
Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
A compact harmonic code for early vision based on anisotropic frequency channels q

Silvio P. Sabatini a,*, Giulia Gastaldi a, Fabio Solari a, Karl Pauwels b, Marc M. Van Hulle b, Javier Diaz c,
Eduardo Ros c, Nicolas Pugeault d,1, Norbert Krüger e

a Dipartimento di Ingegneria Biofisica ed Elettronica, University of Genoa, Italy
b Laboratorium voor Neuro- en Psychofysiologie, K.U.Leuven, Belgium
c Departamento de Arquitectura y Tecnologia de Computadores, University of Granada, Spain
d School of Informatics, University of Edinburgh, UK
e The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 September 2008
Accepted 24 March 2010
Available online xxxx

Keywords:
Early vision
Phase-based image analysis
Multichannel filtering
Image representations
Stereo
Motion
Bio-inspired vision processing
1077-3142/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.cviu.2010.03.008

q This work has matured from a preliminary a
presented at the 2nd International Conference on C
Applications (VISAPP’07), 8-11 March, 2007 Barcelona

* Corresponding author. Fax: +39 010 3532289.
E-mail address: silvio.sabatini@unige.it (S.P. Sabat

1 Present address: University of Surrey, UK.

Please cite this article in press as: S.P. Sabatini
Image Understand. (2010), doi:10.1016/j.cviu.2
The problem of representing the visual signal in the harmonic space guaranteeing a complete character-
ization of its 2D local structure is investigated. Specifically, the efficacy of anisotropic versus isotropic fil-
tering is analyzed with respect to general phase-based metrics for early vision attributes. We verified that
the spectral information content gathered through channeled oriented frequency bands is characterized
by high compactness and flexibility, since a wide range of visual attributes emerge from different hierar-
chical combinations of the same channels. We observed that constructing a multichannel, multiorienta-
tion representation is preferable than using a more compact one based on an isotropic generalization of
the analytic signal. Maintaining a channeled (i.e., distributed) representation of the harmonic content
results in a more complete structural analysis of the visual signal, and allows us to enable a set of ‘‘con-
straints” that are often essential to disambiguate the perception of the different features. The complete
harmonic content is then combined in the phase-orientation space at the final stage, only, to come up
with the ultimate perceptual decisions, thus avoiding an ‘‘early condensation” of basic features. The
resulting algorithmic solutions reach high performance in real-world situations at an affordable compu-
tational cost.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Although the basic ideas underlying early vision appear decep-
tively simple and their computational paradigms are known for a
long time, early vision problems are difficult to quantify and solve.
Such a difficulty is often related on the representation we adopt for
the visual signal, which must be capable of capturing, through
proper ‘‘channels”, what is where in the visual signal, that is the
structural (‘‘what”) and the positional (‘‘where”) information from
the images impinging the retinas. Ever since the initial formulation
of the channel concept, the problem arises of jointly handling the
existence of spatial frequency channels on the one hand, and of
orientation channels on the other. At a local operator level, the
two-dimensional (2D) Gabor filter (proposed by J. Daugman [1]
and S. Marcelja [2], as an extension of its one-dimensional (1D)
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counterpart [3]) retains the optimal joint information resolution
in both the domains and meets thoroughly this demand, by under-
lining the 2D nature of the frequency representation and thus
being isomorphic to the 2D character of the spatial manifold of
the visual/retinal image. In this way, 2D Gabor filters reconciled
the ‘‘atomistic” description of early vision, based on local feature
detection in the space domain with the ‘‘undulatory” interpreta-
tion, based on a Fourier-like decomposition into spatial-frequency
components. Yet, the picture remained still incomplete, if one con-
siders the representation problem as a whole. Indeed, a hybrid ap-
proach asserted itself, consisting in an energy-based multichannel
feature extraction (i.e., a parametric analysis in the image domain
at different frequency bandwidths), which is still reminiscent of
the more intuitive atomistic description, rather than a coarse, local,
frequency analysis embedded within the global space-domain
mapping. For years, the phase was the missing concept, and, even
when it recovered its computational significance, its role within a
unifying perspective of the optimal representation of the visual
signal has never been fully explored.

In this paper, we propose a general and fully conciliatory posi-
tion between the spatial and spectral (i.e., frequency) approaches
to early vision. Specifically, if we include the local phase as a key
de for early vision based on anisotropic frequency channels, Comput. Vis.
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descriptive element of the visual signal, we gain a complete repre-
sentation and the orientation becomes an integral part of the har-
monic representation. Indeed, the extraction of local phase
information in two dimensions is an intrinsically anisotropic prob-
lem that refers to a selected orientation, unless one introduces an
isotropic extension of the analytic signal (Hilbert transform) and
thereby the concept of dominant orientation. We will remark the
conceptual complementarity of the two (spatial and spatial-fre-
quency) descriptions, yet pointing out the optimal economy and
the major richness of the information conveyed in the harmonic
domain by anisotropic filters, which allow us to derive, with rela-
tive ease, more complex (higher-order) visual descriptors without
resorting to complicated relational and/or symbolic constructors,
but still operating at the signal level.

The rest of the paper is organized as follows: in Section 2, we
introduce the problem of the representation of the visual signal
in the harmonic space, according to different sets of band-pass fil-
ters. On that ground, we define/qualify early vision features in
terms of specific phase properties and phase relationships. In Sec-
tion 3, channel interaction is formalized. Section 4 presents a com-
parative analysis of the experimental results on both synthetic and
natural image sequences. Concluding remarks in Section 6 are pre-
ceded by a general discussion in Section 5.
2. Visual features as measures in the harmonic space

The goal of early vision is to extract as much information as pos-
sible about the structural properties of the visual signal. As pointed
out by [4,5], an efficient internal representation is necessary to
guarantee all potential visual information can be made available
for higher level analysis. The measurement of specific, significant
visual ‘‘elements” in a local neighborhood of the visual signal has
led to the concept of ‘‘feature” and of ‘‘feature extraction”. An image
feature can be defined in terms of attributes related to the visual
data. Though, in practice, many features are also defined in terms
of the particular procedure used to extract information about that
feature, and, in more general terms, on the specific scheme adopted
for the representation of the visual signal. At an early level, feature
detection occurs through initial local quantitative measurements of
basic image properties (e.g., edge, bar, orientation, movement, bin-
ocular disparity, color) referable to spatial differential structure of
the image luminance and its temporal evolution (cf. linear visual
cortical cell responses, see e.g. [6–8]). Later stages in vision can
make use of these initial measurements by combining them in var-
ious ways, to come up with categorical qualitative descriptors, in
which information is used in a non-local way to formulate more
global spatial and temporal predictions (e.g., see [9]).

The receptive fields of the cells in the primary visual cortex have
been interpreted as fuzzy differential operators (or local jets [4])
that provide regularized partial derivatives of the image luminance
along different directions and at several levels of resolution, simul-
taneously. The jets characterize the local geometry in the neigh-
borhood of a given point x = (x,y). The order of the jet
determines the amount of geometry represented. Given the 2D
nature of the visual signal, the spatial direction of the derivative
(i.e., the orientation of the corresponding local filter) is an impor-
tant ‘‘parameter”. Within a local jet, the directionally biased recep-
tive fields are represented by a set of similar filter profiles that
merely differ in orientation.

Alternatively, considering the space/spatial-frequency duality
[3,1], the local jets can be described through a set of 2D spatial-fre-
quency channels, which, for each spatial orientation, are selectively
sensitive to a different limited range of spatial frequencies. These
oriented spatial-frequency channels are equally apt as the spatial
ones [10]. From this perspective, it is formally possible to derive,
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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on a local basis, a complete harmonic representation (amplitude,
phase, and orientation) of any visual stimulus, by defining the
associated analytic signal in a combined space-frequency domain
through filtering operations with complex-valued 2D band-pass
kernels. Since spatial information is being linearly transformed
from the space domain at the level of pixels, into a combined
space-frequency domain at a cortical-like representation level, no
actual analysis is taking place at this level, and the information is
merely being put into another (presumably more useful) form [11].

Formally, due to the impossibility of a direct definition of the
analytic signal in two dimensions, a full harmonic characterization
of the 2D spatial vision channels in the Fourier domain requires ex-
plicit (1D) reference axes, and their association with the orienta-
tion of the spatial frequency channel must be discussed.
Basically, this association can be handled either (1) ‘separately’,
for each orientation, by using Hilbert pairs of band-pass filters that
display symmetry and antisymmetry about a steerable axis of ori-
entation or (2) ‘as-a-whole’, by introducing a 2D isotropic general-
ization of the analytic signal: the monogenic signal [12], which
allows us to build isotropic harmonic representations that are
independent of the orientation (i.e., omnidirectional). By definition,
the monogenic signal is a 3D phasor in spherical coordinates and
provides a framework to obtain the harmonic representation of a
signal respect to the dominant orientation of the image that be-
comes part of the representation itself. In the first case, for each
orientation h, an image I(x) is filtered with a complex-valued filter:

f h
A ðxÞ ¼ f hðxÞ � if h

HðxÞ ð1Þ

where f h
HðxÞ is the Hilbert transform of f hðxÞwith respect to the axis

orthogonal to the filter’s orientation:

f h
HðxÞ ¼ fHðxh; yhÞ ¼

1
p

Z þ1

�1

f ðn; yhÞ
n� xh

dn

with xh and yh the principal axes of the energy distribution of the fil-
ter in the spatial domain.

This results in a complex-valued analytic image:

Q h
AðxÞ ¼ I � f h

A ðxÞ ¼ ChðxÞ þ iShðxÞ; ð2Þ

where ChðxÞ and ShðxÞ denote the responses of the quadrature filter

pair. For each spatial location, the amplitude qh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

h þ S2
h

q
and the

phase /h ¼ atan2ðSh; ChÞ envelopes measure the harmonic informa-
tion content in a limited range of frequencies and orientations to
which the channel is tuned (see Fig. 1a).

In the second case, the image I(x) is filtered with a spherical
quadrature filter (SQF):

fMðxÞ ¼ f ðxÞ � ði; jÞ � fRðxÞ ð3Þ

defined by a radial bandpass filter f(x) (i.e., rotation invariant even
filter) and a vector-valued isotropic odd filter fRðxÞ ¼ ðfR;1ðxÞ;
fR;2ðxÞÞT , obtained by the Riesz transform of f(x) [12]:

fRðxÞ ¼
1

2p

Z þ1

�1

Z þ1

�1

n

jnj3
f ðx� nÞdn ð4Þ

This results in a monogenic image:

QMðxÞ ¼ I � fMðxÞ ¼ CðxÞ þ ði; jÞSðxÞ ¼ CðxÞ þ iS1ðxÞ þ jS2ðxÞ ð5Þ

where using the standard spherical coordinates,

CðxÞ ¼ qðxÞ cos uðxÞ
S1ðxÞ ¼ qðxÞ sin uðxÞ cos#ðxÞ
S2ðxÞ ¼ qðxÞ sin uðxÞ sin#ðxÞ:

The amplitude of the monogenic signal is the vector norm of

fM : q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ S2

1 þ S2
2

q
, as in the case of the analytic signal, and,
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Fig. 1. (a) Multichannel harmonic representation through anisotropic frequency
channels. (b) Isotropic harmonic representation through the monogenic signal.
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for an intrinsically one-dimensional signal, u and # are the domi-
nant phase and the dominant orientation, respectively (see Fig. 1b).

2.1. Compact band-pass filtering

In the harmonic space (e.g., phase-based approaches), it is in
general an important requirement to have both the spatial width
of the filters and the spatial frequency bandwidth small, so that
good localization and good approximation of the harmonic infor-
mation is realized simultaneously. Gabor functions reaching the
maximal joint resolution in space and spatial frequency domains
are specifically suitable for this purpose and are extensively used
in computational vision [1]. Different band-pass filters have been
proposed as an alternative to Gabor functions, on the basis of spe-
cific properties of the basis functions [13–20], or according to the-
oretical and practical considerations of the whole space-frequency
transform [21–26]. A detailed comparison of the different filters
evades the scope of this paper and numerous comparative reviews
can be already found in the literature (e.g., see [27] [28,29]).

Since the main goal of this study is to analyze the efficacy of the
two approaches (isotropic vs. anisotropic) in obtaining a complete
and efficient representation of the visual signal, we consider a dis-
crete set of oriented (i.e., anisotropic) Gabor filters and a triplet of
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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isotropic spherical quadrature filters defined on the basis of the
monogenic signal, respectively. Moreover, as a choice in the middle
between the two approaches, we will also take into consideration
the classical steerable filter approach [23] that allows a continuous
steerability of the filter with respect to any orientation. Hence, it is
possible in principle to steer the filter with respect to the dominant
orientation of the signal, which, yet, has to be known in advance
and cannot be gained from the representation itself.

In order to guarantee a fair comparison among the different fil-
ters, we have considered Gabor functions with radially symmetric
Gaussian envelopes. For all the filters considered, we chose the de-
sign parameters to have a good coverage of the space-frequency
domain and to keep the spatial support (i.e., the number of taps)
to a minimum, in order to cut down the computational cost. There-
fore, we determined the smallest filter on the basis of the highest
allowable frequency without aliasing, and we adopted a pyramidal
technique [30] as an economic and efficient way to achieve a mul-
ti-resolution analysis (see also Section 3). Accordingly, we fixed the
maximum radial peak frequency ðx0Þ by considering the Nyquist
condition, and a constant relative bandwidth b around one octave,
that allows us to cover the frequency domain without loss of infor-
mation. The result was an 11 � 11 filter mask capable of resolving
sub-pixel phase differences. For Gabor and steerable filters, we
should also consider the minimum number of oriented filters to
guarantee a uniform orientation coverage. This number depends
on the filter bandwidth and it is related to the desired orientation
sensitivity of the filter (e.g., see [1,31]); we verified that, under our
assumptions, the use of at least eight orientations is necessary. To
satisfy the quadrature requirement all the even symmetric filters
have been ‘‘corrected” to cancel the DC sensitivity. The monogenic
signal has been constructed from a radial bandpass filter obtained
by summing the corrected bank of oriented even Gabor filters.
Where possible, the filters have been expressed as sums of x–y sep-
arable functions to implement separate 1D convolutions instead of
2D convolutions in a similar way that [32], with a consequent fur-
ther drop of the computational burden. For a detailed description
of the filters used, see the Appendix.

2.2. Phase-based metrics

By exploiting, on a local basis the spectral information content
of the image signal (amplitude and phase), we can derive percep-
tual entities, useful to gain interpretative elements of the observed
scene, such as edges/contours, motion, and binocular disparity.
Although the major part of the classical algorithms available in
the literature rely upon the amplitude information, in the last
two decades alternative techniques based on phase measures have
been asserted themselves. The importance of global (Fourier)
phase has been first demonstrated with respect to image coding
and representation, by comparing modulus-only and phase-only
image reconstructions [33,34], and has been confirmed also in case
of the local phase spectrum [35]. On that ground, the popularity of
the phase information, as a robust feature descriptor, has risen in
relation with the numerous important properties that have been
reported and analyzed [36,31,37–44], such as: (1) the capacity of
measuring changes much smaller than the spatial quantization
(giving sub-pixel accuracy without a sub-pixel representation of
the image, due to its continuous character); (2) the stability with
respect to small geometric deformations of the input; and (3) –
perhaps the most desirable property – the invariance with both
mean luminance and contrast (e.g., with respect to smooth shading
and lighting variations), which makes phase, in principle, robust
against typical variations in image formation. For these reasons,
during the recent past, the phase from local bandpass filtering
has gained increasing interest in the Computer Vision community
and has led to the development of a wide number of phase-based
de for early vision based on anisotropic frequency channels, Comput. Vis.
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feature detection algorithms in different application domains
[45,31,46,37,47,48,12,49–51,49,52–60,44,61–64]. Yet, to the best
of our knowledge, a systematic analysis of the basic descriptive
properties of the phase, which explicitly includes a discussion of
the role of the oriented spatial frequency channels (e.g., see Section
5), has never been done. One of the key contributions of this paper
is to formulate a single unified representation framework for early
vision grounded on a proper phase-based metrics, integrated
across orientations. We verified that the resulting representation
is characterized by high compactness and flexibility, since a wide
range of visual attributes emerge from different hierarchical com-
binations of the same channels (i.e., the same computational
resources).

The harmonic representation will be the base for a systematic
phase-based interpretation of early vision processing, by defining
perceptual features on measures of phase properties. From this
perspective, edge and contour information can come from phase-
congruency, motion information can be derived from the phase-
constancy assumption, while matching operations, such as those
used for disparity estimation, can be reduced to phase-difference
measures. In this way, simple local relational operations capture
signal features, which would be more ‘‘complex” and less stable
if directly analyzed in the spatio-temporal domain.

Let us summarize some basic principles.

2.2.1. Contrast feature detection
Traditional gradient-based operators are used to detect sharp

changes in image luminance (such as step edges), and hence are
unable to properly detect and localize other feature types. As an
alternative, phase information can be used to discriminate differ-
ent features in a contrast independent way [48]. Abrupt luminance
transitions, as in correspondence of step edges and line features
are, indeed, points where the Fourier components are maximally
in phase. Therefore, both they are then signaled by peaks in the lo-
cal energy, and the phase information (i.e, the ‘phase-variance’) can
be used to discriminate among them [48], by revealing different
directions of contrast. Phase information is used as disambiguating
feature whose values can be used to interpret the kind of contrast
transition at its maximum, e.g., a phase of p/2 corresponds to a
dark-bright edge, whereas a phase of 0 corresponds to a bright line
on dark background ([48], see also [65]) .

Specifically, [66] show that phase congruency PC(x), for an one-
dimensional luminance profile, is equal to local energy E(x) scaled
by the sum of the amplitudes Ak of the Fourier series expansion of
the visual signal at location x:

PCðxÞ ¼ EðxÞP
kAk

: ð6Þ

Local energy and Fourier amplitudes Ak can be approximated by
bandpass filter responses at different scales (k):

EðxÞ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

CkðxÞ
 !2

þ
X

k

SkðxÞ
 !2

vuut ð7Þ

AkðxÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

kðxÞ þ S2
kðxÞ

q
¼ qkðxÞ ð8Þ

from which:

PCðxÞ ¼ EðxÞP
kqkðxÞ þ �

: ð9Þ

The appropriate value of � depends on the precision with which
we are able to perform convolutions and other operations on our
signal.

We point out that in the following we will use a phase congru-
ency formulation that takes into account the effect of noise, a more
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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sensitive measure for localization, and the extension to 2D spatial
domain [48].

2.2.2. Binocular disparity
In a first approximation, the phase-based stereopsis defines the

disparity dðxÞ as the one-dimensional shift necessary to align, along
the direction of the (horizontal) epipolar lines, the phase values of
bandpass filtered versions of the stereo image pair IRðxÞ and
ILðxÞ ¼ IR½xþ dðxÞ� [67,45]. Formally,

dðxÞ ¼ b/
LðxÞ � /RðxÞc2p

xðxÞ ¼ bD/ðxÞc2p
xðxÞ ð10Þ

where xðxÞ is the average instantaneous frequency of the bandpass
signal, at point x, that only under a linear phase model can be
approximated by x0 [46]. Equivalently, the disparity can be ob-
tained by direct calculation of the principal part of phase difference,
without explicit manipulation of the left and right phase and there-
by without incurring the ‘wrapping’ effects on the resulting dispar-
ity map [68] (see also [69,70]):

bD/c2p ¼ argðQLQ �RÞ ¼¼ atan2ðCRSL � CLSR;CLCR þ SLSRÞ ð11Þ

where Q � denotes complex conjugate of Q.

2.2.3. Normal flow
Considering the conservation property of local phase measure-

ments (phase constancy) [46], image velocities can be computed
from the temporal evolution of equi-phase contours /ðx; tÞ ¼ c.
Differentiation with respect to t yields:

r/ � v þ /t ¼ 0; ð12Þ

wherer/ ¼ ð/x; /yÞ is the spatial and /t is the temporal phase gra-
dient. Note that, due to the aperture problem, only the velocity
component along the spatial gradient of phase can be computed
(normal flow). Under a linear phase model, the spatial phase gradi-
ent can be substituted by the radial frequency vector x ¼ ðxx; xyÞ.
In this way, the component velocity vc can be estimated directly
from the temporal phase gradient:

vc ¼ �
/t

x0
� x
jxj : ð13Þ

The temporal phase gradient can be obtained by fitting a linear
model to the temporal sequence of spatial phases (using e.g. five
subsequent frames) [51]:

ð/t ;pÞ ¼ argmin
/t ;p

X
t

ð/t � t þ pÞ � /ðtÞð Þ2; ð14Þ

where p is the intercept. Note that this is different from the ap-
proach by [31], which involves a bank of spatiotemporal filters. Their
method requires tiling the spatiotemporal frequency space with
velocity-tuned filter pairs. The approach from [51] on the other
hand, allows estimation of the temporal phase gradients irrespec-
tive of the velocity at that spatial location. Using spatial filters also
renders the temporal span over which the optical flow field is esti-
mated independent of the filter bank. The mean squared error
(MSE) of the linear fit in Eq. (14) measures the phase nonlinearity
and serves as a (strictly local) reliability criterion for the component
velocity. Fleet and Jepson [46], instead, detect neighborhoods
around phase singularities, requiring spatial derivatives, which can-
not be computed purely locally.

3. Channel interactions

On the basis of the conceptual description of early vision fea-
tures in terms of the local phase properties of the visual signal,
illustrated in the previous section, we can formulate complete
de for early vision based on anisotropic frequency channels, Comput. Vis.
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solutions by combining the information gathered by a set of filters
that properly tile the 2D spatial frequency domain. In other words,
the harmonic information made available by the different basis
channels must be properly integrated across both multiple scales
and multiple orientations to optimally detect and localize the dif-
ferent features in the visual signal. If a multi-scale approach, that
refines features’ values through different levels of resolutions, is
usually sufficient for combining information at different spatial
frequency bandwidths, the blending of information across different
orientation bandwidths, requires a major attention. In particular,
we can decide to adopt a harmonic analysis through several ori-
ented filters parameterized by h, or prefer a measure of the domi-
nant orientation through the monogenic approach, and refer the
harmonic content to that (dominant) orientation axis. It is worth
noting that the former approach maintains a channeled (i.e., dis-
tributed) representation of the harmonic content, to which corre-
sponds a more complete structural analysis of the visual signal
(see Discussion). This allows us to enable a set of ‘‘constraints” that
are often essential to disambiguate the perception of the different
features. On the other hand, the determination of the dominant
orientation implies an early making of assumption on the struc-
tural properties of the image, which might result in less reliable
feature estimation, or, sometimes, might restrict the solution of
the perceptual problem.

3.1. Multi-scale analysis

In general, for what concerns the scale, a multi-resolution anal-
ysis can be efficiently implemented through a coarse-to-fine strat-
egy that helps us to deal with large features values [71], which are
otherwise unmeasurable by the small filters we have to use in or-
der to achieve real-time performance. Specifically, a coarse-to-fine
Gaussian pyramid [30] is constructed, where each layer is sepa-
rated by an octave scale. Accordingly, the image is increasingly
blurred with a Gaussian kernel g(x) and sub-sampled:

IkðxÞ ¼ ðSðg � Ik�1ÞÞðxÞ: ð15Þ

At each pyramid level k the sub-sampling operator S reduces to
a half the image resolution with respect to the previous level k� 1,
starting from the finest to the coarsest level. The filter response im-
age Qk at level k is computed by filtering the image Ik with the fixed
kernel f(x):

Q kðxÞ ¼ ðf � IkÞðxÞ: ð16Þ
3.2. Multi-orientation analysis

Using anisotropic filters such as Gabor functions or Gaussian
derivatives it is likely that the local orientation of some features
does not fit the discrete number (K) of orientations used (K = 8 in
our implementation). Hence, for what concerns the interactions
across the oriented spatial frequency channels, basic feature inter-
polation mechanisms must be introduced.

More specifically, if we name Eq and /q the ‘‘oriented” energy
and the ‘‘oriented” phase extracted by the filter fq steered to the an-
gle hq ¼ qp=K , the harmonic features computed with this filter ori-
entation are:

EqðxÞ ¼ C2
qðxÞ þ S2

qðxÞ ¼ q2
qðxÞ

hqðxÞ ¼
qp
K

/qðxÞ ¼ atan2 SqðxÞ;CqðxÞ
� �

:

Under this circumstance, we require to interpolate the feature
values computed by the filter banks in order to estimate the filter’s
output at the proper signal orientation. The strategies adopted for
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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this interpolation are very different, and strictly depend on the
‘computational theory’ (in the Marr’s sense [72]) of the specific
early vision problem considered, as it will be detailed in the
following.

3.2.1. Contrast direction and orientation
Through a (modified) tensor-based method [73,74], by combin-

ing the magnitude responses from basis channels with different
orientations hq; q ¼ 0; . . . ;K � 1, but a common frequency, we can
derive information about the local energy, the local phase and
the dominant local orientation around each pixel location of the
image:

EðxÞ ¼
XK�1

q¼0

EqðxÞ ¼
XK�1

q¼0

CqðxÞ2 þ SqðxÞ2
h i

ð17Þ

#ðxÞ ¼ 1
2

arg
XK�1

q¼0

qqðxÞe2jhq

" #
ð18Þ

uðxÞ ¼ atan2ðbSðxÞ; bCðxÞÞ ð19Þ

with

bCðxÞ ¼XK�1

q¼0

CqðxÞEqðxÞj cos½hq � #ðxÞ�j; and

bSðxÞ ¼XK�1

q¼0

SqðxÞEqðxÞ cos½hq � #ðxÞ�

where hq � # is the difference between the preferred orientation of
the filter and the local dominant orientation. These values are com-
parable to what can be directly obtained by the monogenic signal
approach (see Section 2). Alternative methods can be used, such
as winner-take-all, weighted average or maximal steerable energy
[23], though, on the basis of comparative analysis, we verified that
(provided a uniform coverage of the orientation space) the tensor-
based technique leads to the smaller error in the filter’s frequency
bandwidth.

3.2.2. Binocular disparity
The disparity computation from Eq. (10) can be extended to

two-dimensional filters at different orientations hq by projection
on the (horizontal) epipolar line in the following way:

dqðxÞ ¼
b/L

qðxÞ � /R
qðxÞc2p

x0 cos hq
: ð20Þ

In this way, multiple disparity estimates are obtained at each
location. These estimates can be combined by taking their median:

dðxÞ ¼median
q2VðxÞ

dqðxÞ; ð21Þ

where V(x) is the set of orientations where valid component dispar-
ities have been obtained for pixel x. Validity can be measured by the
filter energy.

A coarse-to-fine control scheme is used to integrate the esti-
mates over the different pyramid levels [75]. A disparity map
dkðxÞ is first computed at the coarsest level k. To be compatible
with the next level, it must be up-sampled, using an expansion
operator X, and multiplied by two:

dkðxÞ ¼ 2 �X dkðxÞ
� �

: ð22Þ

This map is then used to reduce the disparity at level k � 1, by
warping the phase or filter outputs before computing the phase
difference:

dk�1
q ðxÞ ¼

b/L
qðxÞ � /R

q xþ dkðxÞ
� �

c2p

x0 cos hq
þ dkðxÞ: ð23Þ
de for early vision based on anisotropic frequency channels, Comput. Vis.
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In this way, the remaining disparity is guaranteed to lie within
the filter range. This procedure is repeated until the finest level is
reached.

Equivalently, disparity can be obtained from the monogenic
phase difference [50] (cf. Eq. (11)):

bDuc2p ¼ atan2 CR
SL � CL

SR;CLCR þ SLSR
� �

ð24Þ

where S
L ¼ jSLjsignðSL

1Þ and S
R ¼ jSRjsignðSR

1Þ, defined as the phase
angle between the two monogenic signals in the plane formed by
the real signal and its Riesz transform, when equally oriented 1D
dominant local structures are assumed in the stereo pair. The phase
difference is associated to the ‘‘normal” displacement with respect
to the direction of the dominant orientation signal component,
which does not necessarily correspond to the direction along the
horizontal epipolar line. In order to turn such displacement into a
disparity measure the former must be still projected on the hori-
zontal epipolar line:

dMðxÞ ¼
bDuðxÞc2p
x0 cos#

: ð25Þ
3.2.3. Optic flow
Starting from the normal velocity components extracted for

every spatial orientation, the estimation of the full velocity re-
quires the combination of the information to solve the aperture
problem. The reliability of each component velocity can be mea-
sured by the mean squared error (MSE) of the linear fit in Eq.
(14) [51]. Provided a minimal number of reliable component veloc-
ities are obtained (threshold on the MSE), an estimate of the full
velocity can be computed for each pixel by integrating the valid
component velocities [51]:

vðxÞ ¼ argmin
vðxÞ

X
q2OðxÞ

jvc;qðxÞj � vðxÞT vc;qðxÞ
jvc;qðxÞj

� �2

; ð26Þ

where O(x) is the set of orientations where valid component veloc-
ities have been obtained for pixel x. A coarse-to-fine control
scheme, similar to that used for disparity is adopted to integrate
the estimates over the different pyramid levels. Starting from the
coarsest level k, the optic flow field vkðxÞ is computed, expanded,
and used to warp the phases or filter outputs at level k-1. For more
details on this procedure we refer to [76].

The monogenic counterpart of this approach is not straightfor-
ward, since, by construction, it can provide for every pixel at each
scale the velocity component normal to the dominant orientation
#ðxÞ, only: vc;#ðxÞ (cf. [77]). Such normal component is used to
warp the filter outputs in the coarse-to-fine processing scheme.
Actually, in analogy to the optimization strategy of Eq. (26), one
can minimize over a set of spatial region-channels instead of ori-
ented spatial frequency channels to obtain the full velocity estima-
tion in the case of the monogenic signal (cf. [60]). Though, in this
work, to focus on the local properties of the bandpass channels
and on the direct comparison between anisotropic vs. isotropic fre-
quency channels, we exclude any spatial contextual integration of
the filter outputs in a spatial neighborhood, since such an integra-
tion is not necessary for anisotropic bandpass channels. It is also
worth mentioning that avoiding the spatial integration has the
advantage that the warping can be performed independently of
neighboring estimates, thus being not necessary that the neighbor-
ing estimates are reliable, too. Hence, without resorting to addi-
tional spatial averaging over a larger area (cf. [60]), the local
approximation of the visual stimuli by simple oriented dominant
components, relentlessly prevents the solution, at each scale, of
the aperture problem. Therefore, a direct comparison between
the anisotropic and isotropic filters will not be possible.
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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4. Experimental results

4.1. Oriented Gaborian channels

The phase-based methodologies described in Sections 2 and 3
allow us to perform a complete early vision analysis of the ob-
served scene by combining (in different and specific ways) the out-
put of the convolutions of the images with a complete set of filters
that properly tile the two-dimensional frequency domain. For sta-
tic early vision attributes, such as orientation and direction of con-
trast, and binocular disparity, an algebraic combination of the
filters’ outputs is sufficient, whereas for dynamic (time-varying)
attributes, such as optic flow, an interpolation of the spatial phase
values over time (typically five frames are sufficient) is required to
derive an estimate of the temporal phase derivative and thence
compute the local velocity component. Though, in general, the fil-
tering stage that provides the harmonic representation of the vi-
sual signal is common for all the features. The resulting feature
maps are shown in Fig. 2. The disparity map and the optic flow
are obtained by the algorithms presented in Section 3. The contrast
transition maps is obtained by performing non-maximal suppres-
sion on the raw phase congruency map followed by hysteresis
thresholding proposed in [48].

As expected, the phase-based information provides dense and
robust results; the use of an adequate number of oriented spatial
frequency channels assures a good accuracy, too.
4.2. Comparative analysis

To compare the accuracy in feature extraction of the different
band-pass representations, we have applied the same algorithmic
procedure to the outputs of the spatial filtering stage, using as con-
volution kernels the three classes of filters defined in Section 2.1:
Gabor-like kernels, spherical quadrature filters (related to mono-
genic signal), and steerable filters. At first, in order to obtain a
quantitative measure of the accuracy, we used for benchmarking
standard synthetic sequences with well-known ground-truth fea-
ture. Then, qualitative comparisons are obtained with real-world
sequences.

It is worth noting that our goal is not comparing our algorithms
with the state-of-the-art, but comparing the performances of the
different filters. In their basic formulation, indeed, the algorithms
are not competitive as such on those benchmarks, mainly due to
the lack of global optimization strategies [78–81].
4.2.1. Synthetic sequences
4.2.1.1. Contrast direction and orientation. We have utilized a syn-
thetic image (see Fig. 3a) where the feature type changes from a
step edge to a line feature in a circular manifold [54] with contin-
uously varying intensities in the background. Fig. 3b–d show the
results obtained with Gabor filters for contour localization, by
using the phase congruency [48], and for orientation and phase
estimation, by using a modified tensor-based method [73,74].

The contour localization is based on the raw phase congruency
map (only the values higher than a given threshold are shown). The
unreliable values of the orientation estimation are discarded by
using a reliability measure (the magnitude of the complex argu-
ment of the Eq. (18), see [73]). The reliability of the phase estima-
tion is based on the local energy. It is worth noting that we choose
to use and to show the phase estimation as a continuum of values,
since the approaches for early vision feature extraction (e.g., binoc-
ular disparity and optic flow) exploit the whole range of phase val-
ues, it is not based only on specific phase values. As an alternative
approach, [82] proposed the characteristic phase concept: the
phase values that are consistent over a range of scales, named
de for early vision based on anisotropic frequency channels, Comput. Vis.
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a b

c d

Fig. 2. Example of phase-based feature maps obtained with oriented Gabor channels for a real-world stereo sequence. (a) A frame of the test sequence for the left camera. The
sequence is acquired by a stereo camera system rigidly installed behind the front shield of a car moving forward slowly. (b) Contrast transitions revealed by phase
congruency. (c) Disparity map, coded from red (objects closer to the viewer) to blue (objects in the background). (d) Optic flow, subsampled and scaled five times. The motion
of pedestrians crossing the street is superimposed to the translational ego-motion of the car. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

a b

c d

Fig. 3. (a) Test image representing a continuum of phases taking values between
�p and p corresponding to a continuum of oriented grey-level structures as
expressed in the changing circular manifold (cf. [48,54]). The feature type changes
circularly from a step edge to a line feature, while retaining perfect phase
congruency. (b) Phase-based localization of contrast transitions. (c) Orientation
estimation. (d) Local phase estimation. Note the linear variation of the phase across
the contrast transition. Quantitative measures about correct localization, orienta-
tion and phase are reported in Tables 1–3.
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characteristic phases, describe the local image structure; in partic-
ular, the consistent phase values through scales are 0 and p for
lines, and ±p/2 for edges.

We measured, for the different filters, the accuracy in the local-
ization of contrast transitions, and in the phase and orientation esti-
mation, comparing the results with the ground-truth. Different
levels of white Gaussian noise, expressed in terms of the signal-
to-noise ratio (SNR), have been added to the input image to validate
the robustness of the approach. Tables 1–3 report the mean errors
in localization, orientation and phase and their standard deviations.

To take into account the circular manifold of the changing fea-
ture in Fig. Appendix A, we gauge the accuracy in the localization
by computing the position of the maximum value of phase congru-
ency on a 1D segment orthogonal and symmetric with respect to
every point of the circle of the ground truth. The accuracy in the
orientation estimation is performed at the spatial position of the
ground truth with respect to the value of the ground truth. Consid-
ering the small spatial period of the band-pass filters, to overcome
the discretization problems of sub-pixel phase measures, the
ground truth for the computation of the accuracy in the phase esti-
mation is the phase difference between two circular manifolds
with a constant offset; the phase estimation is performed at the
spatial position of the ground truth independently, for the two cir-
cular manifolds.

We can see that, in the absence of noise, Gabor, fourth-order
steerable filters (s4), and SQF yield to similar results. Second order
steerable filters (s2) seems more noisy in its estimates. Though, it
is worth noting that the deterioration of the results is more severe
for the SQF than for the other filters. This may be justified by the
fact that, as the noise increases, the synthetic image of contrast
transitions looses its intrinsically 1D character, on which the
performance of the monogenic approach is based. Hence, a higher
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Table 1
Accuracy evaluation for localization of contrast transitions in the synthetic image of Fig. 3. The localization error is expressed in pixels. The SNR values are expressed in decibel.

No noise SNR = 40 SNR = 30 SNR = 25 SNR = 20

Avg Std Avg Std Avg Std Avg Std Avg Std

Gabor 0.033 0.175 0.032 0.173 0.043 0.198 0.060 0.238 0.090 0.288
s4 0.034 0.178 0.033 0.174 0.040 0.193 0.058 0.229 0.098 0.295
s2 0.057 0.228 0.057 0.227 0.060 0.237 0.088 0.285 0.156 0.410
SQF 0.035 0.181 0.041 0.195 0.067 0.253 0.125 0.353 0.268 0.492

Table 2
Accuracy evaluation for orientation in the synthetic image of Fig. 3. The orientation error is expressed in radians. The SNR values are expressed in decibel.

No noise SNR = 40 SNR = 30 SNR = 25 SNR = 20

Avg Std Avg Std Avg Std Avg Std Avg Std

Gabor 0.009 0.006 0.019 0.142 0.041 0.213 0.075 0.277 0.209 0.555
s4 0.009 0.007 0.018 0.116 0.063 0.311 0.095 0.335 0.221 0.554
s2 0.019 0.163 0.021 0.141 0.077 0.356 0.122 0.421 0.222 0.549
SQF 0.004 0.006 0.084 0.267 0.250 0.515 0.380 0.615 0.567 0.707

Table 3
Accuracy evaluation for phase in the synthetic image of Fig. 3. The phase error is expressed in radians. The SNR values are expressed in decibel.

No noise SNR = 40 SNR = 30 SNR = 25 SNR = 20

Avg Std Avg Std Avg Std Avg Std Avg Std

Gabor 0.006 0.007 0.016 0.071 0.039 0.079 0.071 0.130 0.114 0.137
s4 0.021 0.016 0.027 0.060 0.053 0.109 0.091 0.166 0.155 0.205
s2 0.096 0.061 0.097 0.075 0.103 0.104 0.123 0.157 0.169 0.219
SQF 0.009 0.005 0.025 0.058 0.079 0.117 0.145 0.181 0.235 0.246

Table 4
Disparity results with consistency check.

Tsukuba Sawtooth Venus Teddy Cones

Avg Std Dens Avg Std Dens Avg Std Dens Avg Std Dens Avg Std Dens

Gabor 0.27 0.40 96.2 0.26 0.82 94.5 0.18 0.47 95.9 0.58 2.11 84.1 0.22 0.90 92.8
s4 0.28 0.38 92.7 0.33 1.37 91.4 0.24 0.90 90.6 0.92 3.94 76.9 0.26 1.18 86.3
s2 0.33 0.46 80.2 0.61 1.74 69.4 0.56 2.03 71.3 1.65 5.71 53.5 0.84 4.53 52.8
SQF 0.32 0.49 87.0 0.47 1.09 77.4 0.47 1.69 76.6 0.75 3.27 62.3 0.56 2.84 67.4
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reliability in detecting contrast direction and orientation is ex-
pected for anisotropic multichannel, multiorientation representa-
tion in real-world situations, where intrinsic 1D structures are
more the exception than the rule.

4.2.1.2. Binocular disparity. A subset of stereo-pairs from the Mid-
dlebury stereo vision web-page [83,84] are used in the evaluation.
Since we are interested in the precision of the filters we do not use
the integer-based measures proposed there but instead compute
the mean and standard deviation of the absolute disparity error.
So as not to distort the results with outliers, the error is evaluated
only at regions that are textured, non-occluded and continuous. To
this end, in the following, we use a left-right consistency check,
which is often used to detect occlusions [85], to evaluate the reli-
ability of the disparity estimates. It amounts to comparing the dis-
parity computed for the left frame, dR

L , to the disparity computed
for the right frame, dL

R, at the corresponding pixels. The left frame
disparity is used to find corresponding pixels. This results in the
following measure:

EdðxÞ ¼ dR
L ðxÞ þ dL

Rðxþ dR
L ðxÞÞ

		 		: ð27Þ

The disparities dR
L ðxÞ and dL

RðxÞ are computed by keeping
respectively the left and right frame as (fixed) reference frame,
and warping the other frame. Note that the differences result
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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from the warping, so for the single scale case, this error is al-
ways zero. A threshold of 0.5 pixels is used to determine reli-
ability. The disparity estimates are thus rejected if EdðxÞ > 0:5.
The results are shown in Table 4 and Fig. 4. The best results
are obtained with the Gabor filters. Slightly worse are the
results with fourth-order steerable filters and the second-order
filters yield results about twice as bad as the fourth-order
filters. The results obtained with SQFs are comparable with
those obtained by the second-order steerable filters. Fig. 4 con-
tains (from top to bottom) the left images of the stereo-pairs,
the ground truth depth maps, and the depth maps obtained
with the Gabor filters before and after applying the left-right
consistency check.
4.2.1.3. Optic flow. We have evaluated the different filters with re-
spect to optic flow estimation on the diverging tree and Yosemite se-
quences from [86], using the error measures presented there. The
cloud region was excluded from the Yosemite sequence. The results
are presented in Table 5 and similar conclusions can be drawn as in
the previous paragraph. Gabor and fourth-order steerable filters
yield comparable results whereas second-order steerable filters
score about twice as bad.

Fig. 5 shows the center images, ground truth optic flow fields,
and optic flow fields computed with the Gabor filters.
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Fig. 4. From top to bottom: left image, ground-truth disparity, Gabor disparity, Gabor disparity after removing inconsistent estimates (left/right consistency check).

Table 5
Average and standard deviation of the optic flow errors (in degs) and optic flow
density (in percent).

Diverging tree Yosemite (no cloud)

Avg Std Dens Avg Std Dens

Gabor 2.05 2.28 95.6 2.15 3.12 81.8
s4 2.39 2.62 93.2 2.96 4.46 85.0
s2 4.20 4.58 90.6 6.51 9.23 81.9
SQF 9.79 8.37 47.1 15.75 16.24 31.4
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As already mentioned, the SQF-based optic flow allows the
computation of the velocity component orthogonal to the domi-
nant orientation. To make a fairer comparison between the Gabor
and the monogenic filters we can back-project the velocities ob-
tained by the two filters on the motion directions given by the
ground truth. We adopt this approach just to have a measure of
the precision with which the monogenic filters (SQFs) compute
the normal flow. Indeed, by definition, the normal velocity compo-
nent is the projection of the full velocity along the dominant orien-
tation. In this way, by back-projecting the velocity obtained by
isotropic filters on the real velocity direction we can obtain the
estimate of the full velocity from the monogenic filters. It is worth
noting that, in this way, we do not solve the aperture problem for
isotropic filters since we make an a posteriori evaluation of the full
velocity that can be obtained when one knows the ground truth
velocity map. The average optic flow errors (in pixel/frame), along
the motion directions given by the ground truth, are shown in Ta-
ble 6. Still, the anisotropic multichannel approach outperforms the
isotropic one.
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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4.2.2. Real-world sequences
In this Section, we want to qualify comparatively the reliability

of the disparity and optic flow estimates obtained in real-world
scenes, for the different filters considered. Since we evaluate the
algorithms on real-world data for which ground-truth is unavail-
able, some measure of the reliability of the estimates is required.
For disparity, we use the left-right consistency check already intro-
duced and adopted in Section 4.2.1. Concerning optic flow, by
assuming a simplified version of our algorithm that uses the tem-
poral phase difference between two subsequent frames as an
approximation of the temporal phase gradient:

vc;qðxÞ ¼
b/qðx; tÞ � /qðx; t þ 1Þc2p

x0
� x
jxj ; ð28Þ

and integrating the component velocities as before (Eq. (26)), an
analogous consistency measure can be used:

EvðxÞ ¼ vtþ1
t ðxÞ þ vt

tþ1ðxþ vtþ1
t ðxÞÞ



 

; ð29Þ

where the two-frame optic flow fields, vtþ1
t ðxÞ and vt

tþ1ðxÞ, are
obtained by fixing respectively frame t and frame t + 1, and warping
the other frame. Both for disparity and optic flow a threshold of 0.5
pixels is used to determine reliability. The disparity estimates are
thus rejected if EdðxÞ > 0:5, and the optic flow estimates if
EvðxÞ > 0:5.

We show results on two real-world sequences, recorded with a
stereo camera system rigidly installed behind the front shield of a
moving car (see Fig. 6). In the town sequence, the car is moving
forward slowly, inducing a mostly translational motion field on
the scene. There are also pedestrians crossing the street. In the tour
sequence, the car is negotiating a curve at a much higher speed.
de for early vision based on anisotropic frequency channels, Comput. Vis.
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diverging tree Yosemite

Fig. 5. Center frame (top row), ground truth optic flow (middle row) and estimated optic flow obtained with Gabor filters (bottom row). All optic flow fields have been scaled
and sub-sampled five times.

Table 6
Average and standard deviation of the optic flow errors (in pixel/frame) and optic
flow density (in percent).

Diverging tree Yosemite (no cloud)

Avg Std Dens Avg Std Dens

Gabor 0.04 0.05 95.6 0.08 0.14 81.8
SQF 0.16 0.78 47.1 0.41 3.82 31.4
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For both sequences, the disparity results are similar for Gabor
and s4 (with Gabor slightly better). The disparity obtained with
s2, on the other hand, contains more noise, and the left/right con-
sistency correctly discards these estimates. The isotropic disparity
maps, obtained by SQF, retain far less of the scene’s fine structure
and contain many noisy estimates that have been removed on the
basis of EdðxÞ. A similar result is obtained for optic flow: for both
sequences, the optic flow results are similar for Gabor and s4;
the flow fields obtained with s2, on the other hand, clearly contain
more noise. In general, the anisotropic optic flow estimates, com-
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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pared to those obtained by SQF, are better and denser flow fields
remain after thresholding. Yet, it is worth recalling that the results
obtained by the point-wise application of the SQF are plagued by
the aperture problem, as discussed in Section 4.2.1. These two-
frame flow fields are quite good, considering that no reliability
measure is used during the coarse-to-fine processing. Estimates
obtained with the five-frame algorithm contain much less noise,
as it is noticeable for the town sequence, shown previously in
Fig. 2d.

4.2.3. Computational load
Since we are interested in computing different image features

with the maximum accuracy and the lower processor require-
ments, the computational cost of the different filters adopted must
be considered, too. The utilization of the different filtering ap-
proaches leads to different computing load requirements. Focusing
on the convolution operations on which the filters are based, we
have analyzed each approach to evaluate their complexity. Spher-
ical filters require three non-separable 2D convolutions operations,
which makes this approach quite expensive in terms of the re-
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Disparity maps
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s4 SQF s4 SQF

Optic flow
Gabor s2 Gabor s2
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Fig. 6. Comparative results for disparity and motion estimates on two real-world sequences (tour) and town), for the different filters used: Gabor filters, steerable filters (s2
and s4) and spherical quadrature filters (SQF). For optic flow comparison, a simplified version of our algorithm is adopted, which approximates the temporal phase gradient
from two subsequent frame, only. Though the results contain much more noise (with respect to the five-frame algorithm), especially for the town sequence, where the motion
is very small, this simplification allows us to apply a simple consistency validation, as a qualitative measure of reliability (see text). Both for disparity and optic flow, the
results obtained with s2 and SQF retain far less of the scene’s fine structure and contain much more noisy (i.e., unreliable) estimates, that have been removed after the
consistency check. The estimates for Gabor and s4 are much better and reliable, since much denser feature maps remain after validation thresholding.
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quired computational resources (this might be true also for
modern platforms like GPUs e.g., see [87], where fast convolution
algorithms still exploit filter separability). The eight oriented Gabor
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
Image Understand. (2010), doi:10.1016/j.cviu.2010.03.008
filters require eight 2D non separable convolution, but they can be
efficiently computed through a linear combination of separable
kernels as it is indicated in [32], thus significantly reducing the
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Table 7
Computational complexity of the filtering stage with the different kernels.

# Filters # Taps Products Sums

Gabor 24 11 264 240
s4 22 11 242 220
s2 14 11 154 140
SQF 3 11 � 11 363 360
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computational load. For steerable filters, quadrature oriented out-
puts are obtained from the filter bases composed of separable ker-
nels. The higher is the Gaussian derivative order, the higher the
number of basis filters. More specifically, the number of 1D convo-
lutions is given by 4L + 6, where L is the differentiation order.

The complexity of computing the harmonic representation with
the different set of filters is summarized in Table 7. It is worth not-
ing that the anisotropic solutions require more than 8/3 time
memory resources than the isotropic approach, which has to be ta-
ken into account for embedded systems; nevertheless, it is not an
issue for current computing machine.
5. Discussion

5.1. Complete harmonic analysis of the visual signal

The understanding of a visual signal involves carefully defining
which feature to extract, or, from a different perspective, which
kind of representation to adopt for the visual signal itself. Although
the two issues cross relate each other, there is a substantial distinc-
tion between them, which set the ‘‘feature detection hypothesis”
against the ‘‘signal analysis hypothesis”. The former relies on
matched operators that extract the most informative (symbolic)
elements of an image, such as points and lines (but that inevitably
discard part of the signal), the latter performs a mapping to a quasi
holographic description, meaning that the visual signal is de-
scribed in terms of more general structural properties of a local
portion of the ‘‘plenoptic” space [5]. Such structural properties
comprise (first-order) spatial relationships in the light intensity
functions (e.g., oriented similarities along contours and transitions
across them, as well as basic symmetries), but also their compari-
sons/relationships in time and between different viewpoints. For
many image processing tasks, it is commonly used to represent
an image by oriented spatial-frequency (scale-space) channels
(cf. the wavelet transform) in which some properties of the image
are better represented than in image space. The spatial behavior in
each channel, and the relationships between the channels are crit-
ically important for extracting primary early vision information.

In this paper, we have revised the harmonic description of the
visual signal based on oriented spatial frequency channels to ac-
count for a complete characterization of the 2D local structure of
the visual signal in terms of the phase properties/relationships
from all the available channels. The orientation of the channels is
instrumental to measure the complete harmonic information con-
tent, since it provides reference axes with respect to which one can
evaluate the spatial symmetries of the signal. Provided that a suf-
ficient number of oriented channels (and scales, to account for the
different granularity of the image structures) are used, the descrip-
tion allows us to achieve optimal perceptual performances with a
minimal computational cost. This confirms the richness of the rep-
resentation, which is capable, as a whole, to fully describe the
structural properties of the original signal (cf. the split of identity
concept [74]). Accordingly, the information content of the original
signal is preserved, with the advantage that comparative structural
analysis can be performed in a more efficient way. Indeed, in gen-
eral, as evidenced in several studies (e.g., see [37,42,44]), by using
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harmonic patterns for matching instead of image luminance mea-
sures, the resulting perception is more reliable (i.e., stable), denser
and immune to lighting conditions.

5.2. Anisotropic vs. isotropic channels

In general, the phase information of a multidimensional signal
provides information about the symmetries of the signal with re-
spect to different hyperplanes. Given the 2D character of the spa-
tial manifold of the image signal, the phase information of a
visual signal provides information about the spatial (a-)symme-
tries with respect to different oriented axes. For each symmetry
axis, we can measure a phase and, if the signal has a rich structure,
several symmetry axes should be considered. The number of rele-
vant axes for characterizing the local structure of a visual signal
can be related to the notion of intrinsic dimensionality, introduced
by [88], as a measure of the degree of redundancy of a signal in a
local neighborhood (i.e., image patch), on the basis of the spatial
distribution of its energy spectrum.

Accordingly, an image point x can be classified as (i) intrinsi-
cally 0D (i0D) (ii) intrinsically 1D (i1D), or (iii) intrinsically 2D
(i2D) depending on the two-dimensional image-intensity function
I(x) in the neighborhood of that point, which can (i) be constant in
all directions, (ii) be constant in one direction, or (iii) vary in all
directions. Edges, lines, and gratings characterized by iso-curves
of I(x) with a common direction [89], correspond to i1D patches.
All other structures like corners, junctions, complex textures, and
noise correspond to i2D patches.

Each oriented channel is capable of measuring the phase of an
i1D signal with respect to its linear (characteristic) symmetry axis.
However, it is worth noting that, although in principle the value of
the phase is correct, its confidence decreases as far as the linear
symmetry axis deviates from the orientation axis of the filter.
Hence, we can state that the energy value of the associated Hilbert
transform is not isotropic, since it is not invariant under rotations
of the signal. The isotropy of the representation is recovered when
one considers the whole set of oriented channels, only (see Fig. 7).

Furthermore, if we do not pursue feature detection, but the im-
age signal analysis, the different responses of the simultaneously
active channels increase the number of dimensions in the har-
monic representation of the image patch, thus favoring an holistic
vs. reductionist approach for visual perception. An important
source of difficulties that arise in an attempt to make structural
comparison (cf. also grouping pixels together) is the distributed
nature of the information that can be potentially relevant to per-
ceptual decisions. Indeed, such information may be inherently
holistic: the ultimate interpretation of an image fragment usually
depends on its context, if not on the entire image.

More precisely, for i1D signals (and low values of noise), the
phase measurements obtained through oriented frequency chan-
nels can be interpreted either with respect to the orientation of
the signal or with respect to the orientation of the filter. Indeed,
each filter measures the phase of the signal with respect to its
characteristic symmetry axis (i.e., across its dominant orientation).
From a different perspective, each filter gathers information about
the signal’s phase with reference to its oriented bandwidth (i.e.,
across the orientation of the filter) and a vector averaging opera-
tion (cf. Haglund [73]) must be used to decode the local phase.
For i2D signals, such as corners and most textures, there does
not exist a single (characteristic) symmetry axis, and, even if we
arbitrarily select one, the phase measure would be influenced
(and thus corrupted) by the signal’s energy distribution along other
symmetry axes that characterize its complex structure. Therefore,
in this case phase measures with respect to the orientations of
the filters are the only practicable. In other words, when there is
not a characteristic (i.e., dominant) orientation of the signal it is
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Fig. 7. Comparison between anisotropic vs. isotropic harmonic representations. (a)
Multi-channel harmonic representation: the analytic image Q h

A is defined in a
complex plane parameterized by a discrete number of orientations h. (b) Monogenic
harmonic representation: the monogenic image QM provides a synthetic descrip-
tion of the i1D dominant structure (local phase, orientation, and amplitude) of the
image signal as a single 3D phasor in spherical coordinates. (c) Multi-channel
representation in the monogenic space: the integration of information over
different oriented spatial frequency channels allows us to obtain single estimates
of the dominant orientation and phase, while retaining the distributed/channeled
representation of the image signal.
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not possible to determine a single value of phase. Yet, we can con-
sider the different orientations of the filters, with respect to which
one can extract the different phase values that characterize the lo-
cal structure of the signal (e.g., most textures are characterized by
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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multiple orientations at different frequencies). As a consequence,
the use of anisotropic vs. isotropic frequency channels allows us
to describe not only i1D, but also i2D image signals, without paying
the price of postulating a dimension reduction of the intrinsic
structural properties of the signals.

In the computational strategies adopted and illustrated in the
previous Sections, aimed at the interpretation of the scene from
stereo and motion information, we evidenced that the phase rela-
tionships among oriented spatial features (e.g., edge and line corre-
spondences) are not really important, but the harmonic content
gathered by a full set of oriented channels.

For what concerns the compactness of channels in tiling the fre-
quency space, it is worth noting that a certain trade-off emerges
between two opposite design constraints. For i1D signals a ‘‘popu-
lation coding” design strategy, based on a reduced set of overlap-
ping channels, can prevail (provided that a reasonable size of the
spatial neighborhood is maintained). In general, for i2D signals,
an ‘‘interval coding” approach might be preferable, based on a large
set of narrow-band channels with minimal overlap, such that they
do not compromise too much the spatial localization (cf. local
structural neighborhood), but that, at the same time, allow a prop-
er identification of the orientation axis for extracting the phase
information (cf. orientation bandwidth). The choice made in this
paper (eight oriented Gabor filters, within one octave bandwidth)
meets an optimal trade-off between the two approaches. The as-
pect ratio of the Gabor filters can be an additional degree of free-
dom, which has not been exploited in order to allow a better
fairness among the other filters used in the comparison.

5.3. Towards mid-level descriptors

A transition from a pixel based representation to a more con-
densed symbolic representation, based on the harmonic code has
been realized in [9] (see Fig. 8).

In this representation, local image patches covering edge and
line-like structures (i.e., i1D structures) are coded by a symbolic
descriptors covering position, orientation and phase computed
from the harmonic code. This corresponds to a decomposition of
the local signal into amplitude information, orientation informa-
tion, and phase information (split of identity [12]). The amplitude
information can be used as an indicator for the likelihood of the
presence of a certain structure while the orientation and contrast
transition will be used as attributes of the symbolic descriptors.
Furthermore, color is coded according to the local structure either
as two color vectors representing the left and right side of a step
edge or as three color vectors (in addition a middle color in case
of a line structure (see Fig. 8f). The local phase is used to distin-
guish between edge- and line-like structures (e.g., see [74]) and
Fig. 3).

The transition to a local symbolic descriptor has certain advan-
tages in the context of an early cognitive architecture [90,91]. First,
since it reduces the number of bits representing a local area,
comparison between or relations to other image areas can be per-
formed more efficiently. Moreover, the memorizing of information
at higher levels of vision becomes facilitated. Another aspect is the
higher predictability of the condensed information, for example in
the context of predicting the change of a local patch under motions
(for details see [92]). Concerning the transition to a symbolic repre-
sentation, an isotropic harmonic code leads to difficulties. In
[93,94], a triangular representation of different image structures
has been developed, based on the concept of the intrinsic dimen-
sionality of the local signal. A triangle with its three corners repre-
senting homogeneous image patches (i0D), edge-like structures
(i1D) and junction/noise like structures (i2D) can be established
and hence these structures can be distinguished efficiently (see
[94]). However, the isotropic representation might be adequate
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Fig. 8. Illustration of the primitive extraction process. (a) An image of an object. The signal can be decomposed in the magnitude (b), phase (c), and orientation (d)
information. This information is encoded into sparse symbolic vectors called primitives. (e) A pictorial representation of a primitive, with: the orientation (1), the phase (2),
the color (3) and the optic flow (4). (f) The primitives extracted from the image.

14 S.P. Sabatini et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS
for i1D signals (although still questions can be raised about for
example more elongated filter that increase orientation and posi-
tion specificity [6]). However, there is a strong point in favor of an
explicit sampling of orientations for junction- and in particular tex-
ture-like structures since these kinds of image structures are char-
acterized by high local amplitudes in multiple orientations in
parallel. Here an adequate description of the local signal (as well
as any transition to a symbolic level) requires a non-isotropic har-
monic code. In addition, it worth mentioning that a distributed rep-
resentation (over the oriented spatial frequency channels) might
favor adaptation mechanisms, by providing a higher number of po-
tential ‘‘entry points” for top-down contributions from mid-level
back to low-level. Such feedback or re-entrant mechanisms can
mimik the contextual or attentional modulation of the sensorial
input that occur through dense intra- and inter-area feedback inter-
Please cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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connections in visual cortical areas, adapting visual cells tuning and
refining their selectivity (e.g., [95,96]).

5.4. Phase-based second-order motion features

On the basis of the early phase-based features extracted as de-
scribed in Section 3, it is possible to build more complex visual
descriptors based on second-order motion properties. By example,
the perception of motion in the 3D space relates to second-order
measures, which can be gained either by inter-ocular velocity dif-
ferences or temporal variations of binocular disparity [97]. In [52],
it has been demonstrated that both cues provide the same infor-
mation about motion-in-depth, when the rate of change of retinal
disparity is evaluated as a total temporal derivative of the
disparity:
de for early vision based on anisotropic frequency channels, Comput. Vis.
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dd
dt
’ @d
@t
¼ /L

t � /R
t

x0
’ vR � vL; ð30Þ

where vR and vL are the velocities along the (horizontal) epipolar
lines.

The approximations depend on the robustness of phase infor-
mation, and the error made is the same as the one that affects
the measurement of phase components around singularities [37].
By exploiting the chain rule in the evaluation of the temporal
derivative of phases, one can obtain information about motion-
in-depth directly from convolutions Q of stereo image pairs and
by their temporal derivatives Q t:

@d
@t
¼ Im½Q L

t Q �L�
jQ Lj2

� Im½Q R
t Q �R�

jQ Rj2

" #
1
x0

¼ SL
t CL � SLCL

t

ðSLÞ2 þ ðCLÞ2
� SR

t CR � SRCR
t

ðSRÞ2 þ ðCRÞ2

" #
1
x0

ð31Þ

thus avoiding explicit calculation and differentiation of phase, and
the attendant problem of phase unwrapping. The terms St and Ct re-
fer to the temporal variations of S and C, respectively, which can still
be obtained through a linear fitting procedure (cf. Eq. (14)) over five
consecutive frames. The direct determination of temporal variations
of the disparity, through filtering operations, better tolerates the
problem of the limit on maximum disparities due to ‘‘wrap-around”
[45], yielding correct estimates even for disparities greater than
one-half the wavelength of the central frequency of the Gabor filter.
The monocular terms in Eq. (31) can be interpreted as the binocular
velocities along the epipolar lines vL

q and vR
q , for any given orienta-

tion q.
Although the motion-in-depth is a second-order measure, by

exploiting the direct determination of the temporal derivative of
the disparity and by combining information over the oriented spa-
tial frequency channels, the inter-ocular velocity difference, and
thence the motion-in-depth can be directly calculated from filters’
outputs by:

VZðxÞ ¼median
q2WLðxÞ

vL
qðxÞ �median

q2WRðxÞ
vR

qðxÞ; ð32Þ

where for each monocular sequence, W(x) is the set of orientations
for which valid components of velocities have been obtained for
pixel x. As in the previous cases, a coarse-to-fine strategy is adopted
to guarantee that the horizontal spatial shift between two consecu-
tive frames lie within the filter range.

Since binocular test sequences with the ground truth and a suf-
ficiently high frame rate are not available, making quantitative
comparisons among the different filters has not been possible.
However, considering that motion-in-depth is a ‘derived’ quantity,
we expected, that the multichannel anisotropic filtering has the
same advantages over isotropic filtering alike those observed for
stereo and motion processing. Qualitative results (not shown) ob-
tained in real-world sequences preliminarily confirmed this
conclusion.

6. Concluding remarks

The first stages of a vision system (‘‘early vision”) consists of a
set of parallel pathways each analyzing some particular aspects
of the visual stimulus, on the basis of proper local descriptors.
Hence, early vision processing can be reconducted to measuring
the amount of a particular type of local structure with respect to
a specific representation space. The choice for an early selection
of features by adopting thresholding procedures, which depend
on a specific and restricted environmental context, limits the pos-
sibility of building on the ground of such representations an artifi-
cial vision system with complex functionalities. Hence, it is more
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convenient to base further perceptual processes on a more general
representation of the visual signal. The importance of this for vi-
sion in the brain was highlighted in [98] as being a natural way
to reduce the computational complexity of visual processing. The
harmonic representation discussed in this paper is a reasonable
representation of early vision process since it allows for an efficient
and complete representation of (spatially and temporally) localized
structures. It is characterized by: (1) compactness (i.e., minimal
uncertainty of the band-pass channel); (2) coverage of the fre-
quency domain; and (3) robust correspondence between the har-
monic descriptors and the perceptual ‘substances’ in the various
modalities (edge, motion and stereo). Through a systematic analy-
sis we investigated the advantages of anisotropic vs isotropic filter-
ing approaches for a complete harmonic description of the visual
signal. In particular, we observed that constructing a multichannel,
multi-orientation representation is preferable in order to avoid an
‘‘early condensation” of basic features. The harmonic content is
then combined in the phase-orientation space at the final stage,
only, to come up with the ultimate perceptual decisions. It is worth
noting that phase-based signatures are texture-based (or ‘‘corre-
spondenceless”) measures, hence, they do not suffer from the
problem of false matches and provide dense feature maps, as oppo-
site to edge matching algorithms, provided that we have sufficient
texture information over local image patches. On the other hand, it
is likewise true that phase information measurements appear to be
more stable in the neighborhood of localized salient image fea-
tures, such as edges, bars, and ramps. In the vicinity of these points
the different harmonics sum themselves coherently (i.e., in phase),
thereby improving the signal to noise ratio. This observation estab-
lishes an interesting bridge between sparse (feature-based) and
pure dense techniques (such as area correlation), which are both
embraced within a phase-based approach.
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Appendix A. Filter design specification

Gabor filters – a Gabor oriented filter along an angle h with re-
spect to the horizontal axis is defined by:

f h
Gaborðx; yÞ ¼ e�

x2þy2

2r2 ejx0ðx cos hþy sin hÞ ðA:1Þ

where x0 is the peak frequency of the filter and r determines its
spatial extension. The spatial window has been chosen as four times
r. At the highest scale x0 ¼ p=2 and r = 2.67. Following [32], we
implemented the oriented filters as sums of separable filters. By
exploiting symmetry considerations, all eight even and odd filters
(see Fig. A.1) can be constructed on the basis of twenty four 1D con-
volutions. The 1D filters are modified by enforcing zero DC sensitiv-
ity on the resulting 2D filters in which they take part, and by
minimizing the difference with the theoretical 2D Gabor filters. Spe-
cific care have been paid to adjust the coefficients of each filter
function so that the even and odd symmetry is respected. To this
purpose, a constrained non-linear multivariable minimization is
adopted.

Steerable filters – following [23], an approximation of a com-
plex-valued Gabor filter of arbitrary orientation h can be synthe-
sized by taking a linear combination of steerable quadrature
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Fig. A.1. The resulting 11 � 11 quadrature pair of Gabor filters for x0 ¼ p=2 and eight orientations.

L 2

L 4

Fig. A.2. The 11 � 11 x–y separable, steerable quadrature pair basis filters for two different orders of differentiation. The width of the Gaussian function has been adjusted to
have, for both cases, a resulting x0 ¼ p=2 : r ¼ 0:90 for L = 2 and r = 1.27 for L = 4.

Fig. A.3. The 11 � 11 spherical quadrature filter (SQF) triplet.
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pairs of 2D Gaussian directional derivatives, along the cardinal
axes:

g0ðx; yÞ ¼ e�
x2þy2

2r2 ðA:2Þ

gLðx; yÞ ¼
@L�l

@xL�l

@l

@yl
g0ðx; yÞ l ¼ 0;1; . . . ; L� 1 ðA:3Þ

f h
Steerðx; yÞ ¼ g0ðxÞ

XL

l¼1

blðhÞPl;rðxÞQl;rðyÞ ðA:4Þ

where blðhÞ are the interpolation functions:

blðhÞ ¼ ð�1Þl
L

l

� �
cosL�l h sinl h ðA:5Þ

L is the order of differentiation, and Pl and Ql are polynomial
functions defined as:

Pl;rðxÞQ l;rðyÞ ¼
xL�l

r2ðL�lÞ þ � � �
� �

yl

r2l
þ � � �

� �
: ðA:6Þ

Gaussian derivatives asymptotically coincide to a Gabor func-

tion with a radial peak frequency x0 ¼ r�1
ffiffiffiffiffiffiffiffiffiffiffi
Lþ 1
p

and an absolute

bandwidth Dx ¼ r�1
ffiffiffi
2
p

=2 [4]. Since the peak frequency and the
bandwidth are jointly defined by r, it is not possible to design
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banks of steerable filters with an arbitrarily constant relative band-
width. We therefore adjusted the spatial extension of the Gaussian
function (r) in order to have the same peak frequency of the Gabor
filters, and deduced as a consequence the relative bandwidth. The
number of basis kernels to compute the oriented outputs of the fil-
ters depends on their derivative order. The quadrature pair of these
filters has been obtained by approximating their Hilbert transform
as a the least square fit to a polynomial times a Gaussian described
in [23]. The basis filters corresponding to Gaussian derivatives of
second- or fourth-order (see Fig. A.2) turned out as an acceptable
compromise between the representation efficacy (i.e., optimality
in terms of the Heisenberg–Weyl uncertainty principle) and the
computational efficiency.

Spherical Quadrature filters – the 2D SQF (see Fig. A.3) is con-
structed as
de for early vision based on anisotropic frequency channels, Comput. Vis.
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Gabor s2

s4 SQF

Fig. A.4. (a–c) Rosette-like diagrams of the multichannel frequency representation for the Gabor, and the steerable filters s2 (L = 2) and s4 (L = 4), respectively. It is worth
noting that the orientation bandwidth of the steerable filters is larger than that obtained with Gabor filters. (d) Bandpass isotropic channels obtained by the monogenic signal.
Contours correspond to half-width cut-off frequencies, and each corona is separated by an octave scale.
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1. A rotation invariant bandpass filter obtained as the sum all the
real parts of the oriented Gabor filter bank:
Please
Image
f ðx; yÞ ¼
X

h

Re½f h
Gaborðx; yÞ� ðA:7Þ
2. A vector-valued filter with the desired isotropic oddness,
obtained by filtering f(x,y) with the convolution kernel of the
Riesz transform:
h1ðx; yÞ
h2ðx; yÞ

� �
¼ �x

2pðx2 þ y2Þ
3
2
;

�y

2pðx2 þ y2Þ
3
2

" #T

ðA:8Þ
fSQFðx; yÞ ¼ ½f ðx; yÞ; ðh1 � f Þðx; yÞ; ðh2 � f Þðx; yÞ� ðA:9Þ

All the filters have been normalized prior to their use in order to
have constant energy. The corresponding rosette-like frequency
representation of the filters used is shown in Fig. A.4, for three dif-
ferent scales (octaves).

From the frequency representation of the Gabor-based spherical
filter we observe slight deviations from isotropy due to numerical
approximation errors, which though does not affect the results
presented in this paper. We can observe that a more isotropic
SQF filter (but not comparable with Gabor’s) can be obtained start-
cite this article in press as: S.P. Sabatini et al., A compact harmonic co
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ing with first-order Gaussian derivatives as Riesz components and
by numerically compute the rotation invariant bandpass filter [99].
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