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Oa b s t r a c t

We describe a novel method for propagating disparity values using directional masks and a voting
scheme. The driving force of the propagation direction is image gradient, making the process aniso-
tropic, whilst ambiguities between propagated values are resolved using a voting scheme. This kind
of anisotropic densification process achieves significant density enhancement at a very low error cost:
in some cases erroneous disparities are voted out, resulting not only in a denser but also a more accu-
rate final disparity map. Due to the simplicity of the method it is suitable for embedded implemen-
tation and can also be included as part of a system-on-chip (SOC). Therefore, it can be of great
interest to the sector of the machine vision community that deals with embedded and/or real-time
applications.

� 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Disparity is originally defined as being the horizontal difference
of a 3D point being projected on two adjacent imaging devices (e.g.
stereo-rig) and if both intrinsic- and extrinsic parameters of the
imaging system are known, complete 3D-reconstruction of the
scene is possible. However, even if we do not know all the neces-
sary parameters to do a complete 3D-reconstruction, disparity still
conveys relative information of the 3D structures of the scene
which can also be useful.

Disparity extraction models are based on local or global opti-
mization methods that minimize (or maximize) matching cost of
image features between two or more images. Practically all the
sparse models have some kind of threshold or other parameter,
either implicit or explicit, which affects density and at the same
time error in the derived disparity map [1,2]. On the other hand,
the global methods that minimize energy functions within the
whole scene, through local operations, usually derive a disparity
map that is typically 100% dense (sometimes detecting occlu-
sions as well). Such global minimization can be done using dif-
ferent approaches such as variational methods [3–7] or graph
cuts [8,9]. Typically, depending upon the sparse method used,
as density increases, after a certain limit error also starts to in-
crease concomitantly. Therefore, it is worth calculating a less
dense, high-confidence disparity map and afterwards increasing
the density by propagating the correct disparity values. In this
ll rights reserved.

(J. Ralli), jdiaz@atc.ugr.es (J.

l., A method for sparse dispari
way we achieve better accuracy vs. density trade-off than by di-
rectly reducing the reliability threshold and thus increasing den-
sity at the expense of higher error. Many global, dense, disparity
calculation methods have built-in mechanisms for propagating/
diffusing disparity [4,10] but sparse methods usually lack this
capacity. To the best of our knowledge there are very few inde-
pendent propagation methods, apart from interpolation [11] and
diffusion [12], that can be applied as a post-processing step. By
independent we mean that the propagation method does not de-
pend upon the algorithm used to derive the initial disparity map.
This work proposes a new densification method that is able to
arrive at denser and more accurate results than the standard
one-stage disparity algorithms such as dynamic programming,
block-matching and so on that only slightly affects the error
rate. Since the scheme is based on very simple operations, it
can be considered suitable for efficient implementation. Our
method resembles image driven anisotropic diffusion, used for
instance by Alvarez et al. [4] in variational disparity calculation,
in the sense that the propagation direction is based on the image
gradient. Instead of using a set of equations for defining the dif-
fusion model as it is done in [4] our approach (VMP) uses a bank
of predefined masks and a voting process to define the local
interactions driving the diffusion process.
80
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2. Method

The first step is to calculate a sparse, high-confidence, stereo
map. Many feature-based disparity calculation methods match
edges present in stereo-images, since these can be considered rel-
ty densification using voting mask propagation, J. Vis. Commun. (2009),
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atively robust features [13,14]. For the reasons set out in Section 1
we use here a simplified dynamic programming technique based
on image edges [11]. The rational for using dynamic programming
is that it has been shown to be both computationally efficient [15]
and capable of producing highly accurate results [2]. Nevertheless,
as mentioned earlier, our densification approach does not depend
upon the method used for producing the initial sparse disparity
map. The second step is to apply voting mask propagation (VMP)
for propagating disparity in the direction where estimations are
expected to be similar and to use voting for resolving ambiguities.
Local support of the voting process is based on directional masks:
for each image position for which disparity is known a mask from a
pre-determined bank is chosen, depending upon the underlying
image structure (gradient). The properties of the chosen filter de-
fine how many votes each of the neighborhood positions will
receive.
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2.1. Propagation direction

Since without further image analysis we cannot be sure of
which object an image pixel for which the disparity is known be-
longs to, and since we assume that inside objects disparity changes
gradually, image gradient is used as a driving force of the propaga-
tion direction. We assume that two different objects will almost
certainly have two different disparity levels. By propagating in a
direction perpendicular to the image gradient we reduce errors
since different objects have varying disparities divided by an edge.
This assumption of local maximum gradient separating different
objects is also the basis of anisotropic diffusion, where diffusion
direction is driven by the gradient [12,16]. In this work we concen-
trate on the case where the disparities for the edges are known and
the disparities are propagated in an edge-wise direction. There is,
however, no reason why the disparities not residing at the edges
could not be propagated as well. The tangent-to-edge direction is
approximated by calculating image gradient.
 C 155
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E2.2. Bank of masks

A bank of masks is designed using a 2D multivariate Gaussian
distribution which is rotated in order to generate masks corre-
sponding to different propagation directions. The basic mask, cor-
responding to orientation 0� (i.e. the horizontal axis), is calculated
as per the following equation:

z ¼ G i; j;li ¼ lj ¼ 0;
X� �

; i ¼ �N . . . N; j ¼ �P . . . P ð1Þ
U
N

C
O

Fig. 1. A bank of 7 � 7 voting masks corresponding to different orientat
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where GðÞ denotes multivariate Gaussian, ði; jÞ are the coordinates of
the mask, ðli ¼ lj ¼ 0Þ are the mean,

P
is the covariance, z is the

number of votes that each position receives and N and P define
the mask size. Fig. 1 shows a voting mask corresponding to several
different orientations (rotations).

The use of Gaussian distribution is motivated by the fact that it
reflects the probabilistic nature of our approach: the underlying
image structure drives the propagation direction and thus reflects
our belief on how the disparity is distributed. Other authors have
used similar approaches for image denoising [17]. Furthermore,
Gaussian multivariate distribution allows a smooth transition from
isotropic to anisotropic cases, depending on the certainty of the
image structure, which can be used in more elaborated schemes
by further analyzing the image. Besides a Gaussian distribution
can be implemented as a separable convolution thus making it effi-
cient computationally.
E
D

P
R

O2.3. Choosing the mask

Once the orientations of the edge tangents have been approxi-
mated, propagation is carried out for each disparity value using
the mask whose orientation best matches the tangent of the edge.
The most closely corresponding masks centre is placed on top of
the disparity value of interest and each pixel within mask size re-
ceives as many votes for the disparity value as defined by the mask.
This is shown in the following equation:

Vxþi;yþjðDx;yÞ ¼ Gx;y;Dðxþ i; yþ jÞ; i ¼ �N . . . N;

j ¼ �P . . . P ð2Þ

where Vx;y indicates votes received by position ðx; yÞ for disparity,
D;Gx;y;Dðxþ i; yþ jÞ denotes how the Gaussian voting mask, chosen
as per gradient D, with a size of ð2N þ 1;2P þ 1Þ, placed at ðx; yÞ
votes for each mask position. As a final step, after the disparities
have been propagated for each of the original disparity values, each
pixel position assumes the disparity that receives most votes, as de-
fined in the following equation:

Dx;y ¼max
V
ððVx;y;Dx;yÞÞ ð3Þ

where Dx;y indicates the final chosen disparity value for a position
ðx; yÞ and maxV ððV ;DÞÞ returns the disparity value that has re-
ceived the most votes for a set of vote-disparity tuples ðV ;DÞ.
Due to the spatial support of the voting mechanism erroneous val-
ues are in certain cases effectively voted out: if within a certain
neighborhood there are more correct values than erroneous val-
ions. Intensity codifies the number of votes each position receives.

ty densification using voting mask propagation, J. Vis. Commun. (2009),
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Fig. 2. Results for the test images: the left-hand column contains left-hand images of the original stereo-pairs, the middle column shows disparity maps calculated by
dynamic programming and the right-hand column disparity maps densified using VMP. C denotes the percentage of correct disparities (±1 disparity level) and D, density.
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ues, the erroneous values receive fewer votes and are discarded.
Interestingly enough this effect allows the densification process
to arrive at a denser but at the same time more accurate disparity
map than the original.
Please cite this article in press as: J. Ralli et al., A method for sparse dispari
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2.4. Pseudocode

For the sake of clarity, below we have included a pseudocode of
the propagation process.
ty densification using voting mask propagation, J. Vis. Commun. (2009),
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P
d

//I input image driving the voting process
//D disparity map
//M bank of masks (mask size (N,P))
//V a matrix for storing the votes (initialize to 0)

//- -VOTE- -
//Obtain coordinates for disparities
(x y) = coords(notEmpry(D))
for i = 1:numel(x)

//Choose the closest mask corresponding to gradient normal
DI = calculateImageGradient(I(x(i),y(i)))
mask = chooseMask(M, DI)
//Vote using the chosen mask
V = vote(x(i), y(i), mask, D(x(i),y(i)), N, P)

end
//- -CHOOSE WINNERS- -
(x y) = coords(notEmpty(V))
for i = 1:numel(x)

Out(x(i),y(i)) = MAX(V(x(i),y(i)))
end
213
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The actual voting process can be seen as superimposition of the
chosen mask on top of the disparity value to be propagated where
each neighboring pixel (defined by the mask) receives as many
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g. 3. Densification results for several initial densities obtained using different
resholds for dynamic programming. DP refers to results calculated by directly
ing dynamic programming and VMP refers to results densified from correspond-
g DP results using voting mask propagation. (A) TS refers to Tsukuba and V refers
Venus images and (B) C refers to Cones and TE refers to Teddy images.

lease cite this article in press as: J. Ralli et al., A method for sparse dispari
oi:10.1016/j.jvcir.2009.08.005
E
D

P
R

O
O

F

votes for the disparity as defined by the weight of the mask as each
position. For each pixel position the number of votes for each dis-
parity needs to be stored so that a winner can be chosen
accordingly.

3. Experiments and results

We benchmarked the method using well known stereo-images
available at http://www.vision.middlebury.edu/stereo/. In order to
study how the VMP densification process behaves when dealing
with different initial densities and/or errors, we have used two dif-
ferent methods for generating the initial disparity maps provided
to the VMP model. The different methods used were dynamic pro-
gramming (DP) [11] and a phase-based method [1,18]. Further-
more, we have used different thresholds and interleave factors
for DP in order to generate initial disparity maps with different
densities and errors. Computational complexity of the our method
was approximated by comparing it with execution times of the DP
method. We also introduce a sample application that clearly bene-
fits from a more dense disparity map as input. In the experiments,
size of the propagation masks was 7 � 7 pixels. Density is given in
terms of a ratio between the number of pixels for which disparity
has been defined and the total number of pixels in the image. Over-
all accuracy is measured as the percentage of correct pixels (±1 dis-
parity level) calculated against the ground-truth values.

3.1. Results

Fig. 2 shows the original stereo-pair images and results calcu-
lated directly using DP and densified by VMP.

Fig. 3 demonstrates the results for four different initial maps
with different densities. The initial maps are calculated using dif-
ferent thresholds for occlusion detection with the effect of increas-
ing density at the expense of accuracy. Thus it can be observed that
after certain reasonable limit, in order to obtain even more dense
map, the error starts to increase. In such a case it is better to calcu-
late more reliable initial map and then densify.

Fig. 4 shows the results for the Venus case only. It can be clearly
seen that as the cost for occlusions gets higher (threshold from one
to four) density of the resulting disparity map increases slightly at
the expense of accuracy. On the other hand, as the error increases
Fig. 4. Densification results for several initial densities obtained using different
thresholds in dynamic programming. DP refers to dynamic programming and VMP
to voting mask propagation. Density refers to the density of the obtained disparity
map and correct refers to the percentage of correct disparities (±1 disparity level).

ty densification using voting mask propagation, J. Vis. Commun. (2009),

http://vision.middlebury.edu/stereo/
http://dx.doi.org/10.1016/j.jvcir.2009.08.005
Original text:
Inserted Text
i=1:numel(x)

Original text:
Inserted Text
I=calculateImageGradient( I(x(i),y(i) )

Original text:
Inserted Text
chooseMask( M, ΔI )

Original text:
Inserted Text
V=vote( x(i), 

Original text:
Inserted Text
P )

Original text:
Inserted Text
coords( notEmpty(V) )

Original text:
Inserted Text
i=1:numel(x)

Original text:
Inserted Text
Out( x(i),y(i) ) 

Original text:
Inserted Text
MAX( V( x(i),y(i)) )

Original text:
Inserted Text
Furthermore 

Original text:
Inserted Text
7x7 

Original text:
Inserted Text
( 

Original text:
Inserted Text
hand 



U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

Fig. 5. Phase refers to phase-based method and VMP to voting mask propagation. C denotes the percentage of correct disparities (±1 disparity level) and D, density.

Fig. 6. Densification results for several initial densities obtained using different
interleaves for dynamic programming. DP refers to results calculated by directly
using dynamic programming and VMP refers to results densified from correspond-
ing DP results using voting mask propagation. (a) TS refers to Tsukuba and V refers
to Venus images and (b) C refers to Cones and TE refers to Teddy images.

Fig. 7. Densification factor results for different initial disparities. Y-axis shows the
density of the initial map while X-axis displays the obtained densification factor.

Fig. 8. Computation times for both the dynamic programming and the voting mask
propagation methods. DP refers to dynamic programming and VMP to voting mask
propagation.

J. Ralli et al. / J. Vis. Commun. Image R. xxx (2009) xxx–xxx 5

YJVCI 843 No. of Pages 8, Model 5G

19 September 2009
ARTICLE IN PRESS

Please cite this article in press as: J. Ralli et al., A method for sparse disparity densification using voting mask propagation, J. Vis. Commun. (2009),
doi:10.1016/j.jvcir.2009.08.005

http://dx.doi.org/10.1016/j.jvcir.2009.08.005
jarno
Sticky Note
Densification factor results for different initial disparities. X-axis shows the
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Fig. 9. Down-scaling results using a median filter: the left-hand column contains results of down-scaling Tsukuba disparity calculated using dynamic programming, whilst
that on the right shows the results of applying VMP on the first scale and then down-scaling. Sc denotes the scale, while C and D denote percentage of correct disparities (±1
disparity level) and density.
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the difference between (B) and (C). C denotes the percentage of correct disparities and D, density.
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the voting mechanism starts to vote out some of the erroneous val-
ues thus increasing the accuracy.

Fig. 5 displays densification results using an initial disparity
map calculated by a phase-based method [18]. Density and error
of the resulting densified map is similar to the rest of the results
even though the starting density with this technique is signifi-
cantly higher than in the previous experiments based on dynamic
programming.

Figs. 6 and 7 demonstrate the results of different initial dispar-
ities upon the densified disparity and the obtained densification
factor. Different initial density disparities were obtained using DP
with different vertical line interleaves (interleave 1 = disparity cal-
culated for all the vertical lines; interleave 2 = disparity calculated
for every second line, etc.). This experiment demonstrates both
robustness of the VMP method in relation to initial density and
what kind of densification factors can be expected. As the density
of the input map increases the densification factor decreases which
is due to overlapping of the propagation filters.

Fig. 8 displays the computational times of both the dynamic
programming and the voting mask propagation methods, imple-
mented in Matlab. The four different cases correspond to the four
different thresholds already seen in Fig. 3. This kind of a compari-
son is approximate since it depends on implementation issues but,
however, it does give a valuable hint of the relative computational
complexities.

In applications where less resolution is needed, further densifi-
cation can be achieved by down-scaling. Fig. 9 shows the results of
down-scaling disparity maps by a factor of two, using a 2 � 2 med-
ian filter and discarding those pixels that do not have a disparity
estimation. In order to calculate the percentage of correct dispari-
ties, each of the downscaled disparity maps was upscaled to the
same size as the ground-truth.

3.2. Sample application

We present here a specific application which benefits from a
denser sparse-disparity map: fusion of sparse- and dense-disparity
stereo [19] for disambiguation of dense disparity estimations. In
the framework of DRIVSCO [19] Ralli et al. have demonstrated
the benefits of using symbolic, reliable sparse-disparity to disam-
biguate unclear cases in dense-disparity calculation. We tested
Please cite this article in press as: J. Ralli et al., A method for sparse dispari
doi:10.1016/j.jvcir.2009.08.005
E
D

P
the fusion scheme, with different sparse-disparity densities, upon
a hardware simulation of a phase-based [1,18] disparity calcula-
tion method with and without fusion. The hardware simulation
approximates a realtime FPGA implementation (currently being
implemented at the University of Granada) of the phase-based
method. Due to limited on-chip computational resources the
implementation requires a trade-off between accuracy and effi-
ciency. In such a scheme where external approximations are avail-
able, these can be used to guide the dense method and thus the
accuracy can be restored as shown in Fig. 10. As can be seen in
Fig. 10, the fusion process benefits clearly from a denser sparse-
disparity map used to guide the dense disparity calculation
method.
4. Conclusion

We have shown that our novel method of propagating sparse
disparity information based on directional masks and a voting
scheme is capable of significantly increasing density with a very
minor increase in overall error, thus considerably enhancing the
initial sparse disparity map. Further densification can be achieved
by down-scaling, by active interpolation [20–22] or by diffusion
[12]. Even though in this study we have used VMP for propagating
binocular visual information based on monocular cues, VMP can
also be used for propagating other visual cues, such as optical flow
and others. The simplicity of the method facilitates its efficient
implementation.
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