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Abstract—We present the hardware implementation of a simple, fast
technique for depth estimation based on phase measurement. This tech-
nique avoids the problem of phase warping and is much less susceptible to
camera noise and distortion than standard block-matching stereo systems.
The architecture exploits the parallel computing resources of FPGA
devices to achieve a computation speed of 65 megapixels per second. For
this purpose, we have designed a fine-grain pipeline structure that can be
arranged with a customized frame-grabber module to process 52 frames
per second at a resolution of 1280 X 960 pixels. We have measured the
system’s degradation due to bit quantization errors and compared its
performance with other previous approaches. We have also used different
Gabor-scale circuits, which can be selected by the user according to the
application addressed and typical image structure in the target scenario.

Index Terms—Embedded and real-time systems, pipeline processing,
scale space, stereo image processing.

I. INTRODUCTION

The biological capacity for binocular depth perception is useful in
many visual domains such as autonomous navigation, 3-D reconstruc-
tion, active tracking, or face recognition [1]-[4]. It permits the recon-
struction of information about depth encoded within binocular images,
a task which is performed in the visual cortex by specialized receptive
field structures [5]. Studies have shown that a substantial proportion
of neurons in the striate and prestriate cortex of monkeys have stereo-
scopic properties, i.e., they respond differentially to binocular stimuli,
thus providing cues for stereoscopic depth perception [6]-[9].

Engineered processing architectures specifically designed for tasks
that biological systems solve with impressive efficiency can benefit
considerably by mimicking computing strategies developed by nature
over the long process of evolution, but the adaptation of such techniques
is not straightforward since the physical principles upon which biolog-
ical tissues are based differ considerably from those used in electronic
technology. Furthermore, biological and electrical “technologies” face
different constraints, which can be overcome by resorting to different
strategies. Nevertheless, an “opportunistic attitude” which takes the key
functional principles that contribute to the outstanding performance
of biological systems and also uses technology-motivated processing
techniques to adapt those computing primitives must be of consider-
able interest.

We illustrate here one example of such an approach using FPGAs,
which have already shown their high performance capacity for image-
processing tasks [10]. The proper use of fine-grain pipeline structures
combined with that of FPGA parallelism and the high processing speed
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of the semiconductor substrate allow us to reproduce bio-inspired pro-
cessing capabilities. These hardware-based approaches normally rely
on correlation-based models [11] because they fit in well with specific
hardware architectures. Nevertheless, over the last decade, phase-based
computational models have been proposed as an interesting alternative
[12] to feature correspondence and correlation techniques, mainly be-
cause they are based on local operations and produce dense depth maps
with direct subpixel resolution. Several real-time approaches based on
this technique have been proposed recently [13] and [14].

Our contribution goes one step beyond these approaches. We de-
scribe here a stereo-processing system based on an FPGA device that
computes a bio-inspired modified phase-based technique described by
Solari et al. [15]. This model avoids the explicit computation of the
phase difference of Gabor filters, thus making the approach hardware
friendly and allowing our design to outperform previous approaches
considerably. The main innovation of our contribution is the design of
a finely pipelined data-path able to compute one estimation per system
clock cycle. The translation of a processing model into an efficient spe-
cific-purpose circuit is not easy and requires a structured implementa-
tion of the different stages, clearly defining their data exchanges and
the potential computing parallelism at each stage. This is described in
the next section.

In addition, our approach allows the stereo computation of high-res-
olution images faster than video rates. This is of crucial importance
since the reliability of stereo-depth estimation depends highly upon the
resolution of the input images.

Furthermore, the proposed scheme is scalable since there are plenty
of computing resources available on the same chip; if further paral-
lelism is needed, two or more processing units can be used to extract
more estimations or increase the spatial resolution.

II. HARDWARE-FRIENDLY PHASE-BASED STEREO

The adopted computing model has been proposed by Solari and
Sabatini [15]. In a first approach, the positions of corresponding points
are related by a 1-D horizontal shift, the disparity, along the direction
of the epipolar lines. Formally, the left and right observed intensities
of the two eyes, I () and I® (), can be expressed in terms of (1)

I"(2) = 1"[x + o(2)] (e8]

where o () is the (horizontal) binocular disparity.

Disparity can be estimated in terms of phase differences in the spec-
tral components of the stereo-image pair [8]. Since the two images are
locally related by a shift, within the neighborhood of each image point
the local spectral components of I”(x) and I™(z) are related by a
phase difference equal to Aé(k) = ¢ (k) — ¢'*(k) = k6. Spatially
localized phase measurements can be obtained by filtering operations
with complex-valued, quadrature-pair, bandpass kernels (e.g., Gabor
filters), approximating a local Fourier analysis of the retinal images.
Taking a complex Gabor filter (h) with a peak frequency &y and corre-
sponding Gaussian variance o

2
—x

h(x; ko) = exp < + jkm}) = ho(xs ko) + jhs(ws ko)  (2)

g2

the resulting convolutions with the left and right binocular signals can
be expressed as in (3)

Q) = / I()h(x — & ko)d€ = C(x) +jS(x) = pla)e ™ (3)
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where p(z) and ¢(x) denote their amplitude and phase components,
while C'(x) and S(x) are the responses of the quadrature filter pair
(C and S stand for cosine and sine, respectively). Local phase mea-
surements are stable, with a quasi-linear behaviour over relatively large
spatial extents, except around singular points, where the amplitude of
Q(z) vanishes and the phase becomes unreliable. This property of the
phase signal yields good predictions of binocular disparity by

r‘(m) — K,)R(T) _ [6(2)]26

é
ole) = k() k()

“

where we note | |2 as the principal part of the argument (i.e., ¢ be-
longs to [—m, 7]) and k() is the average instantaneous frequency of
the bandpass signal, measured using the phase derivative from the left
and right filter outputs (x subscripts indicate differentiation along the
& axis)

k(z) = 65 (x) + 67 ()

5 &)

As a consequence of the linear-phase model, the instantaneous fre-
quency is generally constant and close to the tuning frequency of the
filter (k(x) = ko), except near singularities, where abrupt frequency
changes occur as a function of spatial position. Therefore, a disparity
estimation at a point x is accepted only if |(¢, — ko )|k, 7, where T is
a proper reliability threshold.

It should be noted that (4) does not require the explicit calculation of
the left and right phases, and, thus, we can compute the phase difference
in the complex plane directly using the following identities:

Lo(2))20 = larg(Q" Q™) |26
arctan 2(Im(arg(QT’Q*R),Rc(arg(QT‘Q*R)))
arctan 2(C"S" — " s%,.c"c™ 4+ 5"5%).  (6)

This approach has several advantages that make the system hard-
ware-friendly. Although (6) increases the number of multiplications
compared to circuits with direct phase subtraction, current FPGA de-
vices include embedded multipliers for DSP operations, which make
this technology particularly interesting for vision tasks. In fact, the
main advantage provided by this approach is that of avoiding the ex-
plicit logic required for the wrap-around mechanism. This implies re-
ducing comparison logic considerably. Furthermore, the number of di-
vision operations is reduced by 50%. This reduction is important be-
cause the division using fixed-point arithmetic requires high precision.
In fact, quantization errors make the former approach noisier and, thus,
demand more hardware resources to achieve similar accuracy.

To address the hardware implementation of this approach the basic
steps can be summarized as follows:

1) DC component image removal using the local image contrast

I-Incan operator for the even Gabor filter;
2) even (C) and odd (S) 1-D Gabor filtering of left and right images;

3) direct phase-difference calculation from (6);

4) disparity computation using (4), assuming k(x) & ko.

III. HARDWARE IMPLEMENTATION

Most of the previous real-time contributions are based on correla-
tion techniques [11] because this approach fits in quite well with cus-
tomized hardware but the choice of a phase-based stereo approach is
also justified because of its capacity to reduce illumination problems.
As mentioned in [16], a contrast test shows that this approach is not
very susceptible to differences in local contrast. It also seems to be ca-
pable of dealing with imbalanced images too, which are usual in real
cameras since they have slightly different luminance gains.

The phase-based approach can also be of interest in biological
studies to extract real-time working models. The problem is that this
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high-level system description is hard to implement onto hardware
structures. This has prompted us to use the Handel-C HDL [17], which
allows the system’s data-path to be described in a very algorithmic-like
manner.

A. Camera Calibration

Setting up the system requires image rectification and camera cal-
ibration (which is a critical stage). After a manual calibration to ar-
range the cameras in parallel, the current implementation only involves
a simple preprocessing method based on image displacement, which
runs in a setup system configuration stage as follows:

We define a plane of null disparity and we allocate a flat object or
picture on it with some texture (for instance a chessboard pattern). A
frame-grabber shift of up to 32 pixels is explored iteratively along the
horizontal and vertical co-ordinates to obtain the best overall matching
value within that range (integrating four times during each iteration to
reduce the error due to camera noise and image flickering). This plane
defines the zero disparity distance. Closer and farther objects will lead
to positive and negative disparities respectively. This reference plane
is defined depending on the camera’s configuration, system scale and
target application to properly tune the filter disparity range to the target
scenario (close to the reference plane). With this method, we reduce
the range of disparities presented at the image close to this reference
plane, which allows us to recover disparities with only a small Gabor
kernel. When the calibration process finishes, the system is auto-repro-
grammed from external Flash memory with the new configuration file
and the stereo computation starts.

This simple calibration process takes about 32 s using a 40-MHz
FPGA clock, but this time is not critical since the calibration is
computed only once at the initial configuration stage. In fact, up to a
70-MHz clock frequency is supported by this circuit, but we only use a
40-MHz clock to facilitate the on-line generation a VGA output of the
imaged matching process. In this way, we are able to visually monitor
the calibration process (iterative matching). This allows us to discard
wrong initial camera settings that lead to poor matching results. Future
work will address an improved calibration preprocessing including
image rectification techniques.

B. System Architecture

Handel-C [17] allows us to define very straightforwardly the level
of parallelism and pipelined structure, which can be easily grouped on
the basis of functionality and finely subdivided to get well balanced
pipelined structures of high data throughput.

According to this strategy, the system is configured in seven func-
tional stages (coarse-grain pipelined structure) which are divided into
fine-grain pipelined substage data paths. This leads to a total latency
of 115 clock cycles (equal to the number of fine pipeline stages) and a
data throughput of one estimation per clock cycle.

The stereo architecture according to this strategy is shown in Fig. 1.
There are two parallel pathways which process each camera image to
compute the Gabor-filtered values (implemented as optimized convolu-
tion circuits). The level of parallelism at each stage has been expanded
to achieve a data throughput of one estimation per clock cycle. The di-
rect calculation of phase difference expressed in (6) is based on two dif-
ferent paths, (A) and (B), in the circuit. Unit (B) computes the disparity
value whilst unit (A) measures the confidence estimation (module of
the Gabor filter outputs). We use this confidence measurement since
phase is not clearly defined near module singularities, and, therefore,
no reliable information is present at these points [16]. The TH Buffer is
a memory buffer used to balance the two processing paths (A and B).

The system has been fully implemented in a stand-alone board as
a prototype for embedded applications (the RC300 board [18]). This
complete system setup is shown in Fig. 2. All the processing operations



282

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 1, JANUARY 2007

FPGA coarse grain pipeline

1

I

I8, (10) EE) s,(28)
I

LEFT | CAMERA
I

e pd

: =3

1
1
1
1
1
Camera :
1
1
1
1
1

s,(50) =) =

calibration

]
RIGHT : CAMERA

b (o1 (58

I I 1 I
§(2 ED) S@Em)s(119mm)! s, (202) mm)!
1

1 1 1
(A):Conﬁdencf measure palth :
oz = ! !
0w —> b g ; !
2 R =t : g = . !
S0 e =" ad B |
= : 1 1 :
E o : :
® ! : Estimated
s — janq [y :dlspamy
SR-CL |—> : ] 4= !
1
CHERl —> +: o Ly ‘:>,
SL-SR |—> :':“ : !
(B) Disparity computation path :

Fig. 1. Stereo-system hardware architecture. System calibration parameters are stored and used as input shifts (horizontal and vertical) for the camera frame-
grabbers of stage So. At stage S, the local contrast is removed to eliminate even Gabor filter DC response. At S2, we compute the even and odd Gabor outputs
(where “S™ stands for the sine or odd Gabor filter and “C” for the cosine or even Gabor filter). Note that left and right images have parallel pathways during
these stages (high processing performance is enhanced by replicating scalar units). “L” and “R” denote the responses coming from the left and right images.
Stages S5 to S implement the direct phase-difference computation as described in (6). Left and right image responses are combined during these stages into two
different datapaths. The upper pathway (A) computes the Gabor output energy, which is used as a confidence measure. The bottom pathway (B) computes the
phase difference. Note that the efficient use of the intrinsic parallelism available in the FPGAs is achieved by a customized pipeline processing architecture based
on well balanced parallel computing blocks at different stages. It allows the computation of one estimation per clock cycle. For this purpose, we have designed a
micropipelined architecture. In the upper part of the figure, we indicate in brackets the number of micropipelined steps at each functional stage; in stages S5 and
Se, “I” is used to indicate the different number of micropipelined steps of each of their parallel datapaths (A/B).

Fig. 2. Stereo processing system setup.

are computed in the FPGA device as a system-on-a-chip (SoC), which
also contains the camera’s frame-grabbers, memory management units,
VGA controller and user interface.

IV. ANALYSIS OF SYSTEM REQUIREMENTS AND PERFORMANCE

The full system has been successfully implemented on a Xilinx
Virtex-II FPGA [19]. The system frequency is 65 MHz and due to
the regular data path of the proposed model, we achieve one pixel per
clock cycle. This means that we can compute up to 65 megapixels
per second (arranged as 52 fps of 1280 x 960 pixels per image, for
instance). The consumption of system resources has also been eval-
uated. The factors to take into account for implementation are those
of model degradation due to limited fixed-point bit-width and to the
Gabor-filter wavelength (large values improve the disparity range but
consume more resources.).

We have arrived at several conclusions concerning the data repre-
sentation and bit width at each pipeline stage. The bit width of the con-
volved images with the Gabor filters is critical because its precision
affects the following stages in two ways. First, the bit width of the next
computation grows concomitantly with the square of the number of bits
of this stage, and, second, any limitations in precision are transferred to
the following stages, thus reducing the overall accuracy of the system.

(a)

(b)

(c)

Fig.3. Software versus hardware implementation: (a) original images, (b) soft-
ware stereo processing, and (c) hardware stereo processing. The image on the
left was processed using a small scale (Gabor filters with a length of 15 pixels)
and that on the right with a medium scale (Gabor filters with a length of 31
pixels). Note that only small differences are visible as an increase in salt-and-
pepper noise (more visible in the right-hand image) in the hardware results due
to the restricted precision available in the hardware implementation.

On the basis of a previous study concerning the bit width of the system
[20], our stages are developed as follows.
* At the convolution stages, the processing is done with fixed-point
data representation of 9 bits.
* Intermediate data precision is 19 bits using fixed-point arithmetic,
avoiding bit wrapping or saturation operations.
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TABLE I
SYSTEM RESOURCES REQUIRED ON A VIRTEX II XC2V6000-4. FIRST ROW: SIMPLE CAMERA CALIBRATION SYSTEM. FOLLOWING
ROWS: PHASE-BASED STEREO DEVICE USING SEVERAL GABOR SCALES (“Mpps”: MEGA-PIXELS PER SECOND AT ITS MAXIMUM
SYSTEM PROCESSING CLOCK FREQUENCY). “EMBs” STANDS FOR EMBEDDED MEMORY BLOCKS

Slices / (%) EMBs /(%) Embedde((io/l‘:l;lltipliers/ Mpps Gaz;); ess)laetlilagltlssale R:sl(l)llz:lgﬁeon Fps

2864 / (8%) 1/(1%) 0/0 70 - 640x480 56
6411/ (18%) 15/(10%) 21/(14 %) 15

9197/ (27 %) 39/(27 %) 31/(21 %) 65 31 162480(;‘;98600 25121
13048 / (38%) 71/ (49%) 59/(49 %) 55

* The division operation is implemented using a Xilinx pipelined
division core [19] with 24 bits (19 bits from the above data plus a
fractional part of 5 bits for the arctan function).

e The arctan function is implemented using a look-up table of 1024
addresses of 10 bits with 5 fractional bits. Only the [0, 7/2] in-
terval is sampled. A decision logic based on the input data sign
allows us to recover the quadrant of the angle within the full range
[—, 7]. This simple scheme allows a maximum estimation error
of 0.03 rad for the arctan function with a very simple logic and,
therefore, complex circuits, such as CORDIC [21], for example,
are not required.

Fig. 3 shows the disparity estimation for a couple of real binocular
image pairs. Gray levels encode depth information (lighter levels indi-
cate closer objects). Software (with double floating-point representa-
tion data) and hardware (with limited fixed-point data representation)
approaches are compared. Qualitatively, the degradation is very low.
For a quantitative study, we measure the quantization error of the im-
ages in Fig. 3, which have significantly reduced bit width. We measure
the mean disparity error for the left and right images, obtaining values
within the interval of 0.05 to 0.06 pixels. This represents a negligible
noise contribution compared to the error coming from the stereo esti-
mation model itself, which hardly achieves a precision higher than 0.1
pixels for arbitrary scenes [11]. We also measure the signal-to-quan-
tization-to-noise ratio (SQNR), obtaining values within the interval of
17.1 to 23.52 dB, which indicates signal energy at least 50 times larger
than the quantization noise. We conclude from these measurements
that the system quantization degradation versus hardware resources
consumption (Table I) tradeoff is appropriate. For more details on the
bit-cutting procedure, see [20].

Given that stereo techniques work better for small disparities, we
have designed three different scales, using Gabor filters with a length of
15, 31, and 55 pixels. The Gabor-filter wavelength determines system
quality according to image resolution and disparity range.

The disparity range for each circuit is +4, &8, and +14 pixels, re-
spectively [16]. It is important to note that larger filters work as low-
pass filters and high-frequency image structures are lost; therefore, al-
though the first stage of camera calibration reduces overall image dis-
placement, the Gabor filters must be tuned to the desired application to
get the best results.

According to this strategy, the implementations presented here,
which only compute one scale, must be scale tuned according to the
application addressed and image structure required. This is done by
the user (or agent), who can reconfigure the circuit (i.e., the FPGA
device can be reprogrammed in less than 400 ms) from the system
interface or PC command line to change the disparity scale. Future
studies will try to combine different scales dynamically based on the
image structure without the need for intervention by the user.

The final consumption of system resources for the whole system with
the choice of bit widths described above is shown in Table I. We con-

sider these bit widths to be good tradeoffs between system accuracy
and hardware resource requirements. The first row indicates the cali-
bration-system circuit resources, and the following rows show the con-
sumption for each Gabor scale, which grows for longer scales.

Any evaluation of system performance should take into account
image resolution, frames per second and the number of cameras. It is
also important to consider the searching area where the two images
are compared (small searching areas or filter lengths require less
computing performance than larger areas). According to these criteria,
we used a common comparison metric of stereo-vision systems [14] in
order to rank the system, the performance being given by measuring
the number of disparities computed per second. This is the point-time
disparity per second (PDS), measured as: PDS = N - D - (C' — 1),
where NV is the number of pixels processed per second and D the
number of disparity values estimated (the disparity range). We also
include C', which is the number of cameras to extend the metric to
multi-baseline stereo approaches. It should be borne in mind that this
metric only measures the system performance and not the architecture
complexity, which is based on different factors such as the disparity
estimation model and the computing platform.

Using this metric, our binocular system achieves different per-
formances according to the Gabor scale and consequently shows
different system-resource consumptions. Equation (7) calculates
the performance of the system in terms of the PDS of the different
configurations based on scales of 15, 31, and 55 Gabor-filter lengths.
The disparity range for each circuit is 4, &8, and £14 pixels, which
gives us equivalent D values of 9, 15, and 29, respectively. Thus, the
corresponding PDS values are as follows:

9-65=58M
15-65=975M

PDS=N-D-(C—=1)=N -fa,-1= . N
2965 = 1885 M.

A comparative performance study is shown in Table II. The large dif-
ferences between architectures (standard processors, custom hardware,
Graphical cards, and FPGAs) makes a direct comparison difficult but
it is still worthwhile illustrating how well each approach fits the stereo
computation task. We use the system raw performance in PDS as com-
parative metric.

There are recent software-based approaches, but most of the pro-
cessing platforms are based on FPGAs [10] and they use different
FPGA families with different performances, which hinder comparison
due to technological advances. Because of that we are not taking,
resources consumption into account. In FPGA-based approaches, we
try to reduce any comparative bias due to technological advances by
normalizing the PDS performance by the clock frequency as shown in
Table II. The performance obtained by our system is faster than the
earlier block-matching-based binocular implementations commented
upon in [11] (the fastest version of which is included in the sixth row
of Table II).
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TABLE II
PERFORMANCE COMPARISON OF SELECTED REAL-TIME BINOCULAR SYSTEMS. WE HAVE ONLY INCLUDED SYSTEMS WITH PERFORMANCE INFORMATION
AVAILABLE IN THE LITERATURE. IN THE SYSTEMS BASED ON FPGAs, WE ALSO INCLUDE THE NORMALIZED PDS/f.;;,. PERFORMANCE MEASUREMENTS
IN ORDER TO FACILITATE THE EVALUATION OF THE EFFICIENT USE OF THE PARALLEL RESOURCES AVAILABLE WITHIN THESE DEVICES

Real-time Image Disparity PDS x10°/
system resolution 95 range [PDSx10%f ] plcthnd pLUCEsonbDE
9 585/9
Custom FPGA, Xilinx
Proposed here 1280x960 52 15 975/15 Phase based Virtex-II (65 MHz)
29 1885 /29
Gong and Yan Correlation-based with Pentium 4 3GHz
[2%] (2005) g 512x384 14.7 40 117/ - image-gradient-guided cost equipped with an ATI
aggregation 9800 XT (412 MHz)
Forstmann et al 256x256 30.4 200/ -- AMD AthlonXP 2800+
(23] (2004) : 640x480 7.23 100 222/ -- Dynamic programming and MMX
1024x1024 22 230/ - optimization
Niitsuma and -
Maruyama [24] 640x480 30 27 248.8 /3,66 Correlation. SAD Custom FPGA, Xilinx
Virtex-II (68 MHz)
(2004)
Darabiha et al. . Custom FPGA, Xilinx
[14] (2003) 360x256 30 20 553/1,1 Correlation phase-based Virtex, (S0MHz)
Woodfill, and -
? . Custom FPGA Xilinx
Herzen [25] 320x240 42 24 77.4/2,35 Census matching XC4000 (33MHz)
(1997)
T. Kanade et. al. Multi-baseline Correlation. Custom HW & C40
[26] (1994) 256x240 244 20 30/ SSAD DSP (2-6 cameras)

Table II includes approaches with software implementations using
graphic cards and MMX extensions [22], [23]. Despite the computing
performance of such systems being quite high, they consume all the
resources of the computer, rendering it impossible to compute higher
level algorithms based on stereo in real time. Furthermore, it is difficult
to use these approaches on mobile platforms for embedded applications
such as robotics or smart sensors.

In terms of PDS, our system outperforms the fastest implementation
in Table II (more specifically, the approach of Niitsuma and Maruyama
[24], by a factor of between 2.3 and 7.5, depending upon the chosen
Gabor scale) and larger factors for other FPGA-based systems [14],
[25]. Similar outperformances are achieved when using the normalized
PDS. Note that this system [24] uses the same FPGA technology and
fast clock frequency but our outstanding performance is based most
significantly on the optimized computing architecture described in this
work. This becomes clearer when we compare the normalized PDS to
evaluate the computing parallelism of the different approaches. Our
system achieves far higher normalized PDS through the intensive use
of the parallel processing resources available within the FPGA device
(mainly due to the fine pipeline architecture).

Finally, the last row in Table II shows a very interesting approach
[26]. In this case, a comparison with our system is not wholly just be-
cause they have built a full custom system, which can not be easily up-
dated, while our approach easily takes advantage of continuous techno-
logical advances). Furthermore, this system has very high power con-
sumption while in ours everything is built on the same chip, which sig-
nificantly reduces the power required.

There are also commercial products such as Bumblebee and Digi-
clops from Point Grey Research (http://www.ptgrey.com/). These de-
vices consist of calibrated stereo cameras plus software libraries to
compute the stereo. We have not included these devices in the compar-
ison in Table II because the information about processing performance
on standard computing platforms is obsolete.

V. CONCLUSION

We present a bio-inspired model implemented onto programmable
hardware that runs on a stand-alone chip for embedded applications.
The pipeline processing structure, including some well-balanced par-
allel processing modules, efficiently computes phase-based disparity
estimations. The most important contribution of this work is the effi-
cient implementation of a vision model on specific circuits adopting a
well structured design strategy, as described in Section III. The regular
data path is able to compute one pixel per system clock cycle. This effi-
cient use of the parallel computing resources available on FPGAs plus
a fine-grain pipeline design lead to an outstanding processing speed (65
megapixels per second, which can be arranged as 52 fps of 1280 x 960
pixels per image).

The system includes an automatic precalibration stage to improve
the system disparity range, as well as the possibility of switching be-
tween Gabor scales according to the application addressed and image
structure in the target scenario. We have measured the system degra-
dation due to bit-width restrictions and decided upon a good tradeoff
between degradation and resource consumption.

In the future, we plan to study the implementation of a multiple-scale
stereo system that takes advantage of the designed architecture and
combines the different scales according to the image structure pre-
sented in the neighborhood of each image pixel.
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Inpainting of Binary Images Using
the Cahn-Hilliard Equation

Andrea L. Bertozzi, Selim Esedoglu, and Alan Gillette

Abstract—Image inpainting is the filling in of missing or damaged regions
of images using information from surrounding areas. We outline here the
use of a model for binary inpainting based on the Cahn-Hilliard equation,
which allows for fast, efficient inpainting of degraded text, as well as super-
resolution of high contrast images.

Index Terms—Binary images, Cahn-Hilliard equation, image inpainting,
super-resolution.

I. INTRODUCTION

Image inpainting is the filling in of damaged or missing regions of
an image with the use of information from surrounding areas. In its
essence, it is a type of interpolation. Its applications include restora-
tion of old paintings by museum artists, and removing scratches from
photographs.

The pioneering work of Bertalmio er al. [1] introduced image in-
painting for digital image processing. Their model is based on non-
linear partial differential equations, and imitates the techniques of mu-
seum artists who specialize in restoration. They focused on the prin-
ciple that good inpainting algorithms should propagate sharp edges into
the damaged parts that need to be filled in. This can be done, for in-
stance, by connecting contours of constant grayscale image intensity
(called isophotes) to each other across the inpainting region (see also
Masnou and Morel [2]), so that gray levels at the edge of the the dam-
aged region extend continuously into the interior. They also impose the
direction of the isophotes as a boundary condition at the edge of the in-
painting domain. In subsequent work with Bertozzi [3], they realized
that the method in [1] has intimate connections with 2-D fluid dynamics
through the Navier—Stokes equation. Indeed, the steady-state equation
proposed in [1] is equivalent to the inviscid Euler equations from in-
compressible flow, in which the image intensity function plays the role
of the stream function in the fluid problem. The natural boundary con-
ditions for inpainting are to match the image intensity on the boundary
of the inpainting region, and also the direction of the isophote lines
(V1. For the fluid problem, this is effectively a generalized “no-slip”
boundary condition that requires a NavierStokes formulation, intro-
ducing a diffusion term. This analogy also shows why diffusion is re-
quired in the original inpainting problem. In practice, nonlinear diffu-
sion [4], [5] works very well to avoid blurring of edges in the inpainting.

A different approach to inpainting was proposed by Chan and Shen
[6]. They introduced the idea that well-known variational image de-
noising and segmentation models can be adapted to the inpainting task
by a simple modification. These models often include a fidelity term
that keeps the solutions close to the given image. By restricting the ef-
fects of the fidelity term to the complement of the inpainting region,
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