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Abstract

In the mammalian cortex the early sensory processing, e.g. vision, can be characterized
as feature extraction resulting in local and analogue low-level representations. As a
direct consequence, these map directly to the environment, but interpretation under
natural conditions is ambiguous. In contrast, high-level representations for cognitive
processing, e.g. language, require symbolic representations characterized by expression
and syntax. The representations are binary, structured and disambiguated. However, do
these fundamental functional distinctions translate into a fundamental distinction of the
respective brain areas and their anatomical and physiological properties? Here we argue
that the distinction between early sensory processing and higher cognitive functions may
not be based on structural differences of cortical areas; instead identical learning
principles acting on input signals with different statistics give rise to the observed
variations of function.

Firstly, we give an account of present research describing neuronal properties at
early stages of sensory systems as a consequence of an optimization process over the
set of natural stimuli. Secondly, addressing a stage following early visual processing we
suggest to extend the unsupervised learning scheme by including predictive processes.
These contain the widely used objective of temporal coherence as a special case and
are a powerful approach to resolve ambiguities. Furthermore, in combination with a prior
on the bandwidth of information exchange between units it leads to a condensation of
information. Thirdly, as a crucial step, not only are predictive units optimized, but the
selectivity of the feature extractors are adapted to allow optimal predictability. Thus, over
and beyond making useful predictions, we propose that the predictability of a stimulus is
in itself a selection criterion for further processing.

In a hierarchical system the combined optimization process leads to entities that
represent condensed pieces of knowledge and that are not analogue anymore. Instead,
these entities work as arguments in a framework of transformations that realize
predictions. Thus, the criteria of predictability and condensation in an optimization of
sensory representations relate directly to the two defining properties of symbols of
expression and syntax. In this paper, we sketch an unsupervised learning process that
gradually transforms analogue local representations into discrete binary representations
by means of four hypotheses. We propose that in this optimization process acting in a
hierarchical system entities emerge on higher levels that fulfil the criteria defining
symbols, instantiating qualitatively different representations at similarly structured low
and high levels.



1 Introduction

In recent years we saw a rapid increase of our knowledge about sensory processing in
the mammalian brain under natural conditions (c.f. Kayser et al. 2004). Starting from
neurophysiological investigations of early visual processing a large part of this work
focuses on a quantitative description of signal processing and characterising the
properties of representations of stimuli (Maunsell and Newsome 1987; Ringach 2004).
For example, the activation of simple cells in primary visual cortex is well described by a
convolution of the stimulus with a kernel defining its linear receptive field (Jones and
Palmer 1987). Besides orientation, subsets of neurons in V1 are sensitive to different
visual features such as optic flow, colour and disparity (Hubel and Wiesel 1959; Hubel
and Wiesel 1962). In the resulting representation no structured interaction between
constituents exists and the activation of neurons occurs in a graded fashion. The
information represented in the different visual features is incomplete and ambiguous
since it is extracted by means of local filter operations (Aloimonos and Shulman, 1989;
Kriiger and Wdérgétter, 2004). A prominent example is the aperture problem in optic flow
computation. Another example is the extraction of 3-dimensional structures by
stereoscopic images. Here the loss of information in the mapping from 3D world to the
2D retina necessitates an interpretation of the representations in the light of additional
constraints (e.g. Klette et al. 1998). Summarizing, the processing in low-level sensory
systems can be characterized as feature extraction and the resulting representations are
local, analogue, ambiguous and map directly to the environment.

More recently, an additional path has been approached to understand early
visual processing. It is based on unsupervised learning of neuronal representations of
natural stimuli. A milestone was the discovery that orientation selective responses as
found in primary visual cortex can be understood as optimally sparse representations of
natural images (Olshausen and Field 1996, 2004; Hyvarinen and Hoyer 2000). Further
results also address selectivity with respect to other features, such as motion (Berkes
and Wiskott in press), disparity (Onat et al. submitted) and colour (Einhduser et al.
2003). This allows the perspective that a substantial part of feature selectivity in early
visual processing can be understood on the basis of unsupervised learning according to
a small number of objectives. In this way, local filter operations similar to ones known
from neuropysiological investigations become grounded in the structural properties of
natural scenes and by a number of principles such as sparseness, stability and
independence.



Currently, an investigation of the physiological basis of higher cognitive
processes becomes feasible and moves into the centre of interest. In these processes,
the use of categories and symbols plays a prominent role. Recent investigations provide
evidence for category specific pop-out effects (Hershler and Hochstein 2005), effects of
categories in perceptual learning (Ashby and Maddox 2005) and category-specific visual
responses of single neurons in the human cortex (Kreiman et al. 2000; Quiroga et al.
2005). The most prominent example, however, is the human mastery of language. The
use of language allows the representation and manipulation of symbols. The
condensation of individual stimuli in categories implies a huge loss of information.
However, in contrast to low-level neuronal representations, discarded information relates
to a large part to irrelevant details and ambiguities that have to be interpreted are much
less prominent. A standard notion of symbols in a certain representational framework
(e.g. Honavar and Uhr 1994) is that

(SE) symbols are condensed and discrete semantic representatives for certain
pieces of knowledge (Expression)

(SS) on which operations can be performed that correspond to relevant functional
relations in this framework (Syntax).

Symbol manipulation typically identifies symbolic expressions, decomposes given
expressions and generates new by syntax. The syntax specifies which combinations of
symbols are valid expressions, and structurally different assemblies of symbols may
have different meanings. Hence, representations for cognitive processing such as high-
level vision and language seem to require symbolic representations that are binary,
disambiguated and show a certain degree of structure.

A fundamental problem connected to symbols is the origin of their meaning. In
formal systems its relations to other symbols and operators define the meaning of a
symbol (Hilbert 1928). In a purely perceptual system the meaning of symbols may come
from the structural properties of the environment as well as the body and purposes of the
system itself. This issue has become known as the so-called symbol-grounding problem
(Harnad 1990). It has been argued that symbols are interpreted correctly only by a
perception-action cycle (Steels 2003). This deep philosophical issue has triggered many
debates and no satisfactory explanation of the symbol-grounding problem has been
reached yet.

The two antipodes, processing of local, analogue and potentially ambiguous
signals versus manipulation of discrete and structured symbols, have lead to two major
research directions, found to a large extend in Neural Networks research and classical
Artificial Intelligence respectively. Within the respective domains both approaches have



reasonable success. However, does the fundamental distinction drawn between these
disciplines translate into a fundamental distinction of the respective brain areas and
physiological properties? In the following we discuss three viewpoints. They are chosen
deliberately representing extreme answers to chart out clearly the space of possible
solutions to this problem.

Firstly, cortical areas involved in local analogue signal processing and cortical
areas involved in the manipulation of symbols could exhibit genetically determined
different anatomical structures and circuits serving the qualitatively different functions.
Indeed, it is well known for many years that the laminar structure of cortex shows
regional variations and can be used to define cortical areas (Brodmann 1906), and only
recently it has been speculated that few genes may serve as the foundation of high level
skills like language (Vargha-Khadem et al. 2005). Nevertheless, several arguments
discourage from jumping to conclusions. With the exception of primary sensory and
motor areas, these variations in laminar structure are small and show different patterns
in different individuals (Braitenberg and Schiiz 1991). Furthermore, anatomical studies
reveal that the functional microcircuits may be similar across different areas (Douglas
and Martin 2004). Finally, in higher areas these variations do not match functionally
defined areas. Hence, even after many decades of research, the functional significance
of structural variations in cortical laminae is little understood and is far from an
explanation of the variety of functions of cortical areas.

Secondly, mechanisms of symbol processing could emerge on a higher level of
description of neural dynamics. This approach has some similarities with a theory
proposed many years back by Lashley (c.f. Orbach 1996). It implies that the structure of
cortical circuits is generic and potentially serves any function (equipotentiality) and
substantial parts of cortex are involved in any task (mass action). Although this theory
has attractive features (for a discussion see, e.g., Phillips and Singer, 1997), the original
interpretation of Lashley is highly controversial and not obvious to reconcile with the
growing evidence of functional specialization in the human cortex (Grill-Spector and
Malach 2004).

Thirdly, the distinction between early sensory processing and higher cognitive
functions may not be based on structural differences of cortical areas; instead identical
learning principles acting on input signals with different statistics give rise to the
observed variations of function. Quantitative differences in the form of time constants,
convergence and divergence of projections, as well as span of tangential connections
can further shape response properties, but would not be essential as such. This would



also imply that the approach, which is successful in the investigation of early sensory
areas, could be applied to higher levels (Wyss et al. submitted).

In this work, we further investigate the third point of view. Addressing a stage
following early visual processing, the unsupervised learning scheme is extended to
include predictive processes. Our argumentation leads to four increasingly speculative
hypotheses that become outlined in the following sections. As a central result it is
claimed that in this process entities emerge that fulfil the criteria SE and SS defining
symbols.

2 Learning of Feature maps from natural scenes

Following the flow of information, we first study processing of stimuli in early sensory
areas in the visual system. In the primary visual cortex, most neurons can be classified
into one of two generic cell types. The simple cells respond selectively to bars and
gratings presented at a specific position, orientation, spatial frequency, and contrast
polarity (Hubel and Wiesel 1962; Schiller et al. 1976). The neurons of the other type,
complex cells, also respond to bars or gratings of adequate orientation and spatial
frequency. They, however, respond equally well regardless of the contrast polarity of the
stimulus and its precise location within the region of the receptive field (Hubel and
Wiesel 1962; Kjaer et al. 1997).

This work follows an early proposal, that the properties of neurons in sensory
systems should be specifically adapted to the behaviour of the animal (Barlow 1961). In
the frog retina, for example, individual ganglion cells are perfectly suited to detect prey in
the form of flies (Lettvin et al. 1959), the frog most certainly likes to catch. The
association of features and behaviour in more developed species is less direct. Recent
work links the properties of simple cells in primary visual cortex to the statistics of the
natural environment. Optimally sparse representations of natural stimuli lead to
orientation selective receptive fields with spatial properties matching those of simple
cells (Olshausen and Field 1996). Please note that according to this concept the
receptive fields of neurons may adapt without explicit supervision or a direct
reinforcement signal (Kulvicius et al. submitted). The objective functions code aspects
that only allow for indirect arguments for the relevance for behaviour, e.g. reducing
energy consumption. A similar argument can be made for optimally stable
representations matching characteristic properties of complex neurons (Kérding et al.



2004, Berkes and Wiskott in press). Here as well the relevance for behaviour is indirect,
as important aspects of visual stimuli are supposed to change slower than irrelevant
detail. Further progress has been made addressing selectivity to other features and in
other visual modalities (Hurri and Hyvérinen 2003; Hafner et al., 2004). Although there
are still numerous unsolved problems, current progress fosters optimism that a
substantial part of feature selectivity in the primary sensory areas are the result of
unsupervised learning applied to natural images making use of a small number of
objectives.

If unsupervised learning is so successful, how far does it take us? Whereas many
results pertaining to primary sensory processing are available, few studies address
unsupervised learning in hierarchical systems. Those, however, indicate that in
subsequent levels representations of more complex features emerge (Wiskott and
Sejnowski 2002; Wyss et al. submitted; Franzius et al. submitted). Hence, one may
speculate that the approach described above and taken by a number of research labs
generalizes to higher levels of sensory processing:

Hypothesis 1: Properties of sensory representations at different levels of a processing
hierarchy can be understood on the basis of optimization of objective functions, such as
sparseness and temporal coherence.

However, are the differences in the statistics of natural visual stimuli that different
species experience sufficient to explain different organization of the visual hierarchy?
Obviously, different behavioural needs have to be incorporated into the architecture of
the sensory system (Gibson 1979). The argument has been put forward that optimally
stable representations favour relevant stimuli (Wiskott and Sejnowski 2002; Kérding et
al. 2004). The argument is based on the view that not relevant aspects, i.e. noise, to be
uncorrelated in space and time and therefore changing on a fast timescale. However,
the reverse conclusion that all relevant stimuli do not change fast does not hold. Thus,
although the approach in general may hold in a complete hierarchical system, we have
to reconsider which objective functions are most useful. In the following section, we
describe possible extensions of currently used objective functions.

3 Predictive mechanisms for disambiguation

The problem of extracting relevant features also shows up in the form of resolving
ambiguities. At the first stages of the visual system stimuli are analyzed locally. An



important example is the computation of depth information in stereo images. The relative
shift of corresponding regions in the two dimensional image (disparity) is an indicator of
depth in the three dimensional environment (e.g. Klette et al. 1998). However, multiple
candidate patches might occur that are similar to a patch in the other image. In
homogeneous areas this problem crops up in an extreme form. The local signal is
essentially constant and all matches are possible. The converse, that no match exists,
may arise due to occlusion of a region in only one of the two images. Therefore no
unique solution exists of the correspondence problem and the process to reconstruct
three-dimensional information from stereo images is ambiguous. A related problem
arises in matching image regions in time to determine motion vectors. Here as well local
information is usually not sufficient to resolve the correspondence problem (e.g. Ullman
1979). The human visual system can make use of contextual information to derive
reliable scene descriptions (e.g. Aloimonos and Shulman 1989). An elegant approach is
the use of motion information to resolve ambiguities of stereo images. A stereo match
directly generates a hypothesis on the 3-dimensional structure. When the motion
information is taken into account, the match in the subsequent frame set can be
predicted. An invalid match results in an erroneous prediction that can be quickly
invalidated (see Box 1).

Hypothesis 2: Predictions across visual events are a powerful approach to resolve
ambiguities.

In this line of thought, we follow the intuition that predictions relate different points in
time. But this is not a necessary restriction. Instead, a similar argument can be made for
spatial relations. Here the statistical properties of typical, in our case natural, visual
stimuli determine the conditional probability of local properties in other regions. This can
be seen as a spatial prediction. This concept is in close analogy to the well-known
Gestalt laws that are reflected in the connective structure of V1 (Gilbert and Wiesel
1989; Watt and Phillips 2000), as well as the statistics of natural images (Krtiger 1998;
Geisler et al. 2001; Elder and Goldberg 2002; Betsch et al. 2004). Hence, the concept of
predictions to resolve ambiguities can be generalized and applied in widely varying
contexts (e.g. Krliger and Wérgétter 2004).
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Box 1. a) Condensed representation of local image information by multi-modal
primitives. One primitive represents a local image patch in terms of a low-dimensional
descriptor containing information about the local orientation, phase, colour, local motion,
disparity and a descriptor of the ‘homogeneity’, ‘edge-ness’, or ‘junction-ness’ of the local
patch. Condensation rate is higher than 95% as computed by the number of bits used to
represent an image by primitives compared to the original image. For details see (Krtiger



et al. 2004). b) Front view of primitives extracted from the scene in ¢) and found as
reliable after the disambiguation process. c¢-f) Disambiguating stereo images by
predictions based on motion information. ¢) Highway scene with correct and erroneous
predictions. The grey level indicates the resulting confidence level, with white
representing highest confidence. Note the large amount of non-verified predictions
represented by the nearly black line segments. d) Top view of the 3D candidate set
extracted from an ordinary stereo matching. Obviously it contains many invalid matches.
When the threshold is increased for accepting a match as a candidate for
correspondence many valid correspondences are discarded as well (data not shown).
However, with the information on ego motion we convert each candidate match to a
prediction for the next frame. After a few iterations a more complete representation with
only few outliers is generated. e) Shows a top view of the disambiguated 3D
representation. f) Accumulation scheme based on spatial-temporal predictions. When a
prediction matches the subsequently sampled data the confidence of a candidate match
as well as the associated 3-dimensional interpretation is increased, otherwise
decreased. Confidences are represented by the brightness of the surrounding circle and
the orientation bar.

4 Predictions and objective functions

What is the relation of predictions to the objective function approach described above?
In our discussion of the early visual system, sparseness and stability, are prominent
examples. We discuss the relation of predictive mechanisms to both of these.

An intuitive approach is that behaviourally relevant stimuli allow predictions about
future stimuli. Taking again the example of the frog’s retina, spotting a small flying insect
supposedly allows the frog to predict its position a short time later (Lettvin et al. 1959).
Otherwise the frog would not know where to throw its tongue in order to catch the insect.
Of course, these predictions will not be perfect and the insect my escape by taking a
sudden turn. However, if spotting a flying insect does not increase the probability that it
is in any spatial region a short time later when the frog reacts, the visual input might as
well be ignored. From this point of view, optimally stable representations seem to be a
crude 0-th order approximation for optimally predictable representations; if something
does not change, it is trivially predictable. In terms of objective functions, replacing



stability, predictability itself can become an additional criterion for the usefulness of a
feature:

Predictability (CS): A good feature gives rise to the prediction of other temporally
and/or spatially distinct features and needs to be predictable from those.

With the inclusion of predictive processes in the unsupervised learning we are
faced with the problem that such predictions code relational events. As a consequence
these predictions work in a higher dimensional space than the original filter responses.
A full sampling of this relational space becomes computationally intractable. Therefore
we suggest that to make efficiently use of predictions we also need a change of data
format. The information coded in a set of filter responses in a local part of the visual field
needs to be condensed such that the space of possible predictions becomes
manageable. In the technical system introduced in (Krliger et al. 2004, Krliger and
Woérgdbtter in press) the condensation of local visual information into a semi-symbolic
format (see figure 1a) is a prerequisite for the utilization of predictive mechanisms for
disambiguation of the locally extracted information provided by the early visual
processing. Extensions of already established principles in unsupervised learning
schemes such as sparseness (Field 1987) may lead to such a property. This leads to an
additional criterion:

Condensation (CE): Since predictive mechanisms work in a higher dimensional
relational space for an efficient coding the local information has to be condensed.

Taking both criteria CS and CE into account we can formulate our third
hypothesis:

Hypothesis 3: Cortical Processing of sensorial information can be explained by a
mutual optimization of condensation (CE) and predictions (CS).

Hence, the predictive mechanisms fit seamlessly into the concept of objective functions.
They supersede the temporal coherence objective and necessarily interact with a
sparseness prior.

5 A concrete approach

The essence of learning feature selectivity as described in previous work rests on the

definition of an objective function EX (F). It is dependent on a set of local filter operations



F={fi]i:1,..,n} that are applied to a set of natural stimuli I, mapping each stimulus I_IT
onto a real value: f(I) = r,. The result of the filter operation can be viewed as the activity
of neurons." As a next step the objective function is optimized by a method of choice,
e.g. gradient descent. In the case different aspects have to be optimized simultaneously,
E’ (F) is composed as a sum of a number of terms, addressing the individual aspects.
To achieve condensation of information (CE) a sparseness/decorrelation principle
possibly connected with some constraints on the connectivity structure of the neural net
is a good start.

EI (F) = Wgecont LPsparse

The relative weight of the two terms depends on the precise formulae. For a combination
of a stability and decorrelation (Hipp et al. submitted) report that this is not a crucial
issue and the results of the optimization process vary little within one order of magnitude
for the relative weight.

B 2 cov, (7, .1, )
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To apply a gradient method we need a parameterization of non-linear features. Previous
work used 2-subunit energy detectors or general 2™ order polynomials (Wiskott and
Sejnowski 2002; Kérding et al. 2004).

A second constraint proposed here is to use the predictability of features as an
objective function:

' Please note, that the set of stimuli is assumed to be fixed. In general, when the sensory system
is part of a behaving agent, the statistical properties of stimuli may be dependent on the
generated behaviour (Verschure and Pfeifer 1992). Although these are interesting aspects, they
are beyond the scope of the present work.
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Here py;(r~(t)) € P={pili:1,..,n} is a prediction made for neuron j on a set of responses
r~(t), which in general may be based not only on the neuron under consideration.? Note
that the predictions may not be based on only one response but on a set of responses.

This objective function uses the notion of predictive units and minimizing the difference
between prediction of the activities resulting from feature extraction and actual future
observations. Although the objective functions for decorrelation and predictions
superficially appear similar, there are profound differences:

The predictive units do not map input patterns onto a real numbers, but on an activity
pattern of the same dimensionality. Thus, the space of possible functions is even larger,
and a low dimensional parameterization is not only a convenience, but a necessity. We
suggest using local affine transformations for this purpose; 2" order autoregressive
models might be an interesting alternative.

Weecor and W4 have opposite sign. That means that we are after low covariance of
the local filter operations but after high covariance of the predictions. In other words, we
require local decorrelation and an explicit use of global correlations. This is in
accordance to the re-interpretation of Barlow’s original idea that redundancy reduction is
a principle underlying sensorial processing (Barlow 1961, 2001). Furthermore, it shares
many similarities with the concept of coherence infomax as proposed by Phillips and
Singer (1997). As pointed out in (Barlow 2001) redundancies are essential for sensorial
processing and need to be preserved and utilized. This line of argumentation matches
the general concept, that it is in the interest of any agent to predict relevant stimuli
(Roelfsema 2002; Wdérgétter and Porr 2005). In this way, future rewards may be
maximized, or dangerous actions avoided (Schultz and Dickinson 2000). Furthermore, in
some aspects it might be compared to Kalman filters. These provide an optimal mixture
of a noisy measurement and a prediction based on previous measurements. Here in
contrast, optimal predictors are coevolved with non-linear filters that can be optimally
predicted.

2 Note that here we use predictions in time. An analogue formula can also be used for spatial
predictions as occurring for example in Gestalt laws such as good continuation or symmetry.



A most important aspect of the suggested unsupervised learning scheme to previous
work is that not only the predictive units are optimized, but that also the selectivity of the
feature extractors are adapted to allow optimal predictability. This leads to an objective
function

EI (Fl P ) = Wiecor + ‘"Psparse + LPpred

depending on the set of filters F as well as a set of predictions P. But it also emphasizes
an important difference. The hypothesis states not only that the cortex tries to predict
future stimuli. Over and beyond this aspect, it proposes that the predictability of a
stimulus is in itself a selection criterion for further processing.

6 Emergence of Symbols

The process outlined above optimizes predictions at the same time as feature selectivity.
When this is implemented in a processing hierarchy, optimizing sensory representations
and matching predictors in parallel, it will produce entities which not only represent the
input stimuli in a sensible way but which code context structure in terms of relations of
visual events. We postulate that the data format for the learned feature selectivity will
lead to representations which differ fundamentally in the dynamic properties compared
to early vision representations.

The criteria of predictability (CS) and condensation and (CE) relate directly to the
two defining properties of symbols of expression (SE) and syntax (SS). The optimized
process of feature selectivity and predictions requires entities that represent condensed
pieces of knowledge that are not analogue anymore. Furthermore, these entities work as
arguments in a complex structural framework of transformations that realize predictions.
These transformations generate new entities and relate them to other entities. Thus, the
high level representations differ from the feature selectivity that results from learning
without predictive mechanisms in the way that symbol-like structures can emerge:

Hypothesis 4: In the process of mutual optimization of features and predictions symbols
emerge as condensed entities on which predictions are performed.

The symbols become representatives of structures and their relations in the real
world. By that world knowledge becomes intrinsic structure of the sensorial machinery.
As a consequence, these high level representations are grounded only by the matching
of high-level sensory representations; like symbols in a formal system they are not



directly grounded in the real world but they become indirectly grounded by their
predictive relations which express structural properties of natural scenes.

7 Discussion

We sketched a process that gradually transforms analogue local representations into
discrete binary representations by means of four hypotheses outlined. They are based
on the notion that a proper understanding of early cognitive vision requires the
integration of predictive processes (CS, CE). Our central assumption is that in this
process entities emerge that fulfil the criteria defining symbols (SS, SE) and that by a
mutual learning of feature selectivity and predictions on these features symbol-like
structures emerge. By this, we outline a process in which symbol-like structures can
become grounded by an extension of unsupervised learning schemes already
successfully applied in early vision.

The four hypotheses inherit an increasing degree of speculation and also their
experimental verification is increasingly difficult.

The first claim (H1) offers itself as a straightforward generalization of a concept,
which was rather successful in primary sensory areas. As a consequence, predictions
are straightforward and experimentally accessible. Receptive fields of neurons found in
secondary visual cortex, for example, should maximize a few well defined objective
functions over the set of natural stimuli. Manipulations of the environment during
development should lead to adaptation of sensory representations that are optimal with
respect to the stated objective functions. This is very much in line with experiments of
Merzenich and his colleagues (Nakahara et al. 2004; Zhang et al. 2001). However,
experiments from the very same laboratory demonstrate that not only the statistics, but
also associated rewards have a significant impact on plasticity of sensory
representations. Whether such effects can be described in one coherent framework has
to be investigated.

The second hypothesis is suggested using the example of disambiguating stereo
images using motion information. A generalization to other features and modalities might
not be that obvious. Firstly, motion itself is often considered a primary feature. It can give
rise to shape information, and neurons throughout the brain are sensitive to motion cues.



But this needs not to be a conflict. Indeed, recent experiments on motion sensitivity of
retinal ganglion cells uncover a close relation to predictions of future stimuli (Berry 2™ et
al, 1999). Thus, the marked sensitivity of neurons in the visual system to motion cues
might be directly related to predicting the future.

The third hypothesis (H3) is supported by indirect evidence on the plasticity of
auditory representations (c.f. Buonomano and Merzenich 1998). Recent work on optimal
representations in a hierarchical system applying a stability objective supports the
hypothesis as well. Yet, this is obviously just a beginning.

The final suggestion (H4) is most difficult to test. A simulation with a technical
agent in a controlled real world environment offers the best perspective on an
investigation of the complete system and a test of high-level representations. An
experimental test of human high level representations on that level of temporal and
spatial resolution does not seem currently feasible.

What is the significance of known differences in microanatomy of cortical areas?
The intensively investigated primary sensory areas display a distinctively different
laminar pattern. Furthermore, this pattern relates specifically to different classes of
afferent fibres (Callaway 1998). It might be argued that such special structural properties
severely limit any claim on general learning properties. Such a point is well taken, and in
spite of the name unsupervised “learning”, it is essentially an optimization procedure. It
can act on different time-scales, within an individual as well as within a population. This
implies that the peculiarities of distal optical signals, which are constant on an
evolutionary time scale, require specialized circuits for optimal processing, which may be
taken care of by specific genetic adaptations on a long time scale. Proximal signals, like
higher order representations, are more variable on an evolutionary time scale and hence
do induce limited structural adaptation. In this view, the specific laminar structure of
primary sensory and motor areas is an argument not against, but in favour of the
hypotheses put forward here.
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