
This article was downloaded by:[Universidad Granada]
[Universidad Granada]

On: 3 July 2007
Access Details: [subscription number 773444443]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Electronics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713599654

Hardware event-driven simulation engine for spiking
neural networks

Online Publication Date: 01 May 2007
To cite this Article: Agís, R., Ros, E., Díaz, J., Carrillo, R. and Ortigosa, E. M. ,
(2007) 'Hardware event-driven simulation engine for spiking neural networks',
International Journal of Electronics, 94:5, 469 - 480
To link to this article: DOI: 10.1080/00207210701308625
URL: http://dx.doi.org/10.1080/00207210701308625

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

© Taylor and Francis 2007

http://www.informaworld.com/smpp/title~content=t713599654
http://dx.doi.org/10.1080/00207210701308625
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

International Journal of Electronics,

Vol. 94, No. 5, May 2007, 469–480

Hardware event-driven simulation engine for

spiking neural networks

R. AGÍS*, E. ROS, J. DÍAZ, R. CARRILLO and E. M. ORTIGOSA

Department of Architecture and Computers Technology
of the University of Granada, Spain

(Received 16 January 2006; in final form 30 November 2006)

The efficient simulation of spiking neural networks (SNN) remains an open
challenge. Current SNN computing engines are still far away from simulating
systems of millions of neurons efficiently. This contribution describes a
computing scheme that takes full advantage of the massive parallel processing
resources available at FPGA devices. The computing engine adopts an event-
driven simulation scheme and an efficient next-event-to-go searching method to
achieve high performance. We have designed a pipelined datapath, in order to
compute several events in parallel avoiding idle computing resources. The system
is able to compute approximately 2.5 million spikes per second. The whole
computing machine is composed only of an FPGA device and five external
memory SRAM chips. Therefore, the presented approach is of high interest for
simulation experiments that require embedded simulation engines (for instance,
in robotic experiments with autonomous agents).

Keywords: Event-driven; Pipelined datapath; FPGA device; SNN computing
engines

1. Introduction

The simulation of biologically plausible neural networks is a challenging task.

Several properties of the biological nervous systems must be taken into considera-

tion, in order to build up an efficient computing scheme.

. Biological neural networks consist of massive parallel computing resources

organized in very densely connected topologies.
. Most of the information exchanged among the different computing elements

(neurons) is encoded in spikes.
. The firing rate of biological neurons is low (with maximum rates of

approximately 100Hz). Therefore, the global activity depends on the network

size and the average neuron firing rate.

On the other hand, the current technology has very different characteristics that can

be exploited by adopting proper computing schemes.

*Corresponding author. Email: ragis@atc.ugr.es

International Journal of Electronics

ISSN 0020–7217 print/ISSN 1362–3060 online � 2007 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/00207210701308625



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

. In general, digital circuits are able to work at very high clock rates (MHz or
even GHz).

. The physical circuit connectivity is limited to 2-D patterns that consume large
device resources. Therefore, densely connected topologies cannot be imple-
mented directly on VLSI technology; however, it is impossible to adopt
multiplexing techniques on shared buses.

The simulation of spiking neural networks using standard integration methods on
conventional computational architectures (single- or multiprocessor platforms) is
inefficient (Jahnke et al. 1997). This has motivated the implementation of specific
hardware platforms to perform neural integration (Schoenauer et al. 2002, Mehrtash
et al. 2003, Ros et al. 2006a). The approaches described in Schoenauer et al. (2002)
and Mehrtash et al. (2003) implement a specific type of spike response model (SRM)
(Eckhorn et al. 1989). We can find in Ros et al. (2006a) a description of a time-driven
hybrid hardware and a software simulation scheme for networks of SRM neurons.
Nevertheless, the spiking neuron model described in Ros et al. (2006a) incorporates
additional biophysically inspired features, such as spike-driven synapses modelled as
conductances, and it targets real-time simulations using time-slicing techniques.
The neuron model of this contribution is the same as in Ros et al. (2006a), but the
platform presented here adopts an event-driven scheme entirely simulated in
hardware. Furthermore, the event handling scheme is radically different to any

previous approach, since it is based on disordered lists that are efficiently accessed
through a parallel searching engine that takes full advantage of the parallel resources
of FPGA devices.

Although there are hardware approaches that implement efficient time-driven
simulation schemes (Graas et al. 2004, Glackin et al. 2005, Ros et al. 2005, 2006a) in
FPGA, the features enumerated above have motivated the development of event-

driven processing schemes. This computing scheme is usually implemented in
software (Delorme et al. 1999, Mattia and Del Guidice 2000, Delorme and Thorpe
2003, Makino 2003, Reutimann et al. 2003, Ros et al. 2006b), but has also been
adopted in hardware approaches (Schoenauer et al. 2002, Mehrtash et al. 2003).

In this work, we present a specific purpose computing architecture to efficiently
simulate spiking neural networks by adopting an event-driven scheme. The common

approach is based on a queue of events ordered chronologically (Schoenauer et al.
2002, Mehrtash et al. 2003, Glacking et al. 2005, Ros et al. 2006b). In this case, the
goal is to reduce the number of accesses required for the correct insertion of a new
spike in its correct position. Specific purpose event-driven processing architectures
(Schoenauer et al. 2002, Mehrtash et al. 2003) are based on chronologically ordered
lists. Contrary to this approach, we use a disordered event list. Our
processing scheme searches for the next-event-to-go before each computing loop.
For this purpose, we implement a parallel searching strategy that takes full
advantage of the parallel processing resources available in FPGA devices.

In event-driven simulation schemes, the neuron state variables are updated when
it fires or receives a spike. Therefore, the simulation engine is able to jump from one
spike to the next one. In this way, all the activity (spikes) of a network is queued in
chronological order and processed sequentially. This scheme is very appropriate
for sequential computing platforms. All the events need to be processed in a
chronological order; this scheme is hardly parallelizable, since the events computed

470 R. Agı́s et al.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

on different processing nodes can affect directly the event-list by producing new
events or invalidating old ones. Therefore, events can only be processed in parallel
adopting a speculative attitude and allow stepping backwards, if inconsistencies
(interdependencies) are detected during the simulation. We implement a pipelined
processing structure to further accelerating the simulator, but this requires the
consideration of inter-spike dependency risks.

In this work, we focus on processing speed as the main performance indicator.
Therefore, the goal is to design a system that is able to process the maximum number
of spikes per second.

2. Description of the computing scheme

The computing scheme is illustrated in figure 1. The event list is stored on embedded
memory resources, in order to facilitate the insertion and searching processes.

On the other hand, the neural state variables and the network topology are stored
on external memory SRAM. The computing scheme description and the searching
process are discussed in x 2.2.

2.1 Scalable next-event selection: pick-up strategy

In order to facilitate the insertion processes, we use a disordered event list. In this
case, every time we need to extract an event, we search for the one with a minimum
time label. We implement a parallel searching strategy taking full advantage of the
parallel computing resources of the FPGA devices.

Figure 1. Computing architecture schematic.

Simulation engine for spiking neural networks 471



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

Each event is characterized by four fields: time label, synapse identifier, source

neuron, and target neuron. We distribute the storage of the time labels in different

dual port embedded memory blocks (EMBs) of 512�32 bits to allow parallel access

to a high number of elements. We implement parallel comparator circuits of 4 and 8

elements each. We use distributed memory buffers to segment the searching process

in several comparator stages in a micro-pipelined structure (as shown in figure 2).
The reconfigurability of the FPGA facilitates the modification of the amount of

memory resources allocated for specific tasks. Therefore, depending on the global

network activity, it may be convenient to use more or less embedded memory blocks

for the time labels of the spikes.
We have implemented a pipelined searching structure to efficiently handle event

lists of up to 214 spikes. The events are distributed in 128 dual port EMBs, in order to

allow reading 256 elements in parallel to fill a buffer implemented in distributed

memory. This allows these 256 elements to access 32 comparator circuits of

8 elements each, producing 32 candidates that are stored in the second buffer (on

distributed memory). These 32 elements access 4 comparator circuits of 8 elements

each, producing 4 candidates that are stored in the third buffer. Finally, a single

comparator of 4 elements provides the selected element out of the primary

256 candidates. After this is done, this winning event is stored as the one with the

minimum time label. This scheme is further expanded sequentially in the following

manner: the next event that goes out of this pipelined searching structure is

compared with the one stored previously Last-mim. In this way, with this last

sequential comparator cycle, we are able to manage event lists of up to 214 elements

consuming up to 69 clock cycles. Note that in order to pipeline this processing

datapath, we need to store in buffers (distributed memory) not only the time labels,

but also an index to identify the original spike (in the embedded memory block that

is being processed).

Figure 2. Parallel searching tree.

472 R. Agı́s et al.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

In fact, this scheme can be further scaled up by using external memory banks to
manage larger event lists, at the cost of reducing significantly the searching speed
when all the input memory resources are saturated

Nclk cycles search ¼ 4þ
TEMB

256

� �
ð1Þ

The number of clock cycles required in this searching structure (Nclk_cycles_search) is
given by expression (1). TEMB denotes the number of spikes stored in all the EMBs
used by the searching module, and d e denotes the function that produces the first
integer above the considered real number. The offset of 4 is given by the number of
cycles consumed while filling the pipeline structure.

Note that, after the next-event-to-go is found, all the data fields of this event need
to be retrieved, which also consumes another 5 cycles.

2.2 Memory resources for the event list

A high number of events addressable in the same clock cycle accelerate the whole
parallel searching datapath. After the next-event-to-go is selected, as commented
above additionally, some further clock cycles are needed due to the different data
fields (df) retrieval related with this event. Depending on the pipelined structure and
processing scheme, the sequential access to the data fields can degrade the
performance. Summarizing, two factors become important to achieve high
performance during the searching and retrieval of the next-event-to-go:

1. maximum parallelism on the next time label searching;
2. maximum parallelism on the next-event-to-go data fields reading.

There are different strategies that can be adopted as discussed in the following
subsections.

2.2.1 Complete events on external memory resources. We can store the events on
external memory SRAM circuits. Nevertheless, in this case, the parallel access to
time labels of different events is restricted. For instance, a computing platform with
MSRAM supporting SRAM chips (of 32 word length) accessible in parallel can
retrieve up to MSRAM events in each access. In this way, the number of clock cycles
(Nclk_cycles_search) required to search the next-event-to-go is given by expression (2).
Both terms of this equation are related to the searching process. In this case,
Nclk_cycles_search depends linearly on the number of events NE, an offset that relies on
the number of pipelined stages of the searching tree C, and the last term is related to
the time consumed to retrieve the data fields of the next-event-to-go that are also
stored on external memory

Nclk cycles search ¼
NE

MSRAM
þ Cþ

df
MSRAM

ð2Þ

However, the parallel access to events is limited to MSRAM. This scheme is very
scalable to a high number of events. Finally, the fact that access to external memory

Simulation engine for spiking neural networks 473



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

is also constrained by the characteristics of the SRAM chips (latency, maximum data
throughput, etc) has to be taken into account.

2.2.2 Complete events on embedded memory blocks. In order to allow a higher level
of parallelism in the event searching process, we can store the events on embedded
memory blocks. This is the strategy that we have adopted for our experiments.
In this case, the level of parallelism will depend on the number of EMBs dedicated to
this issue. If we implement dual port memory banks and we distribute the events in a
balanced way among the available EMBs, we can access in parallel Pa¼ 2MEMB data
ports (where MEMB is the number of dedicated EMBs). If each event consists of
df data fields (time label, synapse identifier, source neuron, target neuron, etc) of 32
bits, and we store all of them in EMBs, in a Virtex II device, we would be able to
store NE events, being NE¼MEMB 512/df. With this approach, we achieve a
considerable access parallelism to time labels of different events, but we consume
valuable EMB resources to store further data (the other data fields of the events that
are not needed during the searching process in which the parallel access is critical).
This strategy will limit the scalability of the system in terms of workload (maximum
size of the event list) but maximizes the parallel access (Pa) during the searching
process. The problem is that once the next-event-to-go is selected, the rest of the data
fields need to be retrieved sequentially (spending a few more clock cycles at the end
of the searching process). The number of cycles required for searching the next-
event-to-go is shown in expression (3)

Nclk cycles search¼
NE

2 �MEMB
þ Cþ df ð3Þ

2.2.3 Time labels on specific EMBs. We can separate the data fields of the events by
storing the time labels on a few dedicated EMBs and the other data fields on some
other EMBs. This can be seen as storing the event data fields in long word width
memory resources. But in this case, the access parallelism for a given number of
events is constrained, since some of the EMBs are not accessed in the searching
process. This approach dedicates specific access ports to the EMBs with time labels
(this communication bus is used during the searching process) and other different
ports to access the other data fields (this bus is used to retrieve the data fields of the
next-event-to-go). In this case, the number of clock cycles, consumed in the searching
process, depends linearly on the number of events (NE) and the data fields (df),
as expressed in equation (4)

Nclk cycles search ¼
NE � df

2 �MEMB
þ Cþ 1 ð4Þ

2.2.4 Event fields on interleaved embedded memory. Another option is to
conveniently interlace the events on the different EMBs in a way that during the
searching process only the time labels are accessed. But once the next-event-to-go is
selected, the rest of the data fields of the events are retrieved in a single access cycle.
This approach maximizes the number of parallel ports for the searching process, and
also optimizes the access to the rest of the data fields of the selected event,

474 R. Agı́s et al.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

as indicated in expression (5). Interleaved memory architecture is a useful technique
used in vector processors to exploit their parallelism, which is amply discussed in
Briggs and Davidson (1977).

Nclk cycles search ¼
NE

2 �MEMB
þ Cþ 1 ð5Þ

2.2.5 Some event fields stored on specific embedded memory blocks. The events’ time
labels are stored in a balanced way in EMBs, to maximize the access parallelism
(Pa¼ 2MEMB). The other data fields of the events are stored in external memory
resources. This is not very limiting, since only a single event (next-event-to-go) will be
completely retrieved per processing iteration. In this way, we also maximize the size
of the event list that can be efficiently managed using EMBs (NE¼MEMB � 512). If we
use external memory with 2 cycles of time delay, the performance will be the same as
in expression (5), but adding 2 more clock cycles (external memory latency).

2.3 Pipelined event-processing datapath

The computing strategy is outlined in the block diagram of figure 3. The different
stages are the following: (S0) the next-event-to-go is searched (this is done through a
parallel searching tree, as described in the previous section); (S1) access to memory is
gained in order to retrieve the source neuron state variables and the connection
characteristics; (S2) the target neuron state is loaded; (S3) the next spike (if there
remains any spike of the output connection tree to be processed) of this source
neuron connection tree is inserted into the event list; (S4) the target neuron state is
updated (including learning); (S5) the axon-hillock is processed (spike firing
decision), and (S6) the target neuron state and connection weight is stored (updated
in the learning module).

Stages

S0

S1

S2

S3

S2

S4

S5

10–69

9

9

12

9

13

9

Clock
Cylces

Search next-event-to-go

Retrieve source neuron Retrieve source neuron

Retrieve target neuron

Insert next Spike

Axon Hillock

Save connection status Save neuron status

Learinin, Decay term and Synaptic contribution

Figure 3. Pipeline datapath. Seven stages in the datapath.

Simulation engine for spiking neural networks 475



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

When a neuron fires, it produces multiple spikes that will reach different target
neurons according to the network topology. Each connection is characterized by
a weight and a synaptic delay. In order to restrict the number of spike insertions,
we consult the output connection tree in each computation cycle (ordered according
to the synaptic delays) of a neuron that has fired, and we insert just the next-event
according to the synaptic delay. This keeps the event list at a manageable size.

We have implemented a pipelined event-processing datapath consisting of the
7 stages outlined in figure 3. Note that for lists of up to 2048 events, the next-event
searching structure consumes less than 13 clock cycles, therefore not degrading the
global processing performance. All the processing stages are quite balanced, being
the spike insertion process that requires 13 clock cycles the limiting one. This leads to
a performance of more than 2.5 million spikes per second with a system clock rate of
33MHz (provided that the event list size is shorter than 2048 elements).

The clock cycles consumption of each of the stages of the pipelined datapath is
included in figure 3. The stage S0 consumes between 10 and 69 cycles, due to the fact
that the number of clock cycles depends on the size of the event list. But even with
the optimized stage, without a global coarse pipeline, we obtain a data throughput
between 464 000 and 272 000 spikes per second. This has motivated the pipelined
processing structure that allows performances between 2.5 and 0.478 million spikes
per second. We need to take into account that depending on the network topology,
we will have up to 1% of performance degradation, due to inter-spike risks. This
occurs when S5 (Axon Hillock) inserts a new event in the event list with a time label,
which is below the one of the last spike that entered the pipeline structure. In this
case, it is necessary to reset the whole datapath to keep the chronological processing
order. The performance values on figure 5 have been obtained with a circuit running
at 33MHz. We can estimate the performance degradation for a specific neural
system. For instance, a network of 100 neurons, densely connected through an all-to-
all topology and an average latency of 3ms� 2ms (standard deviation of a Gaussian
distribution). Each neuron fires at an average rate of 10Hz. In this case, seven events
can be processed in parallel in the pipelined datapath. The pipeline needs to be
restarted when an event enters into the datapath and its time label is shorter than the
time label of another event being processed in another stage of the computing
architecture. That means that the event that arrives occurred before an event that is
currently being processed, and therefore may affect the network state. Since events
need to be processed in a chronological order, the pipeline needs to be restarted.
In this case, the performance degradation is below 0.185%. This degradation grows
with the average latency and the standard deviation of this value in the networks,
as this is what generates inter-spike risks.

2.4 Neural model

The described general architecture is valid for multiple neuron models. In fact, the
neural state computation is a single processing stage that can be seen as a black box.

The only restriction is that the neural model allows the neural state variables to
be updated discontinuously. Currently, we are using the proposed platform to test
bio-inspired robotic control experiments (Boucheny et al. 2005) with the neural
model illustrated in table 1.

476 R. Agı́s et al.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

Figure 4 illustrates the neural model behavior described in table 1. Figure 4(a)
represents the spike time dependent plasticity (STDP) expressed in the first equation
of table 1. S4 estimates the weight change through a pre-calculated look-up-table
obtaining an average error of 0.47%. Figure 4(b) represents the passive decay term; it
plots the time dependent term that needs to be subtracted to the membrane potential
according to the second equation of table 1. We particularize different neural models
with specific values of � (a Purkinje cell model with a stronger passive decay term
represented in the upper trace and a granular cell model with weaker passive decay
term in the lower trace).

3. Simulation performance and hardware resources

The complete processing datapath consumes 74 clock cycles (provided that the event
list has less than 2048 elements). But by using a pipeline processing strategy, we
process one spike every 13 clock cycles (provided that the interspike risks do not

(a) 100

90

80

70

60

W
ei

gh
t 

ch
an

ge

50

40

30

20

10

0

(b) 100

90

80

70

60

V
al

ue
 t

o 
be

 s
ub

st
ra

te
d 

fr
om

 V
x

50

40

30

20

10

0
0 10 20 30 40 50

(tij-tik) ms

60 70 80 90 100 0 10 20 30 40 50

(tk-tj) ms

60 70 80 90 100

Figure 4. Neural model: (a) spike-time dependent plasticity and (b) membrane potential
passive decay term.

Table 1. Neural Model Characteristics. Vx denotes the membrane potential and W the
connection weight. The weight is uploaded according to the first expression. The connection
between cells K and J turns stronger or weaker, depending on the inter-spike time between the

events produced by both neurons.

Stage Feature Clock cycles Expression

S4 Learning of synapse (i) 3 �Wtk
i ¼ 27 � ðtik � tijÞ � e

ððtij�ti
k
Þ=10Þ

Passive decay 4 Vx ¼ Vx �
Vmax

� � ðtk � tjÞ
� �

Synaptic contribution 2 Vx ¼ Vx þWi

S5 Axon Hillock (spike insertion) 13 Out ¼
1 if Vx � Vthreshold

0 if Vx � Vthreshold

�

Simulation engine for spiking neural networks 477



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

affect significantly the system performance as has been estimated in x 2.3). Therefore,
with a system clock frequency of 33MHz, the achieved performance is approxi-
mately 2.5 million spikes per second. It is difficult to compare the performance with
other approaches, since each of them uses different neural models. Currently, one of
the most efficient event-driven software versions (Ros et al. 2006b) is able to compute
up to 0.8Mspikes/second using an AMD processor at 2.8GHz. It is significant to
note that, through the design of a specific purpose datapath working at a clock rate
about 2 orders of magnitude lower than conventional computers; we are able to
outperform in more than a factor of 2 the processing performance. Other simpler
spiking neurons simulators are able to process (Delorme et al. 1999, Delorme and
Thorpe 2003) but only including simplified neural models network topologies.

It is also remarkable that the exploration of other neural models (even of a higher
complexity) would not significantly degrade the system performance, if the
computation can be done in less than 13 independent steps or split in several
pipelined processing stages.

The data throughput (Dt) follows expression (6), which is independent from the
network size and includes a degradation term (Arisks) dependent on the inter-spike
risks. This factor will not be significant in realistic networks in which spikes of
output connection trees will be almost consecutively processed

Dt ¼
fcll

Arisks þmax½13,Nclk cycles search�
ð6Þ

The performance rigorously follows the characterization expression outlined above.
The surface in figure 5 has been done using a network topology (all-to-all
connectivity with short synaptic delays). In this case, the inter-spike risks do not
significantly affect the system performance. As can be seen, the performance does
not depend on the network size, only on the global activity achieving a maximum
performance of 2.5 millions spikes per second. The hardware resources consumption
is summarized in table 2.

4. Discussion

The main innovation of the presented approach is the efficient use of the parallel
computing resources of FPGA devices for an event-driven processing scheme. We
have adopted a strategy that handles efficiently disordered event lists, which is a
completely novel approach in the framework of event-driven spiking neural network
simulation. We have used extensively parallel computing in the next-event-to-go
searching structure that has been implemented with a finely pipelined searching tree.

The whole computing scheme is also implemented in a coarse pipelined datapath
of 7 stages. Here, we need to handle inter-spike risks. However, as estimated in x 2.3,
they are not significant in realistic networks in which spikes of specific output
connection trees will be processed almost consecutively.

Although comparisons between different event driven approaches are difficult,
since different authors adopt different neural models and computing strategies, the
presented approach exhibits very promising performance results. It outperforms in
more than a factor of two a similar approach implemented in software (Ros et al.
2006b). This is very important, taking also into account that the presented

478 R. Agı́s et al.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

computing scheme can embed more complex neural models without significantly
degrading the system performance (provided that the computing stages are designed
with less than 13 clock cycles). In this sense, we call this approach scalable in the
neural model complexity.

Another important point is that, since the described computing platform is very
general and can be easily adapted for different neural models, it becomes of interest
in the framework of massive simulations and real-time experiments (for instance,
in robotic experiments learning with sensory-motor integration schemes).

In x 2.2, we have discussed different memory strategies to efficiently implement
the event-list. Two main aspects are considered, i.e., accessing time and scalability:
we can conclude that storing the events on embedded memory blocks maximizes the
parallel access. Therefore, this represents the most powerful choice for an event list

Figure 5. Performance vs. global network activity and network size.

Table 2. Hardware resources consumption. Design compiled on a Virtex
II 6000 of Xilinx.

Pipeline state #System gates EMBs #Clock cycles

S0 4 823 495 64 10–69
S1 2450 – 9
S2 919 – 9
S3 1172 – 12
S4 1955 – 9
S5 1182 – 13
S6 1451 – 9

Simulation engine for spiking neural networks 479



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

12
:5

5 
3 

Ju
ly

 2
00

7 

of a moderate size (several thousands of events), keeping in mind that the restricted
number of embedded memory blocks limits its scalability.

Acknowledgements

This work has been supported by the Spanish national grant DEPROVI (DPI-2004-
07032) and the EU project SENSOPAC (IST-028056).

References

C. Boucheny, R. Carrillo, E. Ros and O.J.-M.D. Coenen, ‘‘Real-time spiking neural network:
an adaptive cerebellar model’’, LNCS, 3512, pp. 136–144, 2005.

F.A. Briggs and E.S. Davidson, ‘‘Organization of semiconductor memories for parallel-
pipelined processors’’, IEEE Transaction Computer, C-26, pp. 162–169, 1977.

A. Delorme and S. Thorpe, ‘‘SpikeNET: An event-driven simulation package for
modelling large networks of spiking neurons’’, Network: Computation in Neural
Systems, 14, pp. 613–627, 2003.

A. Delorme, J. Gautrais, R. van Rullen and S. Thorpe, ‘‘SpikeNET: a simulator for modelling
large networks of integrate and fire neurons’’, Neurocomputing, 26–27, pp. 989–996, 1999.

R. Eckhorn, H.J. Reitboeck, M. Arndt and P. Dicke, ‘‘Feature linking via stimulus evoked
oscillations: experimental results from cat visual cortex and functional implication from a
network model’’, Proc. ICNN I, 3512/2005, pp. 723–720, 1989.

B. Glackin, T.M. McGinnity, L.P. Maguire, Q.X. Wu and A. Belatreche, ‘‘A novel approach
for the implementation of large scale spiking neural networks on FPGA hardware’’,
LNCS, 3512/2005, pp. 552–563, 2005.

E.L. Graas, E.A. Brown and R.H. Lee, ‘‘An FPGA-based approach to high-speed simulation
of conductance-based neuron models’’, Neuroinformatics, 2, pp. 417–435, 2004.

A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz and H. Klar, ‘‘Simulation of spiking neural
networks on different hardware platforms’’, LNCS, 1327, pp. 1187–1192, 1997.

T. Makino, ‘‘A discrete-event neural network simulator for general neuron models’’,
Neural Computer & Application, 11, pp. 210–223, 2003.

M. Mattia and P. Del Guidice, ‘‘Efficient event-driven simulation of large networks of spiking
neurons and dynamical synapses’’, Neural Computation, 12, pp. 2305–2329, 2000.

N. Mehrtash, D. Jung, H.H. Hellmich, T. Schoenauer, V.T. Lu and H. Klar, ‘‘Synaptic
plasticity in spiking neural networks (SP2INN): a system approach’’, IEEE Transaction
Neural Networks, 14, pp. 980–992, 2003.

J. Reutimann, M. Guigliano and S. Fusi, ‘‘Event-driven simulation of spiking neurons with
stochastic dynamics’’, Neural Computation, 15, pp. 811–830, 2003.

E. Ros, E.M. Ortigosa, R. Agis, R. Carrillo, A. Prieto and M. Arnold, ‘‘Spiking neurons
computing platform’’, LNCS, 3512, pp. 471–478, 2005.

E. Ros, E.M. Ortigosa, R. Agis, R. Carrillo and M. Arnold, ‘‘Real-time computing platform
for spiking neurons (RT-Spike)’’, IEEE transactions on Neural Networks, 17,
pp. 1050–1063, 2006a.

E. Ros, R. Carrillo, E.M. Ortigosa, B. Barbour and R. Agı́s, ‘‘Event-driven
simulation scheme for spiking neural models based on characterization look-up
tables’’, Neural Computation, 18, pp. 2959–2993, 2006b.

T. Schoenauer, S. Atasoy, N. Mehrtash and H. Klar, ‘‘NeuroPipe-Chip: a digital
neuro-processor for spiking neural networks’’, IEEE Trans. Neural Networks, 13,
pp. 205–213, 2002.

480 R. Agı́s et al.


