Scalar 
units 

Simple 
circuits 

Motion processing unit 

S
0
: Image smoothing 12 1 12 

S
1
: Temporal operations 9 2 18 

S
2
: Spatio-temporal image 

derivatives 
12 3 36 

S
3
: Least squares fitting 

elements  
12 5 60 

S
4
: Local velocities 

computation 
25 2 50 

Binocular stereo processing unit 

S
0
: DC component removal  50 2 100 

S
1
: Gabor filtering 28 4 112 

S
2
: Direct phase 

computation 
45/9 1/1 54 

S
3
: Disparity computation 4 1 4 

Total number of SPS: Motion (176) + Stereo (270) = 446 SPS 

4.2 System resources and qualitative results 

The whole system has been successfully synthesised into a 
Virtex II XC2V6000-4 Xilinx FPGA. It required less than 
35% of the device, including the user interface unit, 
memory controller, frame-grabber of binocular cameras 
and VGA visualisation module. Note that the whole system 

only computes motion information for one of the cameras, 
as this is sufficient for most vision applications. The 
complete system resources consumption is presented in 
Table 2. 

We need to point out that complete system of  
resources for stereo-motion is less than the addition of the 
two systems. This is clearly explained if we take into 
account that stereo and motion units have several  
common interfacing units (e.g. frame-grabbers, VGA 
controllers, etc.) which can be shared in the whole 
architecture. 

It also important to point out that each image  
feature (stereo or motion information) has different 
requirements about image resolution and frame rate.  
Table 2 represents an example of image resolution  
for each case, providing larger resolution for the stereo 
unit to increase depth estimation accuracy and higher 
frame-rate to the motion module to reduce the temporal 
aliasing. When both modules are integrated into  
the same device, though image streaming can be managed 
completely independently, it is quite difficult (and 
expensive) to find cameras which allow this high  
frame rate and resolution. A compromise solution  
given in Table 1 consists in the utilisation of a medium 
frame-rate and image resolution camera. Nevertheless, it 
shall be rather specified depending on the target 
application. 

A last point to consider is related to the bandwidth 
requirements. For each pixel image, the disparity value and 
x−y velocity component uses 12 bits. This means that we 
produce 36 bits per pixel. If we try to send this information 
at the maximum speed, 46.7 MHz, this means that we 
require up to 1.7 Gbits/s. This is difficult though feasible 
with current communication buses such as PCI-express. 
Nevertheless, it is a huge quantity of data, which is 
difficult to manage for a standard processor. This motivates 
the necessity for integration/fusion mechanisms as 
commented in Section 1. 

Figure 5 shows an example of the final system outputs. 
A binocular driving scene is acquired and processed. 
Stereo information can be clearly used to determine the 
object distances (using a proper calibration). Motion shows 
the expansion focus of the image which can be used to 
estimate heading information. 

Table 2 System resources required on a Virtex II XC2V6000-4. The first row includes the resources for a monocular motion 
system. The second row corresponds to the disparity estimation module, and finally, the last row indicates the whole  
stereo-motion processing system. Each row presents the resources required to implement the image processing core, 
including the memory management unit, camera Frame-grabber, VGA signal output generation and user configuration 
interface. (Mpps: mega-pixels per second at the maximum system processing clock frequency, EMBS: embedded  
memory blocks) 

Processing stage Logic cells/(%) EMBs/(%) Embedded multipliers/(%) Mpps Image resolution Fps 

Motion 18096 (26%) 28 (19%) 12 (8%) 50.7 640 × 480 165 

Stereo 13852 (20%) 15 (10%) 8 (5%) 48.35 1280 × 960 39 

Stereo-motion 27454 (40%) 43 (29%) 20 (13%) 46.7 800 × 600 97 
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5 Conclusion 

This paper has illustrated how two different low level 
vision visual modalities, stereo and motion, can now be 
efficiently computed on a single chip. This is of high 
interest for a large number of applications which can 
benefit from this information in real-time. This system 
opens the way to new models and applications for 
integrating this information in a robust way by using the 
mechanisms described in the introduction for intermediate 
and high level vision tasks. 

We have validated our architectural hypothesis of high 
parallelism computation as a high performance and 
feasible solution. The whole system requires more than 
500 SPS. It runs at a 46.7 MHz rate and is able to  
provide one estimation (disparity and velocity) per  
clock cycle. The image resolution can be determined by 
the user and according to that, the maximum frame-rate 
can be estimated. This device achieves an outstanding 

performance compared to any previous literature 
contribution, which validates our design strategy. 

Nevertheless, is important to point out that the output 
data stream requires a large bandwidth, which makes 
difficult to transmit from the FPGA to a standard 
processor. Therefore, future work will address the 
integration mechanisms required to properly compress the 
data stream into only highly reliable information. We will 
address this by building multimodal entities which encode 
and compress the relevant image stereo and motion 
information. 
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Figure 5 Optical flow and disparity computation results. (a) Input binocular images of a forward view driving scene. (b) Estimated 
Disparity values. Closer objects represented in light grey levels and far away objects in dark grey levels. Black codifies 
unconfident values which are rejected after the computation. (c) Module of the computed velocity with arrows superimposed 
to indicate the motion direction. Due to the image perspective, closer objects seem to move faster and are represented using 
light grey levels. Black areas represent unconfident values rejected after the computation. 
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