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Abstract

We introduce a lane marker detection algorithm that
integrates 3D attributes as well as 3D relations be-
tween local edges and semi-global contours in a
Bayesian framework. The algorithm is parameter
free and does not make use of any heuristic assump-
tions. The reasoning is based on the complete con-
ditional probabilities of the different cues which are
estimated from a training set. The importance of the
individual visual cues can be computed using a stan-
dard measure and the cues can then be combined in
an optimal way. In addition we show that when do-
ing 3D reasoning, the uncertainties connected to the
reconstruction process need to be taken into account
to make the reasoning process more stable. The re-
sults are shown on a publicly available data set.

1 Introduction

Lane marker detection is a crucial part of au-
tonomous vehicles and driver assistance systems. It
usually combines four different stages (for a recent
review, see [1, 2, 3]):
Feature extraction: Visual features, usually edge
features, that potentially correspond to lane struc-
ture become extracted.
Post processing: The features extracted in the first
step are filtered to eliminate non–lane structures.
Lane modeling: A global street model is used,
based on the post–processed structure to further
eliminate non-lane contours
Tracking: The global lane model is used to track
the lane structure in the scene.

In this paper, we mainly address the second and
third step. In the literature, most constraints that are
used for the post processing step are in 2D as for ex-
ample collinearity (see, e.g., [4]) or more global re-
lations (e.g., connected to the vanishing line) coded

for example in a Hough transformation (see, e.g.,
[5]). Less often 3D features are used as in [6] and
then these features are constrained to the 3D po-
sition. The application of the constraints is often
done in a heuristic rule based way (see, e.g., [7]).
However, there exist statistically grounded methods
like [1] where probabilistic dependencies are used
to find the collinear lane markings starting from a
known lane point, given the fact that lane markings
are aligned in the heading direction of the car.

In our approach, we start with the observation
that lane structures are defined not only by their lo-
cal appearance but also by their relations to each
other: lane structures, besides usually being con-
nected to collinear high contrast edges, they are usu-
ally found close to the ground plane, are mutually
coplanar and are part of parallel structures with cer-
tain distance ranges connected to the lane width.
Note that, such 3D relations are by definition in-
variant under perspective transformations.

None of these different relations on its own is
sufficient to describe lane structures; however, as
shown in this paper, their statistical combination re-
sults in a rather stable classification. For this, we
combine the different cues in a Bayesian reasoning
process. In our system, we do not make use of any
prior assumption on the road structure except that
it can be defined as a statistical combination of the
mentioned relations. Hence we neither make use
of any explicit road model nor make any assump-
tion about the relative importance of the individual
cues. Instead the road model is learned and the in-
dividual cues are combined in an optimal way. We
can show that by this Bayesian combination, we can
reach a performance of about 88% correctly classi-
fied lane entities from one stereo frame without us-
ing any temporal regularization (which usually fur-
ther stabilizes the extraction process).

The novelty of our approach is twofold. First,
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in addition to 2D information and simple local 3D
point information that is used commonly, we make
use of higher level 3D relations between groups
of 3D line segments extracted by stereo. Second,
for each cue we compute the complete conditional
probability density given that an edge stems from a
lane structure. This allows us to make a statement
of the relevance of each individual cue.

In the context of our work, we reflect on two is-
sues when dealing with 3D relations. First, limits
of 3D reasoning stemming from the uncertainties
involved in the reconstruction process need to be
taken into account (in particular due to the large
depth variation in street scenes). Second, since
the space of relations grows exponentially with the
number of entities being related to each other as
well as the order of the relations as such, the reason-
ing process needs to be done on spatially extended
groups instead of local entities to keep computa-
tional efficiency. In addition, we show that reason-
ing on semi–global contours reduces computational
cost while increasing the performance since the re-
lations can become more efficiently computed on
non–local entities.

We have evaluated our approach on three pub-
licly available sequences that are used in the context
of benchmarking driver assistance systems1. We
used a set of hand labeled data for training and
test phases, for a statistically plausible performance
evaluation. The prior probabilities and conditional
probability densities have been calculated by ana-
lyzing the frames that are included in the training
set. In this manner, we learn a lane model that is
trained on a certain set of frames (55 stereo im-
age pairs). To enable a lane recognition that works
on a broad range of situations, such as illumina-
tion changes, dashed or connected lane markings,
curves, slopes, other traffic etc., a large variation has
been used in the training data set.

The rest of the paper is structured as follows: In
Section 2, we describe the visual features we use. In
Section 3, the calculation of prior probabilities and
conditional probability densities using the training
set is discussed. This information is then used in
a Bayesian framework to do reasoning on the test
set, which is hand labeled as well. We evaluate the
performance of our approach in Section 4 for local
and semi-global visual features in the presence and

1www.mi.auckland.ac.nz/EISATS, SET 3: Colour
stereo sequences Drivsco

absence of uncertainty.

2 The Early Cognitive Vision System

In this work we make use of a visual repre-
sentation based on local descriptors called prim-
itives [8]. They are extracted sparsely along
image contours and form a feature vector that
contains visual modalities such as position, ori-
entation, phase, color and optical flow (π =
(x, θ, φ, (cl, cm, cr) , f) where color of a patch
is defined by left, right and middle color. 2D-
primitives are matched across two stereo views and
pairs of corresponding primitives afford the recon-
struction of a 3-dimensional equivalent called 3D-
primitive which is encoded by the vectorΠ =
(X, Θ, Φ, (Cl,Cm,Cr)). Extracted 2D and 3D
primitives for a sample stereo image pair are illus-
trated in Figure 1.

The local 2D and 3D primitives are grouped to-
gether by using the perceptual organization scheme
described in [9] to create semi-global contour struc-
tures. Since contours are based on good continu-
ation in terms of geometry and appearance, they
also have modalities like color and orientation. This
sparse and symbolic nature of the primitives and the
contours allows for perceptual relations defined on
them that express relevant spatial relations in 2D
and 3D (e.g., coplanarity, co-colority) which can be
applied in different contexts. In the rest of this sec-
tion, a brief description of the relations that have
been used as visual cues in this work is given.
Gradient: Since both primitives and contours have
left and right colors, the gradient is defined as the
color difference between the left and right side of
an entity.
Ground Plane: A rough estimation of the ground
plane can be done once yaw, pitch, roll angles and
the height of the camera is known (see [10]). For
any primitive or contour, this relation is defined as
the Euclidean distance of the visual feature to the
calculated ground plane.
Angle: While the angle between two primitives is
defined as the angle between their orientation, the
angle between two contours is defined as the angle
between their principal components2.
Normal Distance: For both primitives and con-
tours, normal distance is the parallel distance be-
tween the entities. For primitives, it is defined as the

2The eigen-vector of the highest eigen-value in PCA.



Figure 1: Extracted 2D and 3D primitives for a sample image pair. Note that,2D primitives are used to
reconstruct 3D primitives.

distance between one primitive and the line defined
by the orientation and the position of the other. For
contours, it is defined by the distance of the centroid
of one contour to the line created by the orientation
of the principal component of the other.
Coplanarity: Since a primitive has a position and
an orientation, a common plane can be defined be-
tween two primitives. Similarly, a common plane
can be defined for two non-collinear contours by
fitting a plane. Coplanarity between two entities is
defined as the distance between the entities and the
common plane.

An important issue while reasoning in 3D is hav-
ing an uncertainty model for the entities. For the 3D
primitives discussed above, the uncertainty calcula-
tion has been shown by Pugeault et al. in [11]. In
this work, the uncertainty of a contour is calculated
as the mean of the matrix traces of the uncertainty
matrices of the primitives that form the contour.

3 Bayesian Reasoning

To merge different cues as well as to deal with un-
certainties, we make use of a Bayesian framework.
The advantage of Bayesian reasoning is that it al-
lows for: a) introduction of learning in terms of
prior and conditional probabilities,b) assessing the
relative importance of each cue for the detection of
a given object, using the conditional probabilities.

Bayes’ formula (e.g., see [12]) enables to infer
the probability of an unknown cue or relation con-
ditioned to other observable cues and to prior likeli-
hoods. LetP (ce

i ) be the prior probability of occur-
rence of theith cuece

i applied to an entitye (e.g.,

the probability that any primitive lies in the ground
plane). Then,P (ce

i |e ∈ L) is the conditional prob-
ability of the visual cueci given an objectL.

Our aim is to compute the likelihood of an entity
e being part of a laneL given a number of visual
cues relating to the entity:

P (e ∈ L|ce

i ). (1)

According to Bayes’ formula, equation 1 can be ex-
panded to:

P (ce

i |e ∈ L)P (e ∈ L)

P (ce

i
|e ∈ L)P (e ∈ L) + P (ce

i
|e /∈ L)P (e /∈ L)

.

(2)
In this work we assume independence between

the cuesce

1, . . . , c
e

n. If ce

1, . . . , c
e

n are independent
thenP (ce

1, . . . , c
e

n|e ∈ L) can be written as:

P (ce

1, . . . , c
e

n|e ∈ L)

= P (ce

1|e ∈ L) · . . . · P (ce

n|e ∈ L), (3)

and

P (ce

1, . . . , c
e

n|e /∈ L)

= P (ce

1|e /∈ L) · . . . · P (ce

n|e /∈ L), (4)

3.1 Prior Probabilities

The prior probabilityP (e ∈ L) is necessary for
calculating the posterior probabilities by following
Bayes’ theorem (see Equation (1)). We calculate the
prior probabilities by using the hand labeled data
and counting the entities that are on the lane and
not on the lane for all the training images. The



(a)

(c)
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Figure 2: Illustration of 3D relations. (A selected 3D contour is marked in red in (a)). (a) All contours that
have 1500-3500 mm normal distance to the selected contour.(b) All contours that have 0-200 mm normal
distance to the selected contour.(c) All contours that are coplanar to the selected contour.(d) All contours
that have 0-5°angle to the selected contour.

distribution of the prior probabilities for individ-
ual primitives and contours are displayed in Fig-
ure 3(a) and 4(a).

3.2 Conditional Probability Densities

For each relation, a conditional probability density
is calculated from the training set. During the test
phase, these probability densities are used to find
the conditional probability of a calculated relation
(e.g.,P (ce

i |e ∈ L) andP (ce

i |e /∈ L) can be cal-
culated for a specific value ofce

i , once the prob-
ability density is known.). The normalized con-
ditional probability densities of the relations are
shown in Figures 3(b-f) and 4(b-f). Note that, the x
axis shows a possible value for a particular relation
and the y axis shows the conditional probabilities.
While green bars represent values for entities that
are part of the lane (P (ce

i |e ∈ L)), red bars repre-
sent values for entities that are not part of the lane
(P (ce

i |e /∈ L)).

3.3 Explicit Relevance Measure

The relevance of each relation can be derived
from the normalized densities by calculating the
L1 − norm distance as the sum of absolute dif-
ferences between the individual bins of the densi-
ties. Although this value is not used directly in the
Bayesian reasoning process, it gives an idea about
importance of an individual cue. For the densities
X andY with n bins,L1 − norm is defined as:

L1 − norm(X, Y ) =

n
X

i=0

(Xi − Yi) (5)

which corresponds to the difference between the ar-
eas of the two densities. Therefore, in this work,
this value corresponds to the non-overlapping area
between the part of lane (green) and not part of lane
(red) densities for a given conditional probability
density. Note that the highest possible value is 2
and a high value indicates a high importance for dis-
criminating lane and non-lane structures. For exam-
ple, the contrast relation applied on individual prim-
itives in Figure 3(b) exhibits anL1−norm value of
1.2. Here, a clear difference is visible between lane
and non-lane entities. Lane entities exhibit a higher
contrast gradient because of the white lane mark-
ings on a dark road. All the other non-lane entities
generally display a low contrast gradient. Thus, the
conditional probability density functions make al-
ready an a priori classification of lane and non-lane
entities. To improve the classification, different re-
lations or cues are merged into a Bayesian frame-
work according to Equation 2.

3.4 The Effect of Uncertainty

As discussed earlier, one of the drawbacks of rea-
soning in 3D is the uncertainty of the data originat-
ing from 2D and reconstruction uncertainties. Al-
though this uncertainty can be modeled, the use of
data with very high uncertainty values may lead to
a decrease in the performance of geometrical rea-
soning processes. A straightforward method to get
rid of this problem is neglecting this kind of data
by putting a threshold on the modeled uncertainty.
An example is shown in Figure 5, where an uncer-
tainty threshold is introduced for relations applied
on contours. By eliminating uncertain entities, the



(a) Prior probability distribution (b) Contrast gradient (c) Ground plane distance

(d) Distance (e) Normal distance (f) Coplanarity

Figure 3: The prior probability distribution (a) and conditional probability densities (b-f) for relations be-
tween primitives.

L1 − norm value of the different cues increases.

3.5 The Posterior Probabilities

Once the prior probabilities and the densities for
the conditional probabilities are calculated from the
training data, Equation 2 can be used to calculate
the posterior probabilities which show the probabil-
ity of primitives and contours of the test set being
on the lane for the given cues. In Figure 6, the dis-
tribution of the posterior probabilities based on rela-
tions between primitives and between contours are
shown. Note that theL1 − norm value is highest
for the case, where contours are used after an uncer-
tainty thresholding. In Figure 7(a-c), samples of ex-
tracted lanes are shown. Once the reasoning is done
in 3D, 2D data can be used to extend the informa-
tion. For example in Figure 7(d-f), the 2D contours
that contain the 3D lane contours are displayed.

4 Evaluation

Table 2 shows the classification of entities obtained
from a test set of 30 hand labeled frames for three
cases: In the first case, we make use of relations
between primitives; in the second case, we use rela-

tions between contours that contain a maximum of
6 primitives and in the third case, we apply an un-
certainty threshold to contours before we use their
relations (1500 contours were eliminated with the
thresholding). Since we use a hand labeled test
set, each visual entity can be classified by using the
calculated posterior probability. Table 1 shows the
possible class labels, depending on the ground truth
and the calculated posterior probabilities.

Table 1: Class labels of entities

Ground Truth
lane non-lane

C
al

cu
la

te
d

lan
e true positive false positive

non
-la

ne
false negative true negative

The evaluation has been done by measuring two
values for each case. We calculate the classification
success rate as the percentage of true positives plus
true negatives in the whole set. We also have a posi-
tive success rate, which is defined as the percentage
of true positives in the set of true positives plus false
positives. While the classification success rate mea-



(a) Prior probability distribution (b) Contrast gradient (c) Ground plane distance

(d) Normal distance (e) Angle (f) Coplanarity

Figure 4: The prior probability distribution (a) and conditional probability densities (b-f) for relations be-
tween contours that contains maximum 6 primitives.

sures how successful the algorithm is for classifying
entities in a scene as lane and non-lane, the positive
success rate measures how successful the algorithm
is for finding lane structures. When the relations be-
tween primitives are used, we obtain a classification
success rate of 78.4% and a positive success rate of
58%. The usage of contour relations increases these
ratios to a classification success rate of 79.6% and a
positive success rate of 77%. Once the contour rela-
tions are used after an uncertainty threshold, we ob-
tain a classification success rate and a positive suc-
cess rate of 87.7%. Note that, the effect of loss of
structure can be compensated by inferring from 2D,
as discussed in Section 3.5.

5 Conclusion

We introduced a parameter free non–heuristic ap-
proach to characterize lane structures in a Bayesian
reasoning process as a combination of 3D attributes
and relations. We tested our algorithm in a publicly
available data set. We investigated the relevance
of the individual relations and we demonstrated the
importance of 3D information as well as relational
information for lane detection, which both is rarely
used in current systems.
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Table 2: Classification of lane and non-lane entities

Class Amount of selected entities
primitives contours of 6 primitives contours of 6 primitives

with uncertainties
True Positive 12347 2666 2247
True Negative 21304 803 259
False Positive 8687 796 316
False Negative 572 91 34

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Results of the Bayesian framework applied on different frames. (a-c) Extracted lane structures
by using only 3D reasoning.(d-f) 2D contours that contain the 3D lane contours.(g-i) 3D primitives
corresponding to the 2D contours in (d-f).


