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Abstract. We propose a new EEG-based wireless brain computer in-
terface (BCI) with which subjects can “mind-type” text on a computer
screen. The application is based on detecting P300 event-related poten-
tials in EEG signals recorded on the scalp of the subject. The BCI uses a
simple classifier which relies on a linear feature extraction approach. The
accuracy of the presented system is comparable to the state-of-the-art
for on-line P300 detection, but with the additional benefit that its much
simpler design supports a power-efficient on-chip implementation.

1 Introduction

Research on brain computer interfaces (BCIs) has witnessed a tremendous de-
velopment in recent years (see, for example, the editorial in Nature [1]), and
is now widely considered as one of the most successful applications of the neu-
rosciences. BCIs can significantly improve the quality of life of neurologically
impaired patients with pathologies such as: amyotrophic lateral sclerosis, brain
stroke, brain/spinal cord injury, cerebral palsy, muscular dystrophy, etc.

Brain computer interfaces are either invasive (intra-cranial) or noninvasive.
The first ones have electrodes implanted usually into the premotor- or motor
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frontal areas or into the parietal cortex (see review in [2]), whereas the non-
invasive ones mostly employ electroencephalograms (EEGs) recorded from the
subject’s scalp. The noninvasive methods can be further subdivided into three
groups. The first group explores visually evoked potentials (VEPs) and they can
be traced back to the 70s, when Jacques Vidal constructed the first BCI [3]. The
second group of noninvasive BCIs rely on the detection of imaginary movements
of the right or the left hand [4]. The third noninvasive group are the BCIs that
rely on the ’oddbal’ evoked potential in the parietal cortex, and is the topic of
this article.

An event-related potential (ERP) is a stereotyped electrophysiological re-
sponse to an internal or external stimulus [5]. One of the most known and ex-
plored ERPs is the P300. It can be detected while the subject is classifying
two types of events with one of the events occurring much less frequently than
the other (rare event). The rare events elicit ERPs consisting of an enhanced
positive-going signal component with a latency of about 300 ms [6].

In order to detect the ERP in the signal, one trial is usually not enough
and several trials must be averaged. The averaging is necessary because the
recorded signal is a superposition of all ongoing brain activities as well as noise.
By averaging the recordings, the activites that are time-locked to a known event
(e.g., onset of attended stimulus) are extracted as ERPs, whereas those that are
not related to the stimulus presentation are averaged out. The stronger the ERP
signal, the fewer trials are needed, and vice versa.

A number of off-line studies have been reported that improve the classification
rate of the P300 speller [7, 8, 9], but not much work has been done on on-line
classification. To the best of our knowledge, the best on-line classification rate
for mind-typers is reported in [10]. For a decent review of BCIs, which is out of
the scope of this study, see [11].

The BCI system descibed in this article is an elaboration of the P300-based
BCI but with emphasis on a simple design for a power-efficient on-chip imple-
mentation.

2 Methods

2.1 Acquisition hardware

The EEG recordings were performed using a prototype of an ultra low-power
8-channel wireless EEG system (see Fig. 1). This system was developed by
IMEC partner and is built around their ultra-low power 8-channel EEG am-
plifier chip [12]. The EEG signals are µV-range low-frequency signals that are
correlated with a large amount of common-mode interference. This requires the
use of a high performance amplifier with low-noise and high common-mode re-

jection ratio (CMRR). IMEC’s proprietary 8-channel EEG ASIC consumes only
300 µW from a single 2.7 − 3.3 V supply. Each channel of the ASIC consists of
an AC coupled chopped instrumentation amplifier, a chopping spike filter and

a variable gain stage, and achieves 80 nV/Hz
1
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Fig. 1. Wireless 8 channel EEG system: amplifier and transmitter (left) and USB stick
receiver, plugged into the extension cable (right).

130 dB CMRR at 50 Hz, while consuming 8.5 µA. The gain of the amplifier is
digitally programmable between 2000 and 9000 and the higher cut-off bandwidth
is digitally programmable between 52 Hz and 274 Hz. The input impedance ex-
ceeds 100 MΩ.

The wireless system uses a low-power microcontroller (Texas Instruments
MSP430) combined with a low-power 2.4 GHz radio (Nordic nRF2401). In op-
erational mode, the EEG signal is sampled at 1000 Hz with 12 bit resolution.
These samples are collected in packets and transmitted in bursts at a data rate
of 1 Mb/s to the receiver, which is connected through a USB interface to the
PC. The average total power consumption of the system in operational mode
is 18 mW (6 mA at 3 V). This implies it can be operated for more than one
week continuously on two AAA batteries before the battery voltage drops below
specification. At start-up, the system’s parameters (such as gain and bandwidth
settings) can be changed wirelessly.

The system also includes an electrode impedance measurement circuit that
can measure the electrode impedances in the range of 1 kΩ to 6 MΩ. The system
is designed for use with Ag/AgCl electrodes. For these experiments we have used
a braincap with large filling holes and sockets for ring electrodes.

2.2 Acquisition procedure

Recordings were collected from eight electrodes in the parietal and occipital
areas, namely in positions Cz, CPz, P1, Pz, P2, PO3, POz, PO4, according to
the international 10–20 system. The reference electrode and ground were linked
to the left and right mastoids.

Each experiment started with a pause (approximately 90 second) needed for
the stabilization of the EEG acquisition device. During this period, the EEG de-
vice transmits data but it is not recorded. The data for each symbol presentation
was recorded in one session. As the duration of the session was known a-priori,
as well as the data transfer rate, it was easy to estimate the amount of data
transmitted during a session. We used this estimate, increased by a 10% margin,
as the size of the serial port buffer. To make sure that the entire recording session
for one symbol fits completely into the buffer, we cleared the buffer just before



recording. This trick allowed us to avoid broken/lost data frames, which usually
occur due to a buffer overflow. Unfortunately, sometimes data frames are still
lost because of a bad radio signal. In such cases, we used the frame counter to
reconstruct the lost frames, using a simple linear interpolation.

The overhead for one-symbol-session data reading from the buffer and the
EEG signal reconstruction from the raw data, appeared to be negligible in Mat-
lab, thus the latter was chosen as the main development environment.

2.3 Data-stimuli synchronization

Unlike a conventional EEG systems, the system we used does not have any
external synchronization inputs. We tried to use one of the channels for this
purpose (connecting it to a photo-sensor attached to the screen), but this scheme
was not stable enough for long recording times. Finally, we came up with an
”internal” synchronization scheme based on high-precision (up to hectananose-
cond) timing1.

For the synchronization, we saved the exact time stamps of the start and
end points of the recording session, as well as the time stamps of stimulus onsets
and offsets. Due to the fact that the reconstructed EEG signal has a constant
sampling rate, it is possible to find very precise correspondences between time
stamps and data samples. We used this correspondence mapping for partitioning
the EEG signal into signal tracks, for further processing.

2.4 Experiment design

Four healthy male subjects (aged 23–36 with average age of 31, three righthanded
and one lefthanded) participated in the experiments. Each experiment was com-
posed of one training- and several testing stages.

We used the same visual stimulus paradigm as in the first P300-based speller,
introduced by Farwell and Donchin in [13]: a matrix of 6× 6 symbols. The only
(minor) difference was in the type of symbols used, which in our case was a set
of 26 latin characters, eight digits and two special symbols ’ ’ (used instead of
space) and ’¶’ (used as an end of input indicator).

During the training and testing stages, columns and rows of the matrix were
intensified in a random manner. The intensification duration was 100 ms, fol-
lowed by a 100 ms of no intensification. Each column and each row flashed only
once during one trial, so each trial consisted of 12 stimulus presentations (6 rows
and 6 columns).

As it was mentioned in introduction, one trial is not enough for robust ERP
detection, hence, we adopted the common practise of averaging the recordings
over several trials before performing the classification of the (averaged) record-
ings.

1
TSCtime high-precision time library by Keith Wansbrough
http://www.lochan.org/2005/keith-cl/useful/win32time.html



During the training stage, all 36 symbols from the typing matrix were pre-
sented to the subject. Each symbol had 10 trials of intensification for each
row/column (10-fold averaging). The subject was asked to count the number
of intensifications of the attended symbol. The counting was used only for keep-
ing the subject’s attention to the symbol. The recorded data were filtered in the
0.5 − 15 Hz frequency band with a fourth order zero-phase digital Butterworth
filter, and cut into signal tracks. Each of these tracks consisted of 1000 ms of
recording, starting from stimulus onset. Note that subsequent tracks overlap in
time, since the time between two consequent stimuli onsets is 200 ms. Then, each
of these tracks was downsampled to 30 tabs and assigned to one of two possible
groups: target and nontarget (according to the stimuli, which they were locked
to).

After training the classifier, each subject performed several test sessions and
where he was asked to mind-type a few words (about 30–50 symbols), the perfor-
mance of which was used for estimating the classification accuracy. The number
of trials k that was used for averaging varied from 1 to 10. For each value of k
the experiment was repeated and the classification accuracy was (re)measured.
This experiment design differs from the one proposed in [10], where recordings
and on-line classification were done only for k = 10 and the evaluation of the
method for the cases k = 1, . . . , 9 was done off-line using the same data. Our de-
sign is more time consuming, but it provided us with more independent data for
analisys and evaluation, which is important in experiments with limited number
of subjects.

2.5 Classification

In the proposed system the training stage of the classifier differs from its testing
stage not only by the classification step, but also by the way of grouping the
signal tracks. During the training, the system “knows” exactly which one of
36 possible symbols is attended by the subject at any moment of time. Based
on this information, the collected signal tracks can be grouped into only two
categories: target (attended) and non-target (not attended). However, during
testing, the system does not know which symbol is attended by the subject, and
the only meaningful way of grouping is by stimulus type (which in the proposed
paradigm can be one of 12 types: 6 rows and 6 columns). So, during the testing
stage, for each trial, we had 12 tracks (from all 12 types) of 1000 ms EEG data
recorded from each electrode. The averaged (along trials) EEG response for
each electrode was determined for each group. Then all 12 averaged tracks were
sequentially fed to the feature extractor (see section 2.6), which extracted a
scalar feature yi for each track i. In order to decide which symbol was attended,
the classifier selected the best ”row candidate“ and the best ”column candidate“
among features (y1, . . . , y12) of all tracks, thus the row index ir and the column
index ic of the classified symbol were calculated as:

ir = arg max
i=1,...,6

{yi}, and ic = arg max
i=7,...,12

{yi} − 6.



The symbol on the intersection of the ir-th row and ic-th column in the matrix,
was then taken as the result of the classification and presented, as a feedback,
to the subject.

2.6 Feature Extraction

In order to classify averaged and subsampled EEG recordings into target and
nontarget classes we used the one-dimensional version of a linear feature ex-

traction (FE) approach proposed by Leiva-Murillo and Artés-Rodŕıguez in [14].
As all linear FE methods, this method consider as features projections of the
centered input vectors X = {xi : xi ∈ R

D} onto appropriate d-dimensional
subspace (d < D), and the task is to find this subspace. The method searhes
for the ”optimal” subspace maximizing (an estimate of) mutual information be-
tween the set of projections Y = {WTxi} and the set of corresponded labels
C = {ci}. In the proposed system the class labels set consists of only two classes,
thus we set C = {−1, +1}. The dimensionality d of the desired subspace was set
to 1, because it appeared to be enough to achieve a robust separation of the two
classes, but compared to higher dimensionalities (we also tried d = 2, 3), it is
computationally much cheaper. In the case of d = 1 the subspace is represented
only by one vector w ∈ R

D and projections are scalars yi = wT xi ∈ R
1. Ac-

cording [14], the mutual information between the set of projections Y and the
set of corresponded labels C can be estimated as:

I(Y, C) =

Nc∑

p=1

p(cp) (J(Y|cp) − log σ(Y|cp)) − J(Y),

with Nc = 2 the number of classes, Y|cp the projection of the p-th class’ data
points onto the direction w, σ( · ) the standard deviation and J( · ) the negentropy
estimated using Hyvärinen’s robust estimator [15].

The input vector x is constructed as a concatenation of the subsampled and
filtered EEG data: x = (x11, x12, . . . , x1K , x21, x22, . . . , x2K , . . . , xN1, . . . , xNK)

T
,

where K is number of subsamples, and N is number of channels. In our experi-
ments we used K = 30, N = 8 and D = KN = 240.

We also tried FE method proposed by Torkkola in [16], which in the one-
dimensional case is almost equivalent to the considered one, but it is slightly more
computationally expensive. In multi-dimensional cases, the method by Leiva-
Murillo’s outperforms Torkkola’s method quantatively (in terms of the mutual
information between classes and projections), as well as computationally (in
terms of the number of floating point operations) as was shown by us in an
earlier study [17].

3 Results and discussion

The performance of each subject in mind-typing with our system is displayed
in Fig. 2, where the percentage of correctly-typed symbols is plotted versus the
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Fig. 2. Accuracy of classification for different subjects as a function of the number of
trials used in testing. Averaged result and result from [10] are also plotted.

number of trials k used for averaging. The average performance of all subjects,
as well as the average performance of the best mind-typing system described in
the literature [10], are also plotted. It should be mentioned that the mind-typing
system of Thulasidas and co-workers is based on a support-vector machine (SVM)
classifier with a Gaussian kernel, which is usually trained using a grid-search
procedure for optimal parameter selection. The training of the SVM classifier
with nonlinear kernel takes substantially more time than the training of the
FE-based linear classifier used in our system.

Another consideration is that the on-chip implementation of the SVM clas-
sifier is more complex than our solution, due to the presence of nonlinearity in
the kernel-based function.

As it is clear from Fig. 2, the performance strongly depends on the subject.
However, we hasten to add that in order to draw any statistically-grounded con-
clusions from only four subjects, many more experiments need to be performed.

4 Conclusions

The brain-computer interface (BCI) presented in this article allows the subject
to type text by detecting P300 potentials in EEG signals. The proposed BCI
consists of a EEG system and a classifier which is based on linear feature ex-
traction. The simplicity of the proposed system supports an efficient on-chip
implementation (e.g., on an ASIC).

The results of this study shows that, in the field of BCIs based on event-
related potentials, even simple solutions can successfully compete with the state-
of-the-art systems.
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