
Chapter 1
Self-Organizing Maps

Marc M. Van Hulle

Abstract A topographic map is a two-dimensional, nonlinear approximation of a
potentially high-dimensional data manifold, which makes it an appealing instru-
ment for visualizing and exploring high-dimensional data.The Self-Organizing Map
(SOM) is the most widely used algorithm, and it has led to thousands of applica-
tions in very diverse areas. In this chapter, we will introduce the SOM algorithm,
discuss its properties and applications, and also discuss some of its extensions and
new types of topographic map formation, such as the ones thatcan be used for pro-
cessing categorical data, time series and tree structured data.

1.1 Introduction

One of the most prominent features of the mammalian brain is the topographical
organization of its sensory cortex: neighboring nerve cells (neurons) can be driven
by stimuli originating from neighboring positions in the sensory input space, and
neighboring neurons in a given brain area project to neighboring neurons in the next
area. In other words, the connections establish a so-calledneighborhood-preserving
or topology-preservingmap, ortopographic mapfor short. In the visual cortex, we
call this aretinotopicmap; in the somatosensory cortex asomatotopicmap (a map
of the body surface), and in the auditory cortex atonotopic map(of the spectrum of
possible sounds).

The study of topographic map formation, from a theoretical perspective, started
with basically two types of self-organizing processes, gradient-based learning and
competitive learning, and two types of network architectures (Fig. 1.1) (for a review,
see Van Hulle, 2000). In the first architecture, which is commonly referred to as the
Willshaw-von der Malsburg model (Willshaw and von der Malsburg, 1976), there

K.U.Leuven, Laboratorium voor Neuro- en Psychofysiologie, Campus Gasthuisberg, Herestraat
49, BE-3000 Leuven, Belgium, E-mail: marc@neuro.kuleuven.be

1

2 Marc M. Van Hulle

are two sets of neurons, arranged in two (one- or) two-dimensional layers orlattices1

(Fig. 1.1A). Topographic map formation is concerned with learning a mapping for
which neighboring neurons in the input lattice are connected to neighboring neurons
in the output lattice.

The second architecture is far more studied, and is also the topic of this chap-
ter. We now have continuously valued inputs taken from the input spaceRd, or the
data manifoldV ⊆ Rd, which need not be rectangular or have the same dimen-
sionality as the lattice to which it projects (Fig. 1.1B). Toevery neuroni of the
latticeA corresponds a reference position in the input space, calledthe weight vec-
tor wi = [wi j] ∈ Rd. All neurons receive the same input vectorv = [v1, . . . ,vd] ∈V.
Topographic map formation is concerned with learning a mapVA of the data mani-
fold V (grey shaded area in Fig. 1.2), in such a way that neighboringlattice neurons,
i, j, with lattice positionsri ,r j , code for neighboring positions,wi ,w j , in the input
space (cf., the inverse mapping,Ψ). The forward mapping,Φ, from the input space
to the lattice, is not necessarily topology-preserving – neighboring weights do not
necessarily correspond to neighboring lattice neurons–, even after learning the map,
due to the possible mismatch in dimensionalities of the input space and the lattice
(seee.g., Fig. 1.3). In practice, the map is represented in the input space in terms of
neuron weights that are connected by straight lines, if the corresponding neurons are
nearest neighbors in the lattice (e.g., see the left panel of Fig. 1.2 or Fig. 1.3). When
the map is topology preserving, it can be used for visualizing the data distribution by
projecting the original data points onto the map. The advantage of having a flexible
map, compared toe.g., a plane specified by principal components analysis (PCA),
is demonstrated in Fig. 1.4. We observe that the three classes are better separated
with a topographic map than with PCA. The most popular learning algorithm for
this architecture is the Self-Organizing Map (SOM) algorithm by Teuvo Kohonen
(Kohonen 1982, Kohonen, 1984), whence this architecture isoften referred to as
Kohonen’s model.

Chapter overview

We start with the basic version of the SOM algorithm where we discuss the two
stages of which it consists: the competitive and the cooperative ones. We then dis-
cuss the topographic ordering properties of the algorithm:how it unfolds and de-
velops topographically-ordered maps, whether there exists a mathematical proof
of ordering, and whether topological defects in the map could still occur after the
learning process has ended. We also discuss the convergenceproperties of the algo-
rithm, and in what sense the converged weights are modeling the input density (is
the weight density a linear function of the input density?).

1 A lattice is an undirected graph in which every non-border vertex has the same, fixed number of
incident edges, and which usually appears in the form of an array with a rectangular- or simplex
topology.

1 Self-Organizing Maps 3

We then discuss the applications of the SOM algorithm, for which thousands
of them have been reported in the open literature. Rather than attempting for an
extensive overview, we group the applications into three areas: vector quantization,
regression and clustering. The latter is the most importantone since it is a direct con-
sequence of the data visualization- and exploration capabilities of the topographic
map. We highlight a number of important applications such asthe WEBSOM (Kaski
et al., 1998), for organizing large document collections, the PicSOM (Laaksonen
et al., 2002), for content-based image retrieval, and the Emergent Self Organizing
Maps (ESOM) (Ultsch and Mörchen, 2005), for which we consider the MusicMiner
(Risi et al., 2007), for organizing large collections of music, and an application for
classifying police reports of criminal incidents.

We then give an overview of a number of extensions of the SOM algorithm. The
motivation behind these was to improve the original algorithm, or to extend its range
of applications, or to develop new ways to perform topographic map formation.

We then detail three important extensions of the SOM algorithm. First, we dis-
cuss the growing topographic map algorithms. These algorithms consider maps with
a dynamically-defined topology so as to better capture the fine-structure of the in-
put distribution. Second, since many input sources have a temporal characteristic,
which is not captured by the original SOM algorithm, severalalgorithms have been
developed based on a recurrent processing of time signals (recurrent topographic
maps). It is a heavily researched area since some of these algorithms are capable of
processing tree-structured data. Third, another topic of current research is the kernel
topographic map, which is in line with the “kernelization” trend of mapping data
into a feature space. Rather than Voronoi regions, the neurons are equipped with
overlapping activation regions, in the form of kernel functions, such as Gaussians.
Important future developments are expected for these topographic maps, such as
the visualization and clustering of structure-based molecule descriptions, and other
biochemical applications.

Finally, we formulate a conclusion to the chapter.

1.2 SOM Algorithm

The SOM algorithm distinguishes two stages: thecompetitivestage and thecooper-
ativestage. In the first stage, the best matching neuron is selected, i.e., the “winner”,
and in the second stage, the weights of the winner are adaptedas well as those of its
immediate lattice neighbors. We consider the minimum Euclidean distance version
of the SOM algorithm only (also the dot product version exists, see Kohonen, 1995).

Competitive stage

For each inputv ∈ V, we select the neuron with the smallest Euclidean distance
(“Winner-Takes-All”, WTA), which we call the “winner”:

4 Marc M. Van Hulle

i j

i’ j’

A
output layer

input layer

B

j

v

V

i*

output layer

input space

Fig. 1.1 (A) Willshaw-von der Malsburg model. Two isomorphic, rectangular lattices of neurons
are shown: one represents the input layer and the other the output layer. Neurons are represented
by circles: filled circles denote active neurons (“winning”neurons); open circles denote inactive
neurons. As a result of the weighted connections from the input to the output layer, the output
neurons receive different inputs from the input layer. Two input neurons are labeled (i, j) as well
as their corresponding output layer neurons (i ′, j ′). Neuronsi and i ′ are the only active neurons
in their respective layers. (B) Kohonen model. The common input all neurons receive is directly
represented in the input space,v ∈ V ⊆ Rd. The “winning” neuron is labeled asi∗: its weight
(vector) is the one that best matches the current input (vector).

wi

VA Φ

rj

ri

A

w

V

j

Ψ

Fig. 1.2 Topographic mapping in the Kohonen architecture. In the left panel, the topology-
preserving mapVA of the data manifoldV ⊆ Rd (grey shaded area) is shown. The neuron weights
wi ,w j are connected by a straight line since the corresponding neurons i, j in the latticeA (right
panel), with lattice coordinatesri ,r j , are nearest neighbors. The forward mappingΦ is from the
input space to the lattice; the backward mappingΨ is from the lattice to the input space. The learn-
ing algorithm tries to make neighboring lattice neurons,i, j , code for neighboring positions,wi ,w j ,
in the input space.

1 Self-Organizing Maps 5

jw iw
dij

V

d

wwk l

il

Fig. 1.3 Example of a one dimensional lattice consisting of four neurons i, j ,k, l in a two dimen-
sional rectangular space. The distance between the weight vectors of neuronsi, j , di j , is larger
than between that of neuronsi, l , dil . This means that, at least in this example, neighboring neuron
weights do not necessarily correspond to neighboring neurons in the lattice.

Fig. 1.4 Oil flow data set visualized using PCA (left panel) and a topographic map (right panel).
The latter was obtained with the GTM algorithm (Bishopet al., 1996; Bishopet al., 1998). Since
the GTM performs a nonlinear mapping, it is better able to separate the three types of flow config-
urations: laminar (red crosses), homogeneous (blue plusses) and annular (green circles) (Bishop,
2006, reprinted with permission.)

i∗ = argmin
i
‖wi −v‖. (1.1)

By virtue of the minimum Euclidean distance rule, we obtain aVoronoi tessella-
tion of the input space: to each neuron corresponds a region in the input space,
the boundaries of which are perpendicular bisector planes of lines joining pairs of
weight vectors (the grey shaded area in Fig. 1.5 is the Voronoi region of neuronj).
Remember that the neuron weights are connected by straight lines (links or edges):
they indicate which neurons are nearest neighbors in the lattice. These links are
important for verifying whether the map is topology preserving.

Cooperative stage

It is now crucial to the formation of topographically-ordered maps that the neuron
weights are not modified independently of each other, but as topologically-related

6 Marc M. Van Hulle

w

w
w

w

w

i

k

wb

j

h

a

Fig. 1.5 Definition of quantization region in the Self-Organizing Map (SOM). Portion of a lattice
(thick lines) plotted in terms of the weight vectors of neuronsa, . . . ,k, in the two-dimensional input
space,i.e., wa, . . .,wk.

subsets on which similar kinds of weight updates are performed. During learning,
not only the weight vector of the winning neuron is updated, but also those of its lat-
tice neighbors and, thus, which end up responding to similarinputs. This is achieved
with the neighborhood function, which is centered at the winning neuron, and de-
creases with the lattice distance to the winning neuron2.

The weight update rule in incremental mode3 is given by:

∆wi = η Λ(i, i∗,σΛ (t)) (v−wi), ∀i ∈ A, (1.2)

with Λ the neighborhood function,i.e., a scalar-valued function of the lattice coor-
dinates of neuronsi andi∗, ri andr∗i , mostly a Gaussian:

Λ(i, i∗) = exp

(

−
‖ri − ri∗‖

2

2σ2
Λ

)

, (1.3)

with rangeσΛ (i.e., the standard deviation). (We further drop the parameterσΛ (t)
from the neighborhood function to simplify our notation.) The positionsri are usu-
ally taken to be the nodes of a discrete lattice with a regulartopology, usually a 2
dimensional square or rectangular lattice. An example of the effect of the neigh-
borhood function in the weight updates is shown in Fig. 1.6 for a 4×4 lattice. The
parameterσΛ , and usually also the learning rateη , are gradually decreased over
time. When the neighborhood range vanishes, the previous learning rule reverts to
standard unsupervised competitive learning (note that thelatter is unable to form

2 Besides the neighborhood function, also the neighborhood set exists, consisting of all neurons to
be updated in a given radius from the winning neuron (see Kohonen, 1995).
3 With incremental mode it is meant that the weights are updated each time an input vector is
presented. This is to be contrasted with batch mode where theweights are only updated after the
presentation of the full training set (“batch”).

1 Self-Organizing Maps 7

topology-preserving maps, pointing to the importance of the neighborhood func-
tion).

Fig. 1.6 The effect of the neighborhood function in the SOM algorithm. Starting from a perfect
arrangement of the weights of a square lattice (full lines),the weights nearest to the current input
(indicated with the cross) receive the largest updates, those further away smaller updates, resulting
in the updated lattice (dashed lines).

As an example, we train a 10× 10 square lattice with the SOM algorithm on
a uniform square distribution[−1,1]2, using a Gaussian neighborhood function of
which the rangeσΛ (t) is decreased as follows:

σΛ (t) = σΛ0 exp

(

−2σΛ0
t

tmax

)

, (1.4)

with t the present time step,tmax the maximum number of time steps, andσΛ0 the
range spanned by the neighborhood function att = 0. We taketmax= 100,000 and
σΛ0 = 5 and the learning rateη = 0.01. The initial weights (i.e., for t = 0) are
chosen randomly from the same square distribution. Snapshots of the evolution of
the lattice are shown in Fig. 1.7. We observe that the latticeis initially tangled, then
contracts, unfolds, and expands so as to span the input distribution. This two-phased
convergence process is an important property of the SOM algorithm and it has been
thoroughly studied from a mathematical viewpoint in the following terms: 1) the
topographic ordering of the weights and, thus, the formation of topology-preserving
mappings, and 2) the convergence of these weights (energy function minimization).
Both topics wil be discussed next. Finally, the astute reader has noticed that at the
end of the learning phase, the lattice is smooth, but then suddenly becomes more
erratic. This is an example of a phase transition, and it has been widely studied for
the SOM algorithm (see,e.g., Der and Herrmann, 1993).

Finally, since the speed of convergence depends on the learning rate, also a ver-
sion without one has been developed, called batch map (Kohonen, 1995):

8 Marc M. Van Hulle

wi =
∑µ Λ(i∗, i)vµ

∑µ Λ(i∗, i)
, ∀i, (1.5)

and it leads to a faster convergence of the map.

 0 100 200 1k

5k 10k 20k 100k

Fig. 1.7 Evolution of a 10×10 lattice with a rectangular topology as a function of time.The outer
squares outline the uniform input distribution. The valuesgiven below the squares represent time.

1.2.1 Topographic ordering

In the example of Fig. 1.7, we have used a two-dimensional square lattice for map-
ping a two-dimensional uniform, square distribution. We can also use the same lat-
tice for mapping a non-square distribution, so that there isa topological mismatch,
for example, a circular and an L-shaped distribution (Fig. 1.8A,B). We use the same
lattice and simulation set-up as before but now we show only the final results. Con-
sider first the circular distribution: the weight distribution is now somewhat non-
uniform. For the L-shaped distribution, we see in addition that there are several
neurons outside the support of the distribution, and some ofthem even have a zero
(or very low) probability to be active: hence, they are oftencalled “dead” units. It
is hard to find a better solution for these neurons without clustering them near the
inside corner of the L-shape.

We can also explore the effect of a mismatch in lattice dimensionality. For exam-
ple, we can develop a one-dimensional lattice (“chain”) in the same two-dimensional
square distribution as before. (Note that it is now impossible to preserve all of the
topology). We see that the chain tries to fill the available space as much as possible

1 Self-Organizing Maps 9

A B C

Fig. 1.8 Mapping of a 10× 10 neurons lattice onto a circular (A) and an L-shaped (B) uniform
distribution, and a 40 neurons one-dimensional lattice onto a square uniform distribution (C).

(Fig. 1.8C): the resulting map approximates the so-called space-fillingPeano curve4

(Kohonen, 1995, pp. 81, 87).

1.2.1.1 Proofs or ordering

It is clear that the neighborhood function plays a crucial role in the formation of
topographically-ordered weights. Although this may seem evident, the ordering it-
self is very difficult to describe (and prove!) in mathematical terms. The mathemat-
ical treatments that have been considered are, strictly speaking, only valid for one-
dimensional lattices developed in one-dimensional spaces. Cottrell and Fort (1987)
presented a mathematical stringent (but quite long) proof of the ordering process for
the one-dimensional case. For a shorter constructive proof, we refer to (Kohonen,
1995, pp. 100–105; for an earlier version, see Kohonen, 1984, pp. 151–154). The
results of Kohonen (1984) and Cottrell and Fort (1987) have been extended by Er-
win and co-workers (1992) to the more general case of a monotonically decreasing
neighborhood function. However, the same authors also state that a strict proof of
convergence is unlikely to be found for the higher-than-one-dimensional case.

1.2.1.2 Topological defects

As said before, the neighborhood function plays an important role in producing
topographically-ordered lattices, however, this does notimply that we are guaran-
teed to obtain one. Indeed, if we decrease the neighborhood range too fast, then
there could be topological defects (Geszti, 1990; Heskes and Kappen, 1993). These
defects are difficult to iron out, if at all, when the neighborhood range vanishes. In
the case of a chain, we can obtain a so-calledkink (Fig. 1.9).

Consider, as a simulation example, a rectangular lattice sizedN = 24×24 neu-
rons with the input samples taken randomly from a two-dimensional uniform distri-
butionp(v) within the square[0,1]2. The initial weight vectors are randomly drawn

4 A Peano curve is an infinitely and recursively convoluted fractal curve which represents the
continuous mapping of,e.g., a one-dimensional interval onto a two-dimensional surface.

10 Marc M. Van Hulle

jw

V
wwk i

lw

Fig. 1.9 Example of a topological defect (“kink”) in a chain consisting of four neuronsi, j ,k, l in
a two dimensional rectangular space.

from this distribution. We now perform incremental learning and decrease the range
as follows:

σΛ (t) = σΛ0 exp

(

−2 σΛ0
t

tmax

)

, (1.6)

but now witht the present time step andtmax= 275,000. For the learning rate, we
takeη = 0.015. The evolution is shown in Fig. 1.10. The neighborhood range was
too rapidly decreased since the lattice is twisted and, evenif we would continue the
simulation, with zero neighborhood range, thetwist will not be removed.

 0 1k 10k 275k

Fig. 1.10 Example of the formation of a topological defect called “twist” in a 24×24 lattice. The
evolution is shown for different time instances (values below the squares).

1.2.2 Weight convergence, energy function

Usually, in neural network learning algorithms, the weightupdate rule performs
gradient descent on an energy functionE (also termed error-, cost-, distortion- or
objective function):

∆wi j ∝ −
∂E

∂wi j
, (1.7)

1 Self-Organizing Maps 11

so that convergence to a local minimum inE can be easily shown, for example, in
an average sense. However, contrary to intuition, the SOM algorithmdoes notper-
form gradient descent on an energy function as long as the neighborhood range has
not vanished (whenσΛ = 0, an energy function exist: one is minimizing the mean
squared error (MSE) due to the quantization of the input space into Voronoi re-
gions). Hence, strictly speaking, we cannot judge the degree of optimality achieved
by the algorithm during learning.

In defense of the lack of an energy function, Kohonen emphasizes that there is
no theoretical reason why the SOM algorithmshouldensue from such a function
(Kohonen, 1995, p. 122), since: 1) the SOM algorithm is aimedat developing (spe-
cific) topological relations between clusters in the input space, and 2) it yields an
approximative solution of an energy function (by virtue of its connection with the
Robbins-Munro stochastic approximation technique), so that convergence is not a
problem in practice.

Besides this, a lot of effort has been devoted to developing an energy func-
tion which is minimized during topographic map formation (Tolat, 1990; Kohonen,
1991; Luttrell, 1991; Heskes and Kappen, 1993; Erwinet al., 1992). Both Luttrell
(1991) and Heskes and Kappen (1993) were able to show the existence of an en-
ergy function by modifying the definition of the winner. Heskes and Kappen first
ascribed alocal error ei to each neuroni, at timet:

ei(W,v,t) =
1
2 ∑

j∈A

Λ(i, j)‖v−w j‖
2, (1.8)

with W = [wi] the vector of all neuron weights, and then defined the winner as the
neuron for which the local error is minimal:

i∗ = argmin
i

∑
j

Λ(i, j)‖v−wj‖
2. (1.9)

This was also the equation introduced by Luttrell (1991), but with ∑ j Λ(i, j) = 1.
The actual weight update rule remains the same as in the original SOM algorithm
and, thus, still considers several neurons around the winner. The solution proposed
by Kohonen (1991) takes a different starting point, but it leads to a more complicated
learning rule for the winning neuron (for the minimum Euclidean distance SOM
algorithm, see Kohonen, 1995, pp. 122–124).

1.2.2.1 Weight density

The next question is: in what sense are the converged weightsmodeling the input
probability density? What is the distribution of the weights vs. that of the inputs?
Contrary to what was originally assumed (Kohonen, 1984), the weight density at
convergence, also termed the (inverse of the) magnificationfactor, is not a linear
function of the input densityp(v).

12 Marc M. Van Hulle

Ritter and Schulten (1986) have shown that, for a one-dimensional lattice, devel-
oped in a one-dimensional input space:

p(wi) ∝ p(v)
2
3 , (1.10)

in the limit of an infinite density of neighbor neurons (continuum approximation).
Furthermore, when a discrete lattice is used, the continuumapproach undergoes a
correction,e.g., for a neighborhood set withσΛ neurons around each winner neuron
(Λ(i, i∗) = 1 iff |r i − r i∗ | ≤ σΛ):

p(wi) ∝ pα , (1.11)

with:

α =
2
3
−

1

3σ2
Λ +3(σΛ +1)2

.

For a discrete lattice ofN neurons, it is expected that, forN → ∞ and for mini-
mum MSE quantization, ind-dimensional space, the weight density will be propor-
tional to (Kohonen, 1995):

p(wi) ∝ p
1

1+ 2
d (v), (1.12)

or that in the one-dimensional case:

p(wi) ∝ p(v)
1
3 . (1.13)

The connection between the continuum and the discrete approach was estab-
lished for the one-dimensional case by Ritter (1991), for a discrete lattice ofN
neurons, withN → ∞, and for a neighborhood set withσΛ neurons around each
“winner” neuron.

Finally, regardless of the effect resorted by the neighborhood function or -set, it
is clear that the SOM algorithm tends to undersample high probability regions and
oversample low probability ones. This affects the separability of clusters:e.g., when
the clusters overlap, the cluster boundary will be more difficult to delineate in the
overlap region than for a mapping which has a linear weight distribution (Van Hulle,
2000).

1.3 Applications of SOM

The graphical map displays generated by the SOM algorithm are easily understood,
even by non-experts in data analysis and statistics. The SOMalgorithm has led to lit-
erally thousands of applications in areas ranging from automatic speech recognition,
condition monitoring of plants and processes, cloud classification, and micro-array

1 Self-Organizing Maps 13

data analysis, to document- and image organization and retrieval (for an overview,
see Centre, 2003http://www.cis.hut.fi/research/som-bibl/). The
converged neuron weights yield a model of the training set inthree ways: vector
quantization, regression, and clustering.

Vector quantization

The training samples are modeled in such a manner that the average discrepancy
between the data points and the neuron weights is minimized.In other words, the
neuron weight vectors should “optimally” quantize the input space from which
the training samples are drawn, just like one would desire for an adaptive vector
quantizer (Gersho and Gray, 1991). Indeed, in standard unsupervised competitive
learning (UCL), and also the SOM algorithm, when the neighborhood has vanished
(“zero-order” topology), the weight updates amount to centroid estimation (usually
the mean of the samples which activate the corresponding neuron) and minimum
Euclidean distance classification (Voronoi tessellation), and attempt to minimize the
mean squared error due to quantization, or some other quantization metric that one
wishes to use. In fact, there exists an intimate connection between the batch version
of the UCL rule and the zero-order topology SOM algorithm, onthe one hand, and
the generalized Lloyd algorithm for building vector quantizers, on the other hand
(Luttrell, 1989,1990) (for a review, see Van Hulle, 2000). Luttrell showed that the
neighborhood function can be considered as a probability density function of which
the range is chosen to capture the noise process responsiblefor the distortion of the
quantizer’s output code (i.e., the index of the winning neuron),e.g., due to noise
in the communication channel. Luttrell adopted for the noise process a zero-mean
Gaussian, so that there is theoretical justification for choosing a Gaussian neighbor-
hood function in the SOM algorithm.

Regression

We can also interpret the map as a case of non-parametric regression: no prior
knowledge is assumed about the nature or shape of the function to be regressed.
Non-parametric regression is perhaps the first successful statistical application of
the SOM algorithm (Ritteret al., 1992; Mulier and Cherkassky, 1995; Kohonen,
1995): the converged topographic map is intended to capturethe principal dimen-
sions (principal curves, principal manifolds) of the inputspace. The individual neu-
rons represent the “knots” that join piecewise smooth functions, such as splines,
which act as interpolating functions for generating valuesat intermediate positions.
Furthermore, the lattice coordinate system can be regardedas a (approximate) global
coordinate system of the data manifold (Fig. 1.2).

14 Marc M. Van Hulle

Clustering

The most widely used application of the topographic map is clustering,i.e., the par-
titioning of the data set into subsets of “similar” data, without using prior knowledge
about these subsets. One of the first demonstrations of clustering was by Ritter and
Kohonen (1989). They had a list of 16 animals (birds, predators and preys) and 13
binary attributes for each one of them (e.g., large size or not, hair or not, 2 legged or
not, can fly or not,. . .). After training a 10×10 lattice of neurons with these vectors
(supplemented with the 1-out-16 animal code vector, thus, in total, a 29 dimensional
binary vector), and labeling the winning neuron for each animal code vector, a natu-
ral clustering of birds, predators and preys appeared in themap. The authors called
this the “semantic map”.

In the previous application, the clusters and their boundaries were defined by the
user. In order to visualize clusters more directly, we need an additional technique.
We can compute the mean Euclidean distance between a neuron’s weight vector
and the weight vectors of its nearest neighbors in the lattice. The maximum and
minimum of the distances found for all neurons in the latticeis then used for scal-
ing these distances between 0 and 1; the lattice then becomesa grey scale image
with white pixels corresponding toe.g.0 and black pixels to 1. This is called the
U-matrix (Ultsch and Siemon, 1990), for which several extensions have been de-
veloped to remedy the oversampling of low probability regions (possibly transition
regions between clusters) (Mörchen and Ultsch, 2005).

An important example is the WEBSOM (Kaskiet al., 1998). Here, the SOM
is used for organizing document collections (“document map”). Each document is
represented as a vector of keyword occurrences. Similar documents then become
grouped into the same cluster. After training, the user can zoom into the map to
inspect the clusters. The map is manually or automatically labeled with keywords
(e.g., from a man-made list) in such a way that, at each zoom-level,the same density
of keywords is shown (so as not to clutter the map with text). The WEBSOM has
also been applied to visualizing clusters in patents based on keyword occurrences in
patent abstracts (Kohonenet al., 1999).

An example of a content-based image retrieval system is the PicSOM (Laaksonen
et al., 2002). Here, low level features (color, shape, texture, etc. . .) of each image are
considered. A separate two-dimensional SOM is trained for each low level feature
(in fact, a hierarchical SOM). In order to be able to retrieveone particular image
from the database, one is faced with a semantic gap: how well do the low level
features correlate with the image contents? To bridge this gap,relevance feedback
is used: the user is shown a number of images and he/she has to decide which ones
are relevant and which ones not (close or not to the image the user is interested in).
Based on the trained PicSOM, the next series of images shown are then supposed to
be more relevant, and so on.

For high-dimensional data visualization, a special class of topographic maps,
called Emergent Self Organizing Maps (ESOM) (Ultsch and Mörchen, 2005),
can be considered. According to Alfred Ultsch, emergence isthe ability of a
system to produce a phenomenon on a new, higher level. In order to achieve

1 Self-Organizing Maps 15

emergence, the existence and cooperation of a large number of elementary pro-
cesses is necessary. An Emergent SOM differs from the traditional SOM in that
a very large number of neurons (at least a few thousand) are used (even larger
than the number of data points). The ESOM software is publicly available from
http://databionic-esom.sourceforge.net/.

As an example, Ultsch and co-workers developed theMusicMiner for organiz-
ing large collections of music (Risiet al., 2007). Hereto, low level audio features
were extracted from raw audio data, and static and temporal statistics were used
for aggregating these low level features into higher level ones. A supervised feature
selection was performed to come up with a non-redundant set of features. Based on
the latter, an ESOM was trained for clustering and visualizing collections of mu-
sic. In this way, consistent clusters were discovered that correspond to music genres
(Fig. 1.11). The user can then navigate the sound space and interact with the maps
to discover new songs that correspond to his/her taste.

Fig. 1.11 Organizing large collections of music by means of an ESOM trained on high level audio
features (MusicMiner). Shown is the map with several music genres labeled. (Risiet al., 2007,
reprinted with permission.)

As an example ESOM application, in the realm of text mining, we consider the
case of police reports of criminal incidents. When a victim of a violent incident
makes a statement to the police, the police officer has to judge whether,e.g., do-
mestic violence is involved. However, not all cases are correctly recognized and
are, thus, wrongly assigned the label “non-domestic violence”. Because it is very
time consuming to classify cases and to verify whether or notthe performed clas-
sifications are correct, text mining techniques and a reliable classifier are needed.
Such an automated triage system would result in major cost- and time savings. A
collection of terms (thesaurus), obtained by a frequency analysis of key words, was

16 Marc M. Van Hulle

constructed, consisting of 123 terms. A 50×82 toroidal lattice (in a toroidal lattice,
the vertical and horizontal coordinates are circular) was used, and trained with the
ESOM algorithm on 4814 reports of the year 2007; the validation set consisted of
4738 cases (of the year 2006). The outcome is shown in Fig. 1.12 (Poelmans, 2008,
unpublished results).

Fig. 1.12 Toroidal lattice trained with the ESOM algorithm showing the distribution of domestic
violence cases (red squares) and non-domestic violence cases (green squares). The background
represents the sum of the distances between the weight vector of each neuron and those of its near-
est neighbors in the lattice, normalized by the largest occurring sum (white) (i.e., the U-matrix).
We observe that the domestic violence cases appear in one large cluster and a few smaller clus-
ters, mostly corresponding to violence in homosexual relationships. (Figure is a courtesy of Jonas
Poelmans.)

1.4 Extensions of SOM

Although the original SOM algorithm has all the necessary ingredients for develop-
ing topographic maps, many adapted versions have emerged over the years (for ref-
erences, see Kohonen, 1995 andhttp://www.cis.hut.fi/research/som-
bibl/ which contains over 7000 articles). For some of these, the underlying moti-
vation was to improve the original algorithm, or to extend its range of applications,
while for others the SOM algorithm has served as a source of inspiration for devel-
oping new ways to perform topographic map formation.

One motivation was spurred by the need to develop a learning rule which per-
forms gradient descent on an energy function (as discussed above). Another was to
remedy the occurrence of dead units, since they do not contribute to the represen-
tation of the input space (or the data manifold). Several researchers were inspired

1 Self-Organizing Maps 17

by Grossberg’s idea (1976) of adding a “conscience” to frequently winning neurons
to feel “guilty” and to reduce their winning rates. The same heuristic idea has also
been adopted in combination with topographic map formation(DeSieno, 1988; Van
den Bout and Miller, 1989; Ahaltet al., 1990). Others exploit measures based on the
local distortion error to equilibrate the neurons’ “conscience” (Kim and Ra, 1995;
Chinrungrueng and Séquin, 1995; Ueda and Nakano, 1993). A combination of the
two conscience approaches is the learning scheme introduced Bauer and co-workers
(1996).

A different strategy is to apply a competitive learning rulethat minimizes the
mean absolute error (MAE) between the input samplesv and theN weight vectors
(also called theMinkowski metricof power one) (Kohonen, 1995, pp. 120, 121) (see
also Linet al., 1997). Instead of minimizing a (modified) distortion criterion, a more
natural approach is to optimize an information-theoretic criterion directly. Ralph
Linsker was among the first to explore this idea in the contextof topographic map
formation. He proposed a principle ofmaximum information preservation(Linsker,
1988) –infomaxfor short – according to which a processing stage has the prop-
erty that the output signals will optimally discriminate, in an information-theoretic
sense, among possible sets of input signals applied to that stage. In his 1989 article,
he devised a learning rule for topographic map formation in aprobabilistic WTA
network by maximizing the average mutual information between the output and the
signal part of the input, which was corrupted by noise (Linsker, 1989). Another al-
gorithm is the Vectorial Boundary Adaptation Rule (VBAR) which considers the
region spanned by a quadrilateral (4 neurons forming a square region in the lattice)
as the quantization region (Van Hulle, 1997a,b), and which is able to achieve an
equiprobabilistic map,i.e., a map for which every neuron has the same chance to be
active (and, therefore, maximizes the information-theoretic entropy).

Another evolution are the growing topographic map algorithms. In contrast with
the original SOM algorithm, its growing map variants have a dynamically-defined
topology, and they are believed to better capture the fine-structure of the input dis-
tribution. We will discuss them in the next section.

Many input sources have a temporal characteristic, which isnot captured by the
original SOM algorithm. Several algorithms have been developed based on a recur-
rent processing of time signals and a recurrent winning neuron computation. Also
tree structured data can be represented with such topographic maps. We will discuss
recurrent topographic maps in this chapter.

Another important evolution are the kernel-based topographic maps: rather than
Voronoi regions, the neurons are equipped with overlappingactivation regions, usu-
ally in the form of kernel functions, such as Gaussians (Fig.1.19). Also for this case,
several algorithms have been developed, and we will discussa number of them in
this chapter.

18 Marc M. Van Hulle

1.5 Growing Topographic Maps

In order to overcome the topology mismatches that occur withthe original SOM
algorithm, as well as to achieve an optimal use of the neurons(cf., dead units), the
geometry of the lattice has to match that of the data manifoldit is intended to repre-
sent. For that purpose, several so-called growing (incremental or structure-adaptive)
self-organizing map algorithms have been developed. What they share is that the
lattices are gradually build up and, hence, do not have a pre-defined structure (i.e.,
number of neurons and possibly also lattice dimensionality) (Fig. 1.14). The lattice
is generated by a successive insertion (and possibly an occasional deletion) of neu-
rons and connections between them. Some of these algorithmscan even guarantee
that the lattice is free of topological defects (e.g., since the lattice is subgraph of
a Delaunay triangularization, see further). We will brieflyreview the major algo-
rithms for growing self-organizing maps. The algorithms are structurally not very
different; the main difference is with the constraints imposed on the lattice topol-
ogy (fixed or variable lattice dimensionality). We first listthe properties common to
these algorithms, using the format suggested by Fritzke (1996).

• The network is an undirected graph (lattice) consisting of anumber of nodes
(neurons) and links or edges connecting them.

• Each neuroni has a weight vectorwi in the input spaceV.
• The weight vectors are updated by moving the winning neuroni∗, and its topo-

logical neighbors, towards the inputv ∈V:

∆wi∗ = ηi∗(v−wi∗), (1.14)

∆wi = ηi(v−wi), ∀i ∈ Ni∗ , (1.15)

with Ni∗ the set of direct topological neighbors of neuroni∗ (neighborhood set),
and withηi∗ andηi the learning rates,ηi∗ > ηi .

• At each time step, the local error at the winning neuroni∗ is accumulated:

∆Ei∗ = (error measure). (1.16)

The error term is coming from a particular area aroundwi∗ , and is likely to be
reduced by inserting new neurons in that area. A central property of these al-
gorithms is the possibility to choose an arbitrary error measure as the basis for
insertion. This extends their applications from unsupervised learning ones, such
as data visualization, combinatorial optimization and clustering analysis, to su-
pervised learning ones, such as classification and regression. For example, for
vector quantization,∆Ei∗ = ‖v−wi∗‖

2. For classification, the obvious choice
is the classification error. All models reviewed here can, inprinciple, be used
for supervised learning applications by associating output values to the neurons,
e.g., through kernels such as radial basis functions. This makesmost sense for
the algorithms that adapt their dimensionality to the data.

• The accumulated error of each neuron is used to determine (after a fixed number
of time steps) where to insert new neurons in the lattice. After an insertion, the

1 Self-Organizing Maps 19

error information is locally redistributed, which increases the probability that the
next insertion will be somewhere else. The local error acts as a kind of memory
where much error has occurred; the exponential decay of the error stresses more
the recently accumulated error.

• All parameters of the algorithm stay constant over time.

1.5.1 Competitive Hebbian learning and Neural Gas

Historically the first algorithm to develop topologies has been introduced by Mar-
tinetz and Schulten, and it is a combination of two methods, competitive Hebbian
learning (CHL) (Martinetz, 1993) and the Neural Gas (NG) (Martinetz and Schul-
ten, 1991).

The principle behind CHL is simple: for each input, create a link between the
winning neuron and the second winning neuron (i.e., with the second smallest Eu-
clidean distance to the input), if that link does not alreadyexist. Only weight vectors
lying in the data manifold develop links between them (thus,non-zero input density
regions). The resulting graph is a subgraph of the (induced)Delaunay triangular-
ization (Fig. 1.13), and it has been shown to optimally preserve topology in a very
general sense.

Fig. 1.13 Left panel: Delaunay triangularization. The neuron weight positionsare indicated with
open circles; the thick lines connect the nearest-neighborweights. The borders of the Voronoi poly-
gons, corresponding to the weights, are indicated with thinlines.Right panel:Induced Delaunay
triangularization. The induced triangularization is obtained by masking the original triangular-
ization with the input data distribution (two disconnectedgray shaded regions). (Fritzke, 1995a,
reprinted with permission)

In order to position the weight vectors in the input space, Martinetz and Schulten
(1991) have proposed a particular kind of vector quantization method, called Neural
Gas (NG). The main principle of NG is: for each inputv update thek nearest-
neighbor neuron weight vectors, withk decreasing over time until only the winning

20 Marc M. Van Hulle

neuron’s weight vector is updated. Hence, we have a neighborhood function but now
in input space. The learning rate also follows a decay schedule. Note that the NG
by itself does not delete or insert any neurons. The NG requires a fine tuning of the
rate at which the neighborhood shrinks to achieve a smooth convergence and proper
modeling of the data manifold.

The combination of CHL and NG is an effective method for topology learning.
The evolution of the lattice is shown in Fig. 1.14 for a data manifold that consists
of three-, two- and one-dimensional subspaces (Martinetz and Schulten, 1991). We
see that the lattice successfully has filled and adapted its dimensionality to the dif-
ferent subspaces. For this reason, visualization is only possible for low-dimensional
input spaces (hence, it is not suited for data visualizationpurposes where a mapping
from a potentially high-dimensional input space to a low-dimensional lattice is de-
sired). A problem with the algorithm is that one needs to decidea priori the number
of neurons, as it required by the NG algorithm (Fritzke, 1996): depending on the
complexity of the data manifold, very different numbers maybe appropriate. This
problem is overcome in the Growing Neural Gas (GNG; Fritzke,1995a) (see next
subsection).

1.5.2 Growing neural gas

Contrary to CHL/NG, the growing neural gas (GNG) poses no explicit constraints
on the lattice. The lattice is generated, and constantly updated, by the competitive
Hebbian learning technique (CHL, see above; Martinetz, 1993). The algorithm starts
with two randomly placed, connected neurons (Fig. 1.15, left panel). Unlike the
CHL/NG algorithm, after a fixed numberλ of time steps, the neuroni with the
largest accumulated error is determined and a new neuron inserted betweeni and
one of its neighbors. Hence, the GNG algorithm exploits the topology to position
new neurons between existing ones, whereas in the CHL/NG, the topology is not
influenced by the NG algorithm. Error variables are locally redistributed and an-
otherλ time steps is performed. The lattice generated is a subgraphof a Delaunay
triangularization, and can have different dimensionalities in different regions of the
data manifold. The end-result is very similar to CHL/NG (Fig. 1.15, right panel).

1.5.3 Growing cell structures

In the growing cell structures (GCS) algorithm (Fritzke, 1994), the model consists
of hypertetrahedrons (or simplices) of a dimensionality chosen in advance (hence,
the lattice dimensionality is fixed). Note that adA-dimensional hypertetrahedron has
dA+1 vertices, withdA the lattice dimensionality, anddA ≤ d, with d the input space
dimensionality. Examples ford = 1,2 and 3 are a line, a triangle and a tetrahedron,
respectively.

1 Self-Organizing Maps 21

Fig. 1.14 Neural Gas algorithm, combined with competitive Hebbian learning, applied to a data
manifold consisting of a right parallelepiped, a rectangleand a circle connecting a line. The dots in-
dicate the positions of the neuron weights. Lines connecting neuron weights indicate lattice edges.
Shown are the initial result (top left), and further the lattice after 5000, 10,000, 15,000, 25,000 and
40,000 time steps (top-down the first column, then top-down the second column). (Martinetz and
Schulten, 1991, reprinted with permission.)

22 Marc M. Van Hulle

Fig. 1.15 Growing Neural Gas algorithm applied to the same data configuration as in Fig. 1.14.
Initial lattice (left panel) and lattice after 20,000 time steps (right panel). Note that the last one
is not necessarily the final result because the algorithm could run indefinitely. (Fritzke, 1995a,
reprinted with permission)

The model is initialized with exactly one hypertetrahedron. Always after a pre-
specified number of time steps, the neuroni with the maximum accumulated error
is determined and a new neuron is inserted by splitting the longest of the edges
emanating fromi. Additional edges are inserted to rebuild the structure in such a
way that it consists only ofdA-dimensional hypertetrahedrons: Let the edge which
is split connect neuronsi and j, then the newly inserted neuron should be connected
to i and j and with allcommontopological neighbors ofi and j.

Since the GCS algorithm assumes a fixed dimensionality for the lattice, it can be
used for generating a dimensionality-reducing mapping from the input space to the
lattice space, which is useful for data visualization purposes.

1.5.4 Growing grid

In the growing grid algorithm (GG; Fritzke, 1995b) the lattice is a rectangular grid
of a certain dimensionalitydA. The starting configuration is adA-dimensional hy-
percube,e.g., a 2×2 lattice fordA = 2, a 2×2×2 lattice fordA = 3, and so on. To
keep this structure consistent, it is necessary to always insert complete (hyper-)rows
and (hyper-)columns. Since the lattice dimensionality is fixed, and possibly much
smaller than the input space dimensionality, the GG is useful for data visualization.

Apart from these differences, the algorithm is very similarto the ones described
above. Afterλ time steps, the neuron with the largest accumulated error isdeter-
mined, and the longest edge emanating from it is identified, and a new complete
hyper-row or -column is inserted such that the edge is split.

1.5.5 Other algorithms

There exists a wealth of other algorithms, such as the Dynamic Cell Structures
(DCS) (Bruske and Sommer, 1995), which is similar to the GNG,the Growing Self-
Organizing Map (GSOM, also called Hypercubical SOM) (Bauerand Villmann,

1 Self-Organizing Maps 23

1997), which has some similarities to GG but it adapts the lattice dimensionality,
Incremental Grid Growing (IGG) which introduces new neurons at the lattice border
and adds/removes connections based on the similarities of the connected neurons’
weight vectors (Blackmore and Miikkulainen, 1993), and onethat is also called the
Growing Self-Organizing Map (GSOM) (Alahakoonet al., 2000), which also adds
new neurons at the lattice border, similar to IGG, but does not delete neurons, and
which contains a spread factor to let the user control the spread of the lattice, to
name a few.

In order to study and exploit hierarchical relations in the data, hierarchical ver-
sions of some of these algorithms have been developed. For example, the Growing
Hierarchical Self-Organizing Map (GHSOM) (Rauberet al., 2002), develops lat-
tices at each level of the hierarchy using the GG algorithm (insertion of columns or
rows). The orientation in space of each lattice is similar tothat of the parent lattice,
which facilitates the interpretation of the hierarchy, andwhich is achieved through
a careful initialization of each lattice. Another example is Adaptive Hierarchical In-
cremental Grid Growing (AHIGG; Merklet al., 2003) of which the hierarchy con-
sists of lattices trained with the IGG algorithm, and for which new units at a higher
level are introduced when the local (quantization) error ofa neuron is too large.

1.6 Recurrent Topographic Maps

1.6.1 Time series

Many data sources such as speech have a temporal characteristic (e.g., a correlation
structure) that cannot be sufficiently captured when ignoring the order in which the
data points arrive, as in the original SOM algorithm. Several self-organizing map
algorithms have been developed for dealing with sequentialdata, such as the ones
using:

• fixed-length windows,e.g., the time-delayed SOM (Kangas, 1990), among others
(Martinetzet al., 1993; Simonet al., 2003; Vesanto, 1997);

• specific sequence metrics (Kohonen, 1997; Somervuo, 2004);
• statistical modeling incorporating appropriate generative models for sequences

(Bishopet al., 1997; Tiňoet al., 2004);
• mapping of temporal dependencies to spatial correlation,e.g., as in traveling

wave signals or potentially trained, temporally activatedlateral interactions (Eu-
liano and Principe, 1999; Schulz and Reggia, 2004 Wiemer, 2003);

• recurrent processing of time signals and recurrent winningneuron computation
based on the current input and the previous map activation, such as with the
Temporal Kohonen map (TKM) (Chappell and Taylor, 1993), therecurrent SOM
(RSOM) (Koskelaet al., 1998), the recursive SOM (RecSOM) (Voegtlin, 2002),
the SOM for structured data (SOMSD) (Hagenbuchneret al, 2003), and the
Merge SOM (MSOM) (Strickert and Hammer, 2005).

24 Marc M. Van Hulle

Several of these algorithms have been proposed recently, which shows the in-
creased interest in representing time series with topographic maps. For some of these
algorithms, also tree structured data can be represented (see later). We focus on the
recurrent processing of time signals and briefly describe the models listed above. A
more detailed overview can be found elsewhere (Barreto and Araújo, 2001; Ham-
meret al., 2005). The recurrent algorithms essentially differ in thecontext,i.e., the
way by which sequences are internally represented.

1.6.1.1 Overview of algorithms

The TKM extends the SOM algorithm with recurrent self-connections of the neu-
rons, such that they act as leaky integrators (Fig. 1.16A). Given a sequence[v1, . . . ,vt],
v j ∈ Rd,∀ j, the integrated distanceID i of neuroni with weight vectorwi ∈ Rd is:

ID i(t) = α‖vt −wi‖
2 +(1−α)ID i(t −1), (1.17)

with α ∈ (0,1) a constant determining the strength of the context information, and

with ID i(0)
∆
= 0. The winning neuron is selected asi∗(t) = argminI ID i(t), after

which the network is updated as in the SOM algorithm. Equation (1.17) has the form
of a leaky integrator, integrating previous distances of neuroni, given the sequence.

The RSOM uses in essence the same dynamics, however, it integrates over the
directions of the individual weight components:

ID i j (t) = α(v jt −wi)+ (1−α)ID i j (t −1), (1.18)

so that the winner is then the neuron for which‖[ID i j (t)]‖2 is the smallest. It is clear
that this algorithm stores more information than the TKM. However, both the TKM
and the RSOM compute only a leaky average of the time series and they do not use
any explicit context.

The RecSOM is an algorithm for sequence prediction. A given sequence is re-
cursively processed based on the already computed context.Hereto, each neuroni is
equipped with a weight and, additionally, a context vectorci ∈ RN which stores an
activation profile of the whole map, indicating in which context the weight vector
should arise (Fig. 1.16B). The integrated distance is defined as:

ID i(t) = α‖vt −wi‖
2 + β‖y(t−1)− ci‖

2, (1.19)

with y(t − 1) = [exp(−ID1(t −1)), . . . ,exp(−IDN(t −1))], α,β > 0 constants to
control the respective contributions from pattern and context matching, and with

ID i(0)
∆
= 0. The winner is defined as the neuron for which the integrateddistance

is minimal. The equation contains the exponential functionin order to avoid nu-
merical explosion: otherwise, the activationID i could become too large because the
distances with respect to the contexts of allN neurons could accumulate. Learning
is performed on the weights as well as the contexts, in the usual way (thus, involv-

1 Self-Organizing Maps 25

ing a neighborhood function centered around the winner): the weights are adapted
towards the current input sequences; the contexts towards the recursively computed
contextsy.

26
M

arc
M

.Van
H

ulle

Fig. 1.16 Schematic representation of four recurrent SOM algorithms: TKM (A), RecSOM (B), SOMSD (C), and MSOM (D). Recurrent connections indicate
leaky integration; double circles indicate the neuron’s weight- and context vectors;i∗ and the filled circles indicate the winning neuron;(t) and(t −1) represent
the current and the previous time steps, respectively.

1 Self-Organizing Maps 27

The SOMSD has been developed for processing labeled trees with fixed fan-
out k. The limiting case ofk = 1 covers sequences. We further restrict ourselves to
sequences. Each neuron has, besides a weight, also a contextvectorci ∈ RdA, with
dA the dimensionality of the lattice. The winning neuroni∗ for a training input at
time t is defined as (Fig. 1.16C):

i∗ = argminα‖vt −wi‖
2 +(1−α)‖r i∗(t−1) − ci‖

2, (1.20)

with r i∗ the lattice coordinate of the winning neuron. The weightswi are moved
in the direction of the current input, as usual (i.e., with a neighborhood), and the
contextsci in the direction of the lattice coordinates of the winning neuron of the
previous time step (also with a neighborhood).

The MSOM algorithm accounts for the temporal context by an explicit vector at-
tached to each neuron which stores the preferred context of that neuron (Fig. 1.16D).
The MSOM characterizes the context by a “merging” of the weight and the context
of the winner in the previous time step (whence the algorithm’s name: Merge SOM).
The integrated distance is defined as:

ID i(t) = α‖wi −vt‖
2 +(1−α)‖ci −Ct‖

2, (1.21)

with ci ∈ Rd, and with Ct the expected (merged) weight/context vector,i.e., the
context of the previous winner:

Ct = γci∗(t−1) +(1− γ)wi∗(t−1), (1.22)

with C0
∆
= 0. Updating ofwi andci are then done in the usual SOM way, thus, with

a neighborhood function centered around the winner. The parameterα is controlled
so as to maximize the entropy of the neural activity.

1.6.1.2 Comparison of algorithms

Hammer and co-workers (2004) pointed out that several of thementioned recur-
rent self-organizing map algorithms share their principled dynamics, but differ in
their internal representations of context. In all cases, the context is extracted as the
relevant part of the activation of the map in the previous time step. The notion of
“relevance” thus differs between the algorithms (see also Hammeret al., 2005). The
recurrent self-organizing algorithms can be divided in twocategories: the represen-
tation of the context in the data space, such as for the TKM andMSOM, and in a
space that is related to the neurons, as for SOMSD and RecSOM.In the first case,
the storage capacity is restricted by the input dimensionality. In the latter case, it can
be enlarged simply by adding more neurons to the lattice. Furthermore, there are es-
sential differences in the dynamics of the algorithms. The TKM does not converge
to the optimal weights; RSOM does it but the parameterα occurs both in the encod-
ing formula and in the dynamics. In the MSOM algorithm they can be controlled
separately. Finally, the algorithms differ in memory and computational complex-

28 Marc M. Van Hulle

ity (RecSOM is quite demanding, SOMSD is fast and MSOM is somewhere in the
middle), the possibility to apply different lattice types (such as hyperbolic lattices,
Ritter, 1998), and their capacities (MSOM and SOMSD achievethe capacity of Fi-
nite State Automata, but TKM and RSOM have smaller capacities; RecSOM is more
complex to judge).

As an example, Voegtlin (2002) used the Mackey-Glass time series, a well
known one-dimensional time-delay differential equation,for comparing different
algorithms:

dv
dt

= bv(t)+
av(t− τ)

1+v(t− τ)10 , (1.23)

which forτ > 16.8 generates a chaotic time series. Voegtlin useda = 0.2,b = −0.1
andτ = 17. A sequence of values is plotted in Fig. 1.17, starting from uniform input
conditions. For training, the series is sampled every 3 timeunits. This example was
also taken up by (Hammeret al., 2004) for comparing their MSOM. Several 10×10
maps were trained using 150,000 iterations; note that the input dimensionalityd =
1 in all cases. Fig. 1.18 shows the quantization error plotted as a function of the
index of the past input (index= 0 means the present). The error is expressed in terms
of the average standard deviation of the given sequence and the winning neuron’s
receptive field over a window of 30 time steps (i.e., delay vector). We observe large
fluctuations for the SOM, which is due to the temporal regularity of the series and
the absence of any temporal coding by the SOM algorithm. We also observe that the
RSOM algorithm is not really better than the SOM algorithm. On the contrast, the
RecSOM, SOMSD and MSOM algorithms (the MSOM was trained witha Neural
Gas neighborhood function, for details see Strickert and Hammer, 2003a) display a
slow increase in error as a function of the past, but with a better performance for the
MSOM algorithm.

|

0
|

20
|

40
|

60
|

80
|

100
|

120
|

140
|

160

|

0.4

|

0.6

|

0.8

|

1.0

|
1.2

|

1.4

 time t

 v

Fig. 1.17 Excerpt from the Mackey-Glass chaotic time series. (Strickert and Hammer, 2003b,
reprinted with permission)

1 Self-Organizing Maps 29

� SOM
� RSOM
� RecSOM
� SOMSD
� MSOM

|

0
|

5
|

10
|

15
|

20
|

25
|

30

|0.00

|0.05

|0.10

|0.15

|0.20

 index of past inputs

 q
ua

nt
iz

at
io

n
er

ro
r

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

�
�

�

�

�
�

�

�

�

�

�

� �
�
�
� � �

� � �
�
�
� � �

�
� �

�
�
�
�

�
� � � �

�
�
�

�
�

�
�

��

�
�
�

�

�
�
�

�
��

�
��

��
��

�
������

��
��

�
��

�
�
���

���
�
���

���
��

�
����

�

Fig. 1.18 Temporal quantization error of different algorithms for the Mackey-Glass time series
plotted as a function of the past (index= 0 is present). (Strickert and Hammer, 2003b, reprinted
with permission)

1.6.2 Tree structures

Binary trees, and also trees with limited fan-outk, have been successfully processed
with the SOMSD and the MSOM by extending the neuron’s single context vector
to several context vectors (one for each subtree). Startingfrom the leafs of a tree,
the integrated distanceID of a tree with a given label and thek subtrees can be
determined, and the context defined. The usual learning can then be applied to the
weights and contexts. As a result of learning, a topographicmapping of trees ac-
cording to their structure and labels arises. Up to now, onlypreliminary results of
the capacities of these algorithms for tree structures havebeen obtained.

1.7 Kernel Topographic Maps

Rather than developing topographic maps with disjoint and uniform activation re-
gions (Voronoi tessellation), such as in the case of the SOM algorithm (Fig. 1.5),
and its adapted versions, algorithms have been introduced that can accommodate
neurons with overlapping activation regions, usually in the form of kernel func-
tions, such as Gaussians (Fig. 1.19). For thesekernel-based topographic maps, or
kernel topographic maps, as they are called (they are also sometimes calledproba-
bilistic topographic mapssince they model the input density with a kernel mixture),
several learning principles have been proposed (for a review, see Van Hulle, 2009).
One motivation to use kernels is to improve, besides the biological relevance, the
density estimation properties of topographic maps. In thisway, we can combine the
unique visualization properties of topographic maps with an improved modeling of
clusters in the data. Usually, homoscedastic (equal-variance) Gaussian kernels are

30 Marc M. Van Hulle

used, but also heteroscedastic (differing variances) Gaussian kernels and other ker-
nel types have been adopted. In the next sections, we will review the kernel-based
topographic map formation algorithms and mention a number of applications. The
diversity in algorithms reflects the differences in strategies behind them. As a result,
these algorithms have their specific strengths (and weaknesses) and, thus, their own
application types.

V

Fig. 1.19 Kernel-based topographic map. Example of a 2×2 map (cf. rectangle with thick lines
in V-space) for which each neuron has a Gaussian kernel as outputfunction. Normally, a more
condensed representation is used where, for each neuron, a circle is drawn with center the neuron
weight vector and radius the kernel range.

1.7.1 SOM algorithm revisited

The starting point is again Kohonen’s SOM algorithm. To every neuron a ho-
moscedastic Gaussian kernel is associated with center corresponding to the neuron’s
weight vector. Kostiainen and Lampinen (2002) showed that the SOM algorithm
can be seen as the equivalent of a maximum likelihood procedure applied to a ho-
moscedastic Gaussian mixture density model, but with the exception that a winner
neuron (and, thus, kernel) is selected (the definition of the“winner” i∗ eq. (1.1) is
equivalent to looking for the Gaussian kernel with the largest output). The position
of the winner’s kernel is then updated, and possibly also those of other kernels,
given the neighborhood function. In a traditional maximum likelihood procedure,
there are no winners, and all kernels are updated (Redner andWalker, 1984). This
means that,e.g., for a vanishing neighborhood range, a Gaussian kernel’s center is
only updated when that neuron is the winner, hence, contraryto the classical case of
Gaussian mixture density modeling, the tails of the Gaussian kernels do not lead to
center updates (they disappear “under” other kernels), which implies that the kernel
radii will be underestimated.

1 Self-Organizing Maps 31

1.7.2 Elastic net

Durbin and Willshaw’s elastic net (1987) can be considered as one of the first ac-
counts on kernel-based topographic maps. The elastic net was used for solving the
Traveling Salesman Problem (TSP). In TSP, the objective is to find the shortest,
closed tour that visits each city once and that returns to itsstarting point (e.g., the
right panel in Fig. 1.20). When we represent the location of each city by a pointvµ

in the two-dimensional input spaceV ⊆ R2, and a tour by a sequence ofN neurons
– which comprise a ring or closed chainA–, then a solution to the TSP can be envis-
aged as a mapping fromV-space onto the neurons of the chain. Evidently, we expect
the neuron weights to coincide with the input points (“cities”) at convergence.

Fig. 1.20 One dimensional topographic map used for solving the Traveling Salesman Problem.
The lattice has a ring topology (closed chain); the points represent cities and are chosen randomly
from the input distribution demarcated by the square box. The evolution of the lattice is shown for
three time instants, att = 0 (initialization), 7000 and 10,000 (from left to right). The weights of the
lattice att = 0 form a circle positioned at the center of mass of the input distribution. (Reprinted
from Ritter and Schulten, 1988,c©1988 IEEE.)

The algorithm of the elastic net can be written as follows (inour format):

∆wi = 2η

(

∑
µ

Λ µ(i)(vµ −wi)+ κ(wi+1−2wi + wi−1)

)

, ∀i, (1.24)

where each weightwi represents a point on the elastic net. The first term on the right
hand side is a force that drags each pointwi on the chainA towards the citiesvµ ,
and the second term is an elastic force that tends to keep neighboring points on the
chain close to each other (and thus tends to minimize the overall tour length). The
functionΛ µ(i) is anormalizedGaussian:

Λ µ(i) =
exp(−‖vµ −wi‖

2/2σ2
Λ)

∑ j exp(−‖vµ −w j‖2/2σ2
Λ)

, (1.25)

with wi the center of the Gaussian andσΛ its range, which is gradually decreased
over time (as well asη , and alsoκ). By virtue of this kernel, the elastic net can be

32 Marc M. Van Hulle

viewed as a homoscedastic Gaussian mixture density model, fitted to the data points
by a penalized maximum likelihood term (for a formal account, see Durbinet al.,
1989). The elastic net algorithm looks similar to Kohonen’sSOM algorithm except
thatΛ(i, j) has been replaced byΛ µ(i), and that a second term is added. Interest-
ingly, the SOM algorithm can be used for solving the TSP even without the second
term (Ritteret al., 1992), provided that we take more neurons in our chain than
cities, and that we initialize the weights on a circle (a so-calledN-gon) positioned at
the center of mass of the input distribution. An example of the convergence process
for a 30 city case using aN = 100 neuron chain is shown in Fig. 1.20.

The elastic net has been used for finding trajectories of charged particles with
multiple scattering in high energy physics experiments (Gorbunov and Kisel, 2006),
and for predicting the protein folding structure (Ballet al., 2002). Furthermore, it
has been used for clustering applications (Roseet al., 1993). Finally, since it also
has a close relationship with “snakes” in computer vision (Kasset al., 1987) (for the
connection, see Abrantes and Marques, 1995), the elastic net has also been used for
extracting the shape of a closed object from a digital image,such as finding the lung
boundaries from magnetic resonance images (Gilsonet al., 1997).

1.7.3 Generative topographic map

The Generative Topographic Map (GTM) algorithm (Bishopet al., 1996; 1998)
develops a topographic map that attempts to find a representation for the input
distribution p(v), v = [v1, . . . ,vd], v ∈ V, in terms of a numberL of latent vari-
ablesx = [x1, . . . ,xL]. This is achieved by considering a non-linear transformation
y(x,W), governed by a set of parametersW, which maps points in the latent variable
space to the input space, much the same way as the lattice nodes in the SOM relate
to positions inV-space (inverse mappingΨ in Fig. 1.2). If we define a probability
distributionp(x) on the latent variable space, then this will induce a corresponding
distributionp(y|W) in the input space.

As a specific form ofp(x), Bishop and co-workers take a discrete distribution
consisting of a sum of delta functions located at theN nodes of a regular lattice:

p(x) =
1
N

N

∑
i=1

δ (x−xi). (1.26)

The dimensionalityL of the latent variable space is typically less than the dimen-
sionalityd of the input space so that the transformationy specifies anL-dimensional
manifold inV-space. SinceL < d, the distribution inV-space is confined to this
manifold and, hence, is singular. In order to avoid this, Bishop and co-workers in-
troduced a noise model inV-space, namely, a set of radially-symmetric Gaussian
kernels centered at the positions of the lattice nodes inV-space. The probability
distribution inV-space can then be written as follows:

1 Self-Organizing Maps 33

p(v|W,σ) =
1
N

N

∑
i=1

p(v|xi,W,σ), (1.27)

which is a homoscedastic Gaussian mixture model. In fact, this distribution is acon-
strainedGaussian mixture model since the centers of the Gaussians cannot move in-
dependently from each other but are related through the transformationy. Moreover,
when the transformation is smooth and continuous, the centers of the Gaussians will
be topographically ordered by construction. Hence, the topographic nature of the
map is an intrinsic feature of the latent variable model and is not dependent on the
details of the learning process. Finally, the parametersW andσ are determined by
maximizing the log-likelihood:

lnL (W,σ) = ln
M

∏
µ=1

p(vµ |W,σ), (1.28)

and which can be achieved through the use of an Expectation-Maximization (EM)
procedure (Dempsteret al., 1977). Because a single two-dimensional visualization
plot may not be sufficient to capture all of the interesting aspects of complex data
sets, a hierarchical version of the GTM has also been developed (Tiňo and Nabney,
2002).

The GTM has been applied to visualizing oil flows along multi-phase pipelines,
where the phases are oil, water and gas, and the flows can be oneof 3 types, strat-
ified, homogeneous and annular (Bishopet al., 1996) (Fig. 1.4, right panel). It has
been applied to visualizing electropalatographic (EPG) data for investigating the
activity of the tongue in normal and pathological speech (Carreira-Perpiñán and Re-
nals, 1998) (Fig. 1.21). It has also been applied to the classification of in vivo mag-
netic resonance spectra of controls and Parkinson patients(Axelsonet al., 2002), to
word grouping in document data sets (using the newsgroup data set benchmark) and
the exploratory analysis of web navigation sequences (Kab´an, 2005), and to spatio-
temporal clustering of transition states of a typhoon from image sequences of cloud
patterns (Kitamoto, 2002). In another application, the GTMis used for micro-array
data analysis (gene expression data) with the purpose of finding low-confidence
value genes (D’Alimonteet al., 2005).

1.7.4 Regularized Gaussian mixture modeling

Tom Heskes (2001) was able to show the direct correspondencebetween minimum
distortion topographic map formation and maximum likelihood Gaussian mixture
density modeling for the homoscedastic case. The starting point was the traditional
distortion (vector quantization) formulation of the self-organizing map:

Fquantization= ∑
µ

∑
i

P(i|vµ)∑
j

Λ(i. j)
1
2
‖vµ −w j‖

2, (1.29)

34 Marc M. Van Hulle

Fig. 1.21 Visualization of the trajectory in a 20×20 GTM lattice of the activity of the tongue (elec-
tropalatographic (EPG) data) of speaker RK for the utterance fragment “I preferKant toHobbes
for a good bedtime book” (Carreira-Perpiñán and Renals, 1998, reprinted with permission.)

with P(i|vµ) the probability that inputvµ is assigned to neuroni with weight wi

(i.e., the posterior probability, and with∑i P(i|vµ) = 1 andP(i|vµ) ≥ 0). Even if we
assignvµ to neuroni, there exists a confusion probabilityΛ(i, j) thatvµ is assigned
to neuronj. An annealed version of the self-organizing map is obtainedif we add
an entropy term:

Fentropy= ∑
µ

∑
i

P(i|vµ) log(
P(i|vµ)

Qi
), (1.30)

with Qi the prior probability (the usual choice isQi = 1
N , with N the number of

neurons in the lattice. The final (free) energy is now:

F = βFquantization+Fentropy, (1.31)

with β playing the role of an inverse temperature. This formulation is very conve-
nient for an EM procedure. The expectation step leads to:

P(i|vµ) =
Qi exp

(

− β
2 ∑ j Λ(i, j)‖vµ −w j‖

)

∑sQsexp
(

− β
2 ∑ j Λ(s, j)‖vµ −w j‖

) , (1.32)

1 Self-Organizing Maps 35

and the maximization step to:

wi =
∑µ ∑ j P(j|vµ)Λ(j, i)vµ

∑µ ∑ j P(j|vµ)Λ(j, i)
, (1.33)

which is also the result reached by Graepel and co-workers (1998) for the Soft To-
pographic Vector Quantization (STVQ) algorithm (see the next section). Plugging
eq. (1.32) into eq. (1.31) leads to an error function, which allows for the connection
with a maximum likelihood procedure, for a mixture of homoscedastic Gaussians,
when the neighborhood range vanishes (Λ(i, j) = δi j). When the neighborhood is
present, Heskes showed that this leads to a term added to the original likelihood.

As an application, Heskes considers market basket analysis. Given are a list of
transactions corresponding to the joint set of products purchased by a customer at a
given time. The goal of the analysis is to map the products onto a two-dimensional
map (lattice) such that neighboring products are “similar”. Similar products should
have similar conditional probabilities of buying other products. In another applica-
tion, he considers the case of transactions in a supermarket. The products are sum-
marized in product groups and given are the co-occurrence frequencies. The result
is a two-dimensional density map showing clusters of products that belong together,
e.g., a large cluster of household products (Fig. 1.22).

Fig. 1.22 Visualization of market basket data in which 199 product groups are clustered based on
their co-occurrence frequencies with other products (Heskes, 2001). (c©2001 IEEE)

36 Marc M. Van Hulle

1.7.5 Soft topographic vector quantization

Another approach that considers topographic map formationas an optimization
problem, is the one introduced by Klaus Obermayer and co-workers (Graepelet
al., 1997,1998). They start from the following cost function:

E(W) =
1
2 ∑

µ
∑
i

cµ,i ∑
j

Λ(i, j)‖vµ −w j‖
2, (1.34)

with cµ,i ∈ {0,1} and for whichcµ,i = 1 if vµ is assigned to neuroni, elsecµ,i =
0 (∑i cµ,i = 1); the neighborhood function obeys∑ j Λ(i, j) = 1. The wi , ∀i, for
which this function is minimal, are the optimal ones. However, the optimization is
a difficult task, because it depends both on binary and continuous variables and has
many local minima. To avoid this, a technique known as deterministic annealing is
applied: the optimization is done on a smooth function parametrized by a parameter
β , the so-called free energy. Whenβ is small, the function is smooth and only
one global minimum remains; when large, more of the structure of the original cost
function is reflected in the free energy. One starts with a lowvalue ofβ and attempts
to keep track of the minimum through higher values ofβ .

The application of the principle of maximum entropy yields the free energy
(Graepelet al., 1997):

F = −
1
β

log∑
cµ ,i

exp(−βE), (1.35)

which leads to probabilistic assignments of inputsvµ to neurons,P(i|vµ), ∀i, that
is, the posterior probabilities, and which are given by:

P(i|vµ) =
exp(− β

2 ∑ j Λ(i, j)‖vµ −w j‖
2)

∑sexp(− β
2 ∑ j Λ(s, j)‖vµ −w j‖2)

. (1.36)

The fixed point rule for the kernel centers is then:

wi =
∑µ ∑ j P(j|vµ)Λ(j, i)vµ

∑µ ∑ j P(j|vµ)Λ(j, i)
, ∀i. (1.37)

The updates are done through an EM scheme. We observe that thelatter equation is
identical to Heskes’ rule for regularized Gaussian mixturemodeling, eq. (1.33).

The STVQ has been generalized to the soft topographic mapping for proxim-
ity data (STMP), which can be used for clustering categorical data, given a ma-
trix of pairwise proximities or dissimilarities, which is one of the first accounts of
this nature in the topographic map literature. A candidate application are the DNA
micro-array data sets where the data can be described by matrices with the columns
representing tissue samples and the rows genes, and the entries in the matrix cor-

1 Self-Organizing Maps 37

respond to the strength of the gene expression. In (Seo and Obermayer, 2004), a
modified version of the STMP is used for clustering documents(“document map”).

1.7.6 Heteroscedastic Gaussian kernel topographic map formation

In the literature, only few approaches exist that consider heteroscedastic kernels,
perhaps because the kernel radius in the homoscedastic caseis often used in an
annealing schedule, as shown above in the STVQ-, and the Elastic Net algorithms.
When using heteroscedastic kernels, a better density estimate is expected. Several
algorithms for heteroscedastic kernels have been developed (for a review, see Van
Hulle, 2009). We briefly mention a few here.

Bearing in mind what we have said earlier about the SOM in connection to Gaus-
sian mixture modeling, one can extend the original batch map, eq. (1.5), to the het-
eroscedastic case (Van Hulle, 2009):

wi =
∑µ Λ(i∗, i)vµ

∑µ Λ(i∗, i)
,

σ2
i =

∑µ Λ(i∗, i)‖v−wi‖
2/d

∑µ Λ(i∗, i)
, ∀i, (1.38)

with i∗ = argmaxiKi (which is no longer equivalent toi∗ = argmini‖v−wi‖, but
which is required since we now have heteroscedastic kernels), i.e., anactivity-based
definition of “winner-takes-all”, rather than a minimumEuclidean distance-based
one. Notice again that, by the definition of the winner, the tails of the kernels are cut
off, since the kernels overlap.

Recently, we introduced (Van Hulle, 2005a) a learning algorithm for kernel-
based topographic map formation of heteroscedastic Gaussian mixtures that allows
for a unified account of distortion error (vector quantization), log-likelihood and
Kullback-Leibler divergence, and that generalizes Heskes’ algorithm (2001) to the
heteroscedastic case.

There is also the heuristic approach suggested by Yin and Allinson (2001), which
is minimizing the Kullback-Leibler divergence, based on anidea introduced by Be-
naim and Tomasini (1991) for the homoscedastic case. Albeitthat these authors only
suggested an incremental, gradient-based learning procedure (thus, with a learning
rate), we can cast their format into a fixed point learning scheme:

wi =
∑µ Λ(i∗, i)P(i|vµ)vµ

∑µ Λ(i∗, i)P(i|vµ)
,

σ2
i =

∑µ Λ(i∗, i)P(i|vµ)‖vµ −wi‖
2/d

∑µ Λ(i∗, i)P(i|vµ)
, (1.39)

38 Marc M. Van Hulle

with the winner neuron defined asi∗ = argmaxiP(i|vµ), thus, the neuron with the
largest posterior probability.

In a still different approach, an input to lattice transformation Φ is consid-
ered that admits a kernel function, a Gaussian (Van Hulle, 2002) 〈Φ(v),Φ(wi)〉 =
K(v,wi ,σi):

K(v,wi ,σi) = exp

(

−
‖v−wi‖

2

2σ2
i

)

. (1.40)

When performing topographic map formation, we require thatthe weight vectors
are updated so as to minimize the expected value of the squared Euclidean distance
‖v−wi‖

2 and, hence, following our transformationΦ, we instead wish to minimize
‖Φ(v)−Φ(wi)‖

2, which we will achieve by performing gradient descent with re-
spect towi . The leads to the following fixed point rules to which we have added a
neighborhood function:

wi =
∑µ Λ(i, i∗)K(vµ ,wi ,σi)vµ

∑µ Λ(i, i∗)K(vµ ,wi ,σi)
,

σ2
i =

1
ρd

∑µ Λ(i, i∗)K(vµ ,wi ,σi)‖vµ −wi‖
2

∑µ Λ(i, i∗)K(vµ ,wi ,σi)
, (1.41)

with ρ a scale factor (a constant) designed to relax the local Gaussian (andd large)
assumption in practice, and withi∗ = argmax∀i∈AK(v,wi ,σi).

Rather than having a real-valued neural activation, one could also threshold the
kernel into a binary variable: in the kernel-based maximum entropy rule (kMER) a
neuroni is activated by inputv when‖wi − v‖ < σi , whereσi is the kernel radius
of neuroni, and which defines a hyperspherical activation region,Si (Van Hulle,
1998). The membership function,1i(v), equals unity when neuroni is activated by
v, else it is zero. When there are no neurons active for a given input, the neuron that
is positioned closest to that input is defined active. The incremental learning rules
for the weights and radii of neuroni are as follows:

∆wi = η ∑
j

Λ(i, j)Ξi(v) sign(v−wi), (1.42)

∆σi = η
(ρr

N

(

1−1i(v)
)

−1i(v)
)

,

with sign(.) the sign function taken componentwise,η the learning rate,Ξi(v) =1i
∑ j 1 j

a fuzzy membership function, andρr = ρN
N−ρ . It can be shown that the ker-

nel ranges converge to the case where the average probabilities become equal,
〈1i〉 = ρ

N ,∀i. By virtue of the latter, kMER is said to generate an equiprobabilis-
tic topographic map (which avoids dead units). The algorithm has been considered
for a wide range of applications, such as shape clustering (Van Hulle and Gautama,
2004), music signal clustering (Van Hulle, 2000), and the linking of patent- and
scientific publications databases (Deleus and van Hulle, 2001). More recently, also

1 Self-Organizing Maps 39

a fixed point version, called batch map kMER, was introduced (Gautama and Van
Hulle, 2006), and applied to handwritten numerals clustering.

1.7.7 Kernels other than Gaussians

In principle, kernels other than Gaussians could be used in topographic map for-
mation. For example, Heskes pointed out that his regularized mixture modeling ap-
proach could, in principle, accommodate any kernel of the exponential family, such
as the Gamma, multinomial and the Poisson distribution (Heskes, 2001).

In another case, the kernel is considered for which the differential entropy of the
kernel output will be maximal given a Gaussian input,i.e., the incomplete gamma
distribution kernel (Van Hulle, 2002b).

Another type of kernels are the Edgeworth-expanded Gaussian kernels, which
consist of a Gaussian kernel multiplied by a series of Hermite polynomials of in-
creasing order, and of which the coefficients are specified by(the second- but also
higher-order) cumulants (Van Hulle, 2005b).

In still another case, a mixture of Bernouilli distributions is taken (Verbeeket al.,
2005) for the specific purpose to better encode binary data (e.g., word occurrence in
a document). This also leads to an EM algorithm for updating the posteriors as well
as the expected joint log-likelihood with respect to the parameters of the Bernouilli
distributions. However, as the posteriors become quite peaked for higher dimen-
sions, for visualization purposes, a power function of themwas chosen. Several
applications have been demonstrated, including word grouping in document data
sets (newsgroup data set) and credit data analysis (from theUCI Machine Learning
repositoryhttp://archive.ics.uci.edu/ml/).

1.7.8 Future developments

An expected development is to go beyond the limitation of thecurrent kernel-based
topographic maps that the inputs need to be vectors (we already saw the extension
towards categorical data). But in the area of structural pattern recognition, more
powerful data structures can be processed, such as strings,trees and graphs. The
SOM algorithm has already been extended towards strings (Kohonen and Somervuo,
1998) and graphs, which include strings and trees (Günter and Bunke, 2002; Seo and
Obermayer, 2004; Steil and Sperduti, 2007) (see also the SOMSD and the MSOM
algorithms above). However, also new types ofkernelsfor strings, trees and graphs
have been suggested in the Support Vector Machine literature (thus, outside the to-
pographic map literature) (for reviews, see Shawe-Taylor and Cristianini, 2004; Jin
al., 2005). The integration of these new types of kernels into kernel-based topo-
graphic maps is yet to be done, but could turn out to be a promising evolution for

40 Marc M. Van Hulle

biochemical applications, such as visualizing and clustering sets of structure-based
molecule descriptions.

1.8 Conclusion

In this chapter we have introduced the Self-Organizing Map (SOM) algorithm, dis-
cussed its properties, limitations and application types,and reviewed a number of
extensions, and other types of topographic map formation algorithms, such as the
growing-, the recurrent-, and the kernel topographic maps.We have also indicated
how recent developments in topographic maps enable us to consider categorical
data, time series and tree structured data, widening further the application field to-
wards micro-array data analysis, document analysis and retrieval, exploratory anal-
ysis of web navigation sequences, and the visualization of protein structures and
long DNA sequences.

Acknowledgments

The author is supported by the Excellence Financing program(EF 2005) and the
CREA Financing program (CREA/07/027) of the K.U.Leuven, the Belgian Fund for
Scientific Research – Flanders (G.0234.04 and G.0588.09), the Flemish Regional
Ministry of Education (Belgium) (GOA 2000/11), the BelgianScience Policy (IUAP
P5/04), and the European Commission (NEST-2003-012963,STREP-2002-016276,
IST-2004-027017, and ICT-2007-217077).

References

1. Abrantes, A.J., and Marques, J.S. (1995). Unified approach to snakes, elastic nets, and Ko-
honen maps. In:Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP’95, 5, pp. 3427-3430.

2. Ahalt, S.C., Krishnamurthy, A.K., Chen, P., and Melton, D.E. (1990). Competitive learning
algorithms for vector quantization.Neural Networks, 3, 277-290.

3. Alahakoon, D., Halgamuge, S.K., and Srinivasan, B. (2000). Dynamic Self Organising Maps
with Controlled Growth for Knowledge Discovery.IEEE Transactions on Neural Networks
(Special Issue on Knowledge Discovery and Data Mining),11(3), 601-614.

4. Axelson, D., Bakken, I.J., Gribbestad, I.S. Ehrnholm, B.Nilsen, G. and Aasly, J. (2002).
Applications of neural network analyses to in vivo1H magnetic resonance spectroscopy of
Parkinson disease patients.Journal of Magnetic Resonance Imaging, 16(1), 13-20.

5. Ball, K.D., Erman, B., and Dill, K.A. (2002). The elastic net algorithm and protein structure
prediction.Journal of Computational Chemistry, 23(1), 77-83.

6. Barreto, G., and Araújo, A. (2001). Time in self-organizing maps: An overview of models.
Int. J. of Computer Research, 10(2), 139-179.

1 Self-Organizing Maps 41

7. Bauer, H.-U., and Villmann, T. (1997). Growing a Hypercubical Output Space in a Self-
Organizing Feature Map.IEEE Transactions on Neural Networks, 8(2), 218-226.

8. Bauer, H.-U., Der, R., and Herrmann, M. (1996). Controlling the magnification factor of self-
organizing feature maps.Neural Computat., 8, 757-771.

9. Benaim, M., and Tomasini, L. (1991). Competitive and self-organizing algorithms based on
the minimization of an information criterion.Proc. ICANN’91, pp. 391-396.

10. Bishop, C.M. (2006).Pattern Recognition and Machine Learning, New York: Springer.
11. Bishop, C.M., Svensén, M., and Williams, C.K.I. (1996). GTM: A principled alternative to

the self-organizing map. In:Proceedings 1996 International Conference in Artificial Neural
Networks (ICANN’96), pp. 165-170.

12. Bishop, C.M., Hinton, G.E., and Strachan, I.G.D. (1997). In Proceedings IEE Fifth Interna-
tional Conference on Artificial Neural Networks, Cambridge (U.K.), pp. 111-116.

13. Bishop, C.M. , Svensén, M. and Williams, C.K.I. (1998).GTM: The generative topographic
mapping,Neural Computat., 10: 215-234.

14. Blackmore, J., and Miikkulainen, R. (1993). Incremental Grid Growing: Encoding high-
dimensional structure into a two-dimensional feature map.In Proc. IEEE Int’l Conference
on Neural Networks, San Francisco, CA, 1993,1, 450-455.

15. Bruske, J., and Sommer, G. (1995). Dynamic cell structure learns perfectly topology preserv-
ing map.Neural Computation, 7(4), 845-865.

16. Carreira-Perpiñán, M.Á., and Renals, S. (1998). Dimensionality reduction of electropalato-
graphic data using latent variable models.Speech Communications, 26(4), 259-282.

17. Centre, N.N.R. (2003). Bibliography on the Self-Organizing Map (SOM) and Learning Vector
Quantization (LVQ), Helsinki Univ. of Tech.
http://liinwww.ira.uka.de/bibliography/Neural/SOM.LVQ.html

18. Chappell, G. and Taylor, J. (1993). The temporal Kohonenmap.Neural Networks, 6, 441-445.
19. Chinrungrueng, C., and Séquin, C.H. (1995). Optimal adaptivek-means algorithm with dy-

namic adjustment of learning rate.IEEE Trans. Neural Networks, 6, 157-169.
20. Cottrell, M., and Fort, J.C. (1987). Etude d’un processus d’auto-organization.Ann. Inst. Henri

Poincaré, 23, 1-20.
21. D’Alimonte, D., Lowe, D., Nabney, I.T., and Sivaraksa, M. (2005). Visualis-

ing uncertain data. In:Proceedings European Conference on Emergent Aspects
in Clinical Data Analysis (EACDA2005)(September 28 - 30 2005, Pisa, Italy)
http://ciml.di.unipi.it/EACDA2005/papers.html.

22. Deleus, F.F., and Van Hulle, M.M. (2001). Science and technology interactions discovered
with a new topographic map-based visualization tool.Proc. 7th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, San Fransisco, USA, August 26-29,
2001, pp. 42-50.

23. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood for incomplete
data via the EM algorithm.J. Roy. Statist. Soc., B, 39, 1-38.

24. Der, R., and Herrmann, M. (1993). Phase transitions in self-organizing feature maps.
Proc. ICANN’93(Amsterdam, The Netherlands), pp. 597-600, New York: Springer.

25. DeSieno, D. (1988). Adding a conscience to competitive learning.Proc. IEEE Int. Conf. on
Neural Networks(San Diego), Vol. I, pp. 117-124.

26. Durbin, R., and Willshaw, D. (1987). An analogue approach to the travelling salesman prob-
lem using an elastic net method.Nature, 326, 689-691.

27. Durbin, R. Szeliski, R., and Yuille, A.L. (1989). An analysis of the elastic net approach to the
traveling salesman problem.Neural Computat., 1, 348-358.

28. Erwin, E., Obermayer, K., and Schulten, K. (1992). Self-organizing maps: Ordering, conver-
gence properties and energy functions.Biol. Cybern., 67, 47-55.

29. Euliano, N.R., and Principe, J.C. (1999). A spatiotemporal memory based on SOMs with
activity diffusion. InKohonen Maps, E. Oja and S. Kaski (eds.), Elsevier, pp. 253-266.

30. Fritzke, B. (1994). Growing cell structures - a self-organizing network for unsupervised and
supervised learning.Neural Networks, 7(9), 1441-1460.

42 Marc M. Van Hulle

31. Fritzke, B. (1995a). A growing neural gas network learnstopologies.Advances in Neural
Information Processing Systems 7 (NIPS 1994), G. Tesauro, D.S. Touretzky and T.K. Leen
(Eds.), MIT Press, pp. 625-632.

32. Fritzke, B. (1995b). Growing Grid - a self-organizing network with constant neighborhood
range and adaptation strength.Neural Processing Letters, 2(5), 9-13.

33. Fritzke, B. (1996). Growing self-organizing networks -why? InEuropean Symposium on Ar-
tificial Neural Networks (ESANN96), Bruges, 1996, D facto publications, Brussels, Belgium,
pp. 61-72.

34. Gautama, T., and Van Hulle, M.M. (2006). Batch Map Extensions of the Kernel-based Maxi-
mum Entropy Learning Rule.IEEE Transactions on Neural Networks, 16(2), 529-532.

35. Gersho, A., and Gray, R.M. (1991).Vector quantization and signal compression.Boston,
Dordrecht, London: Kluwer.

36. Geszti, T. (1990).Physical models of neural networks. Singapore: World Scientific Press.
37. Gilson, S.J., Middleton, I., and Damper, R.I. (1997). A localised elastic net technique for lung

boundary extraction from magnetic resonance images. In:Proceedings Fifth International
Conference on Artificial Neural Networks(Cambridge, UK, 7-9 July 1997), pp. 199-204.

38. Gorbunov, S. and Kisel, I. (2006). Elastic net for stand-alone RICH ring finding.Nuclear
Instruments and Methods in Physics Research A, 559, 139-142.

39. Graepel, T., Burger, M., and Obermayer, K. (1997). Phasetransitions in stochastic self-
organizing maps.Physical Rev. E, 56(4), 3876-3890.

40. Graepel, T., Burger, M., and Obermayer, K. (1998). Self-organizing maps: Generalizations
and new optimization techniques.Neurocomputing, 21, 173-190.

41. Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I. Parallel devel-
opment and coding of neural feature detectors.Biol. Cybern., 23, 121-134.

42. Günter, S., and Bunke, H. (2002). Self-organizing map for clustering in the graph domain,
Pattern Recognition Letters, 23, 4-5-417.

43. Hagenbuchner, M., Sperduti, A., and Tsoi, A.C. (2003). ASelf-Organizing Map for Adaptive
Processing of Structured Data.IEEE Transactions on Neural Networks, 14(3), 491-505.

44. Hammer, B., Micheli, A., Strickert, M., and Sperduti, A.(2004). A general framework for
unsupervised processing of structured data,Neurocomputing, 57, 3-35.

45. Hammer, B., Micheli, A., Neubauer, N., Sperduti, A., andStrickert, M. (2005) Self Organiz-
ing Maps for Time Series. InProceedings of WSOM 2005, Paris (France), September 05-08,
pp. 115-122.

46. Heskes, T. (2001). Self-organizing maps, vector quantization, and mixture modeling.IEEE
Trans. Neural Networks, 12(6), 1299-1305.

47. Heskes, T.M., and Kappen, B. (1993). Error potentials for self-organization.Proc. IEEE
Int. Conf. on Neural Networks(San Francisco, 1993), pp. 1219-1223.

48. Jin, B., Zhang, Y.-Q., and Wang, B. (2005). Evolutionarygranular kernel trees and applica-
tions in drug activity comparisons,Proceedings of the 2005 IEEE Symposium on Computa-
tional Intelligence in Bioinformatics and Computational Biology (CIBCB’05), 1-6.

49. Kabán, A. (2005). A Scalable Generative Topographic Mapping for Sparse Data Sequences
In: Proceedings of the International Conference on Information Technology: Coding and
Computing (ITCC’05), Vol. 1, pp. 51-56.

50. Kass, M., Witkin, A., and Terzopoulos, D. (1987). Activecontour models.International Jour-
nal of Computer Vision, 1(4), 321-331.

51. Kangas, J. (1990). Time-delayed self-organizing maps.In Proc. IEEE/INNS Int. Joint Conf.
on Neural Networks 1990, 2, 331-336.

52. Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. (1998). WEBSOM - self-organizing maps
of document collections, /it Neurocomputing,21, 101-117.

53. Kim, Y.K., and Ra, J.B. (1995). Adaptive learning methodin self-organizing map for edge
preserving vector quantization.IEEE Trans. Neural Networks, 6, 278-280.

54. Kitamoto, A. (2002). Evolution Map: Modeling State Transition of Typhoon Image Se-
quences by Spatio-Temporal Clustering.Lecture Notes in Computer Science, 2534/2002, 283-
290.

1 Self-Organizing Maps 43

55. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.Biol. Cy-
bern., 43, 59-69.

56. Kohonen, T. (1984).Self-organization and associative memory.Heidelberg: Springer.
57. Kohonen, T. (1991). Self-organizing maps: Optimization approaches. InArtificial Neural Net-

works, T. Kohonen, K. Mäkisara, O. Simula and J. Kangas (Eds.), pp. 981-990, Amsterdam:
North-Holland.

58. Kohonen, T. (1995).Self-organizing maps.Heidelberg: Springer (second edition: 1997)
59. Kohonen, T., and Somervuo, P., (1998). Self-organizingmaps on symbol strings.Neurocom-

puting, 21, 19-30.
60. Kohonen, T., Kaski, S., Salojärvi, J., Honkela, J., Paatero, V., and Saarela, A. (1999). Self or-

ganization of a massive document collection.IEEE Transactions on Neural Networks, 11(3),
574-585.

61. Koskela, T., Varsta, M., Heikkonen, J., and Kaski, K. (1998). Recurrent SOM with local
linear models in time series prediction. InProc. 6th European Symposium on Artificial Neural
Networks (ESANN 1998), M. Verleysen (ed.), D-facto, pp. 167-172

62. Kostiainen, T., and Lampinen, J. (2002). Generative probability density model in the self-
organizing map. InSelf-organizing neural networks: Recent advances and applications, U.
Seiffert & L. Jain (Eds.), pp. 75-94. Physica Verlag.

63. Laaksonen, J., Koskela,, M., and Oja, E. (2002). PicSOM–Self-Organizing Image Retrieval
With MPEG-7 Content Descriptors.IEEE Transactions on Neural Networks, 13(4), 841-853.

64. Lin, J.K., Grier, D.G., and Cowan, J.D. (1997). Faithfulrepresentation of separable distribu-
tions.Neural Computat., 9, 1305-1320.

65. Linsker, R. (1988). Self-organization in a perceptual network.Computer, 21, 105-117.
66. Linsker, R. (1989). How to generate ordered maps by maximizing the mutual information

between input and output signals.Neural Computat., 1, 402-411.
67. Luttrell, S.P. (1989). Self-organization: A derivation from first principles of a class of learning

algorithms.Proc. IEEE Int. Joint Conf. on Neural Networks (IJCNN89)(Washington, DC),
Part I, pp. 495-498, IEEE Press.

68. Luttrell, S.P. (1990). Derivation of a class of trainingalgorithms.IEEE Trans. Neural Net-
works, 1, 229-232.

69. Luttrell, S.P. (1991). Code vector density in topographic mappings: Scalar case.IEEE
Trans. Neural Networks, 2, 427-436.

70. Martinetz, T.M. (1993). Competitive hebbian learning rule forms perfectly topology preserv-
ing maps. InProc. Int’l Conf. on Artificial Neural Networks (ICANN93), Springer: Amster-
dam, pp. 427-434.

71. Martinetz, T., and Schulten, K. (1991). A ”neural-gas” network learns topologies. InProceed-
ings of International Conference on Artificial Neural Networks (ICANN-91), Espoo, Finland,
June 24-28, 1991, T. Kohonen, K. Mäkisara, O. Simula, and J.Kangas (Eds.), vol. I, North-
Holland, Amsterdam, pp. 397-402.

72. Martinetz, T., Berkovich, S., and Schulten, K. (1993). “Neural-gas” network for vector quan-
tization and its application to time-series prediction.IEEE Transactions on Neural Networks,
4(4), 558-569.

73. Merkl, D., He, S., Dittenbach, M., and Rauber, A. (2003).Adaptive hierarchical incremental
grid growing: An architecture for high-dimensional data visualization. InProc. 4th Workshop
on Self-Organizing Maps (WSOM03), Kitakyushu, Japan, September 11-14, 2003.

74. Mulier, F., and Cherkassky, V. (1995). Self-organization as an iterative kernel smoothing pro-
cess.Neural Computat., 7, 1165-1177.

75. Rauber, A., Merkl, D. and Dittenbach, M. (2002). The Growing Hierarchical Self-Organizing
Map: Exploratory Analysis of High-Dimensional Data.IEEE Transactions on Neural Net-
works, 13(6), 1331-1341.

76. Redner, R.A., and Walker, H.F. (1984). Mixture densities, maximum likelihood and the EM
algorithm.SIAM Review, 26(2), 195-239.

77. Risi, S., Mörchen, F., Ultsch, A., and Lewark, P. (2007). Visual min-
ing in music collections with Emergent SOM. Proceedings Workshop

44 Marc M. Van Hulle

on Self-Organizing Maps (WSOM ’07)(Bielefeld, Germany, 3-6 Septem-
ber, 2007) ISBN: 978-3-00-022473-7, CD ROM, available online at
http://biecoll.ub.uni-bielefeld.de.

78. Ritter, H. (1991). Asymptotic level density for a class of vector quantization processes.IEEE
Trans. Neural Networks, 2(1), 173-175.

79. Ritter, H. (1998). Self-organizing maps in non-Euclidean spaces,Kohonen maps, Oja E.,
Kaski, S. (Eds.). Elsevier, Amsterdam, 97-108.

80. Ritter, H., and Schulten, K. (1986). On the stationary state of Kohonen’s self-organizing sen-
sory mapping.Biol. Cybern., 54, 99-106.

81. Ritter, H., and Schulten, K. (1988). Kohonen’s self-organizing maps: Exploring their com-
putational capabilities,Proc. IEEE Int. Conf. on Neural Networks (ICNN)(San Diego, CA,
1988),I, 109-116.

82. Ritter, H., and Kohonen, T. (1989). Self-organizing semantic maps.Biological Cybernetics,
61, 241-254.

83. Ritter, H., Martinetz, T., and Schulten, K. (1992).Neural computation and self-organizing
maps: An introduction.Reading, MA: Addison-Wesley.

84. Rose, K., Gurewitz, E., and Fox, G.C. (1993). Constrained clustering as an optimization
Method.IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(8), 785-794.

85. Schulz, R., and Reggia, J.A. (2004). Temporally asymmetric learning supports sequence pro-
cessing in multi-winner self-organizing maps.Neural Computation, 16(3), 535-561.

86. Seo, S., and Obermayer, K. (2004). Self-organizing mapsand clustering methods for matrix
data.Neural Networks, 17(8,9), 1211-1229.

87. Shawe-Taylor, J., and Cristianini, N. (2004).Kernel methods in computational biology, MIT
Press.

88. Simon, G., Lendasse, A., Cottrell, M., Fort, J.-C., and Verleysen, M. (2003). Double SOM for
Longterm Time Series Prediction. InProc. of the Workshop on Self-Organizing Maps (WSOM
2003), Hibikino (Japan), 11-14 September 2003, pp. 35-40.

89. Somervuo, P.J. (2004). Online algorithm for the self-organizing map of symbol strings.Neu-
ral Networks, 17(8-9), 1231-1240.

90. Steil, J.J., and Sperduti, A. (2007). Indices to evaluate self-organizing maps for structures,
WSOM07, (Bielefeld, Germany, 3-6 September, 2007), CD ROM, 2007, available online at
http://biecoll.ub.uni-bielefeld.de.

91. Strickert, M., and Hammer, B. (2003a). Unsupervised recursive sequence processing, InEu-
ropean Symposium on Artificial Neural Networks (ESANN 2003), M. Verleysen (ed.), D-side
publications, pp. 27-32.

92. Strickert, M., and Hammer, B. (2003b). Neural Gas for Sequences.Proceedings of the Work-
shop on Self-Organizing Maps (WSOM’03), Hibikino, Kitakyushu, Japan, September 2003.
pp. 53-57.

93. Strickert, M., and Hammer, B. (2005). Merge SOM for temporal data.Neurocomputing, 64,
39-72.

94. Tiňo, P., and Nabney, I. (2002). Hierarchical GTM: constructing localized non-linear pro-
jection manifolds in a principled way.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(5), 639-656.

95. Tiňo, P., Kabán, A., and Sun, Y. (2004). A Generative Probabilistic Approach to Visualizing
Sets of Symbolic Sequences. InProceedings of the Tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining - (KDD-2004), R. Kohavi, J. Gehrke, W.
DuMouchel, J. Ghosh (eds.), ACM Press, pp. 701-706.

96. Tolat, V. (1990). An analysis of Kohonen’s self-organizing maps using a system of energy
functions.Biol. Cybern., 64, 155-164.

97. Ultsch, A., and Siemon, H.P. (1990). Kohonen’s Self Organizing Feature Maps for Ex-
ploratory Data Analysis, In Proceedings Intern. Neural Networks, Kluwer Academic Press,
Paris, pp. 305-308.

98. Ultsch, A., and Mörchen, F. (2005).ESOM-Maps: Tools for clustering, visualization, and
classification with Emergent SOM.Technical Report Dept. of Mathematics and Computer
Science, University of Marburg, Germany, No. 46.

1 Self-Organizing Maps 45

99. Ueda, N., and Nakano, R. (1993). A new learning approach based on equidistortion principle
for optimal vector quantizer design.Proc. IEEE NNSP93(Linthicum Heights, MD, 1993),
pp. 362-371.

100. Van den Bout, D. E., and Miller III, T.K. (1989). TInMANN: The integer Markovian artificial
neural network.Proc. Int. Joint Conf. on Neural Networks (IJCNN89), Englewood Cliffs, NJ:
Erlbaum, pp. II205-II211.

101. Van Hulle, M.M. (1997a). Topology-preserving map formation achieved with a purely local
unsupervised competitive learning rule.Neural Networks, 10(3), 431-446.

102. Van Hulle, M.M. (1997b). Nonparametric density estimation and regression achieved with
topographic maps maximizing the information-theoretic entropy of their outputs.Biol. Cy-
bern., 77, 49-61.

103. Van Hulle, M.M. (1998). Kernel-based equiprobabilistic topographic map formation.Neural
Computat., 10(7), 1847-1871.

104. Van Hulle, M.M. (2000).Faithful representations and topographic maps: From distortion-
to information-based self-organization, New York: Wiley.

105. Van Hulle, M.M. (2002). Kernel-based topographic map formation by local density model-
ing. Neural Computation, 14(7), 1561-1573.

106. Van Hulle, M.M. (2005a). Maximum likelihood topographic map formation.Neural Compu-
tation, 17(3), 503-513.

107. Van Hulle, M.M. (2005b). Edgeworth-expanded topographic map formation.WSOM05
(Paris, France, 5-8 September, 2005), 719-724.

108. Van Hulle, M.M. (2009). Kernel-based topographic maps: Theory and applications.Encyclo-
pedia of Computer Science and Engineering, Benjamin W. Wah (Ed.), in press.

109. Van Hulle, M.M., and Gautama, T. (2004). Optimal smoothing of kernel-based topographic
maps with application to density-based clustering of shapes. J. VLSI Signal Processing Sys-
tems for Signal, Image, and Video Technology, 37, 211-222.

110. Verbeek, J.J., Vlassis, N., and Kröse, B.J.A. (2005).Self-organizing mixture models.Neuro-
computing, 63, 99-123.

111. Vesanto, J. (1997). Using the SOM and local models in time-series prediction. In:Proc.
Workshop on Self-Organizing Maps (WSOM 1997), Helsinki (Finland), June 4-6, 1997, pp
209-214.

112. Voegtlin, T. (2002). Recursive self-organizing maps.Neural Networks, 15(8-9), 979-992.
113. von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate

cortex.Kybernetik, 14, 85-100.
114. Wiemer, J.C. (2003). The time-organized map algorithm: extending the self-organizing map

to spatiotemporal signals.Neural Computation, 15(5), 1143-1171.
115. Yin, H., and Allinson, N.M. (2001). Self-organizing mixture networks for probability density

estimation.IEEE Trans. Neural Networks, 12, 405-411.

