Chapter 1
Self-Organizing M aps

Marc M. Van Hulle

Abstract A topographic map is a two-dimensional, nonlinear appration of a
potentially high-dimensional data manifold, which makean appealing instru-
ment for visualizing and exploring high-dimensional ddtae Self-Organizing Map
(SOM) is the most widely used algorithm, and it has led to Hamas of applica-
tions in very diverse areas. In this chapter, we will introduhe SOM algorithm,
discuss its properties and applications, and also disame ®f its extensions and
new types of topographic map formation, such as the ones#émbe used for pro-
cessing categorical data, time series and tree structatad d

1.1 Introduction

One of the most prominent features of the mammalian braihasapographical
organization of its sensory cortex: neighboring nervesc@ileurons) can be driven
by stimuli originating from neighboring positions in thensery input space, and
neighboring neurons in a given brain area project to neighigmeurons in the next
area. In other words, the connections establish a so-aadligghborhood-preserving
or topology-preservingnap, ortopographic magor short. In the visual cortex, we
call this aretinotopicmap; in the somatosensory cortes@natotopienap (a map
of the body surface), and in the auditory cortetonotopic magof the spectrum of
possible sounds).

The study of topographic map formation, from a theoreti@bpective, started
with basically two types of self-organizing processesdgrat-based learning and
competitive learning, and two types of network architeesuiFig. 1.1) (for a review,
see Van Hulle, 2000). In the first architecture, which is camiyi referred to as the
Willshaw-von der Malsburg model (Willshaw and von der Maigh 1976), there
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are two sets of neurons, arranged in two (one- or) two-dioeaslayers otatticest
(Fig. 1.1A). Topographic map formation is concerned withrieng a mapping for
which neighboring neurons in the input lattice are conmtdeneighboring neurons
in the output lattice.

The second architecture is far more studied, and is alsoaihie bf this chap-
ter. We now have continuously valued inputs taken from tiperirspaceRd, or the
data manifoldv C RY, which need not be rectangular or have the same dimen-
sionality as the lattice to which it projects (Fig. 1.1B). &eery neuron of the
lattice A corresponds a reference position in the input space, ctideed/eight vec-
tor w; = [wij] € RY. All neurons receive the same input vectos [vy,...,Vqg] € V.
Topographic map formation is concerned with learning a Migpf the data mani-
fold V (grey shaded areain Fig. 1.2), in such a way that neighbdaitige neurons,

i, , with lattice positions;j,r, code for neighboring positionss;, wj, in the input
space ¢f., the inverse mappindg?). The forward mapping®, from the input space
to the lattice, is not necessarily topology-preserving ighieoring weights do not
necessarily correspond to neighboring lattice neuronges after learning the map,
due to the possible mismatch in dimensionalities of the tiigpace and the lattice
(seee.q, Fig. 1.3). In practice, the map is represented in the inpats in terms of
neuron weights that are connected by straight lines, if ttieesponding neurons are
nearest neighbors in the lattioe §, see the left panel of Fig. 1.2 or Fig. 1.3). When
the map is topology preserving, it can be used for visuaditiire data distribution by
projecting the original data points onto the map. The achgabf having a flexible
map, compared te.g, a plane specified by principal components analysis (PCA),
is demonstrated in Fig. 1.4. We observe that the three damsebetter separated
with a topographic map than with PCA. The most popular leagralgorithm for
this architecture is the Self-Organizing Map (SOM) aldaritby Teuvo Kohonen
(Kohonen 1982, Kohonen, 1984), whence this architectuodtén referred to as
Kohonen’s model.

Chapter overview

We start with the basic version of the SOM algorithm where \igewuks the two
stages of which it consists: the competitive and the codperanes. We then dis-
cuss the topographic ordering properties of the algorithaw it unfolds and de-
velops topographically-ordered maps, whether there xsimathematical proof
of ordering, and whether topological defects in the map daitill occur after the
learning process has ended. We also discuss the convengepesties of the algo-
rithm, and in what sense the converged weights are moddimgnput density (is
the weight density a linear function of the input density?).

1 Alattice is an undirected graph in which every non-bordatesehas the same, fixed number of
incident edges, and which usually appears in the form of eayawith a rectangular- or simplex
topology.
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We then discuss the applications of the SOM algorithm, foictvithousands
of them have been reported in the open literature. Rather dti@mpting for an
extensive overview, we group the applications into threagarvector quantization,
regression and clustering. The latter is the mostimpodaatsince it is a direct con-
sequence of the data visualization- and exploration céipebiof the topographic
map. We highlight a number of important applications sucthasVEBSOM (Kaski
et al, 1998), for organizing large document collections, theS@){& (Laaksonen
et al,, 2002), for content-based image retrieval, and the Emergelfi Organizing
Maps (ESOM) (Ultsch and Morchen, 2005), for which we coasitie MusicMiner
(Risi et al,, 2007), for organizing large collections of music, and apl&ation for
classifying police reports of criminal incidents.

We then give an overview of a number of extensions of the SQjdrahm. The
motivation behind these was to improve the original aldponit or to extend its range
of applications, or to develop new ways to perform topograptep formation.

We then detail three important extensions of the SOM algoritFirst, we dis-
cuss the growing topographic map algorithms. These alynstconsider maps with
a dynamically-defined topology so as to better capture theedtructure of the in-
put distribution. Second, since many input sources havenpaeal characteristic,
which is not captured by the original SOM algorithm, sevaitgbrithms have been
developed based on a recurrent processing of time sigredsirfent topographic
maps). It is a heavily researched area since some of thesethigs are capable of
processing tree-structured data. Third, another topicioent research is the kernel
topographic map, which is in line with the “kernelizatiom&hd of mapping data
into a feature space. Rather than Voronoi regions, the msuace equipped with
overlapping activation regions, in the form of kernel fupos, such as Gaussians.
Important future developments are expected for these tapbic maps, such as
the visualization and clustering of structure-based mdéedescriptions, and other
biochemical applications.

Finally, we formulate a conclusion to the chapter.

1.2 SOM Algorithm

The SOM algorithm distinguishes two stages: tbenpetitivestage and theooper-
ativestage. In the first stage, the best matching neuron is sdléetethe “winner”,
and in the second stage, the weights of the winner are adaptedl|l as those of its
immediate lattice neighbors. We consider the minimum Eleelh distance version
of the SOM algorithm only (also the dot product version exisee Kohonen, 1995).

Competitive stage

For each inpuw € V, we select the neuron with the smallest Euclidean distance
(“Winner-Takes-All", WTA), which we call the “winner”:
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output layer output layer

input layer input space
Fig. 1.1 (A) Willshaw-von der Malsburg model. Two isomorphic, recgalar lattices of neurons
are shown: one represents the input layer and the other tpetdayer. Neurons are represented
by circles: filled circles denote active neurons (“winninggurons); open circles denote inactive
neurons. As a result of the weighted connections from thetitm the output layer, the output
neurons receive different inputs from the input layer. Twpdt neurons are labeled ) as well
as their corresponding output layer neuroiisj(). Neuronsi andi’ are the only active neurons
in their respective layers. (B) Kohonen model. The commauirall neurons receive is directly
represented in the input spacec V C RY. The “winning” neuron is labeled as: its weight
(vector) is the one that best matches the current inputgvect

Fig. 1.2 Topographic mapping in the Kohonen architecture. In thé peinel, the topology-
preserving map/a of the data manifold/ C RY (grey shaded area) is shown. The neuron weights
w;,wj are connected by a straight line since the correspondingonsii j in the latticeA (right
panel), with lattice coordinates,r;, are nearest neighbors. The forward mappigs from the
input space to the lattice; the backward mappiis from the lattice to the input space. The learn-
ing algorithm tries to make neighboring lattice neurdng, code for neighboring positiong;; , wj,

in the input space.
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Fig. 1.3 Example of a one dimensional lattice consisting of four nesi, j,k,| in a two dimen-
sional rectangular space. The distance between the wedgtore of neurons, j, dij, is larger
than between that of neurong, d; . This means that, at least in this example, neighboringareur
weights do not necessarily correspond to neighboring meimthe lattice.
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Fig. 1.4 Oil flow data set visualized using PCA (left panel) and a toppbic map (right panel).
The latter was obtained with the GTM algorithm (Bisheipal, 1996; Bishopet al., 1998). Since
the GTM performs a nonlinear mapping, it is better able tasate the three types of flow config-
urations: laminar (red crosses), homogeneous (blue Eussel annular (green circles) (Bishop,
2006, reprinted with permission.)

i* = argmin||w; — v||. (1.1)
I

By virtue of the minimum Euclidean distance rule, we obtai¥osonoi tessella-
tion of the input space: to each neuron corresponds a regidhe input space,
the boundaries of which are perpendicular bisector plafdéaes joining pairs of
weight vectors (the grey shaded area in Fig. 1.5 is the Vanagion of neuronj).
Remember that the neuron weights are connected by straigist(links or edges):
they indicate which neurons are nearest neighbors in tliedatThese links are
important for verifying whether the map is topology presegv

Cooper ative stage

It is now crucial to the formation of topographically-oréermaps that the neuron
weights are not modified independently of each other, bubpslbgically-related
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Fig. 1.5 Definition of quantization region in the Self-Organizing MESOM). Portion of a lattice
(thick lines) plotted in terms of the weight vectors of newse, . . ., k, in the two-dimensional input
spacej.e, Wa, ..., Wg.

subsets on which similar kinds of weight updates are peraknduring learning,
not only the weight vector of the winning neuron is updated dbso those of its lat-
tice neighbors and, thus, which end up responding to sinmarts. This is achieved
with the neighborhood function, which is centered at thenivig neuron, and de-
creases with the lattice distance to the winning netiron

The weight update rule in incremental mdde given by:

Aw; =n A(1Li%,04 (1)) (V—wi), YieA, (1.2)

with A the neighborhood functiomg., a scalar-valued function of the lattice coor-
dinates of neuronisandi*, ri andr;", mostly a Gaussian:

AG,T¥) =exp<_||ri —ri*||2)7 (1.3)

2
20,

with rangeoy, (i.e. the standard deviation). (We further drop the parametgt)
from the neighborhood function to simplify our notationhé positions; are usu-
ally taken to be the nodes of a discrete lattice with a regpology, usually a 2
dimensional square or rectangular lattice. An example efdfiect of the neigh-
borhood function in the weight updates is shown in Fig. 1rGafd x 4 lattice. The
parameteio,, and usually also the learning ratg are gradually decreased over
time. When the neighborhood range vanishes, the previausifey rule reverts to
standard unsupervised competitive learning (note thatatter is unable to form

2 Besides the neighborhood function, also the neighborhebehssts, consisting of all neurons to
be updated in a given radius from the winning neuron (see Kehp1995).

3 With incremental mode it is meant that the weights are uptlatch time an input vector is
presented. This is to be contrasted with batch mode wherevéights are only updated after the
presentation of the full training set (“batch”).
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topology-preserving maps, pointing to the importance ef ieighborhood func-
tion).

A S — b o

Fig. 1.6 The effect of the neighborhood function in the SOM algoritt8tarting from a perfect
arrangement of the weights of a square lattice (full linés},weights nearest to the current input
(indicated with the cross) receive the largest updatesetifiurther away smaller updates, resulting
in the updated lattice (dashed lines).

As an example, we train a 2010 square lattice with the SOM algorithm on
a uniform square distributiop-1,1]2, using a Gaussian neighborhood function of
which the rang@ () is decreased as follows:

op(t) = a/\oexp(—Zvo tL) : (1.4)
max

with t the present time stejmax the maximum number of time steps, aogy the
range spanned by the neighborhood function-at0. We takemax= 100,000 and
Opo = 5 and the learning ratg = 0.01. The initial weightsi(e., for t = 0) are
chosen randomly from the same square distribution. Snapsiidhe evolution of
the lattice are shown in Fig. 1.7. We observe that the latsiditially tangled, then
contracts, unfolds, and expands so as to span the inpubdistn. This two-phased
convergence process is an important property of the SOMigthgo and it has been
thoroughly studied from a mathematical viewpoint in thddaing terms: 1) the
topographic ordering of the weights and, thus, the fornmatittopology-preserving
mappings, and 2) the convergence of these weights (enengyidtnn minimization).
Both topics wil be discussed next. Finally, the astute re&ds noticed that at the
end of the learning phase, the lattice is smooth, but thedesug becomes more
erratic. This is an example of a phase transition, and it leas lvidely studied for
the SOM algorithm (see.g, Der and Herrmann, 1993).

Finally, since the speed of convergence depends on thengamate, also a ver-
sion without one has been developed, called batch map (Kohd®95):
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and it leads to a faster convergence of the map.

Vi, (1.5)
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Fig. 1.7 Evolution of a 10x 10 lattice with a rectangular topology as a function of tiffilee outer
squares outline the uniform input distribution. The valgie®n below the squares represent time.

1.2.1 Topographic ordering

In the example of Fig. 1.7, we have used a two-dimensionaregattice for map-
ping a two-dimensional uniform, square distribution. Wa edso use the same lat-
tice for mapping a non-square distribution, so that theeetispological mismatch,
for example, a circular and an L-shaped distribution (Fi§AlB). We use the same
lattice and simulation set-up as before but now we show drdyfinal results. Con-
sider first the circular distribution: the weight distrilt is now somewhat non-
uniform. For the L-shaped distribution, we see in additibattthere are several
neurons outside the support of the distribution, and sonmbeyh even have a zero
(or very low) probability to be active: hence, they are oftafled “dead” units. It
is hard to find a better solution for these neurons withoustelting them near the
inside corner of the L-shape.

We can also explore the effect of a mismatch in lattice dinweradity. For exam-
ple, we can develop a one-dimensional lattice (“chain”hmgame two-dimensional
square distribution as before. (Note that it is now impdssib preserve all of the
topology). We see that the chain tries to fill the availablecgpas much as possible
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Fig. 1.8 Mapping of a 10x 10 neurons lattice onto a circular (A) and an L-shaped (Bjoum
distribution, and a 40 neurons one-dimensional lattice agquare uniform distribution (C).

(Fig. 1.8C): the resulting map approximates the so-calpeds-fillingPeano curvé
(Kohonen, 1995, pp. 81, 87).

1.2.1.1 Proofsor ordering

It is clear that the neighborhood function plays a crucid¢ ria the formation of
topographically-ordered weights. Although this may seeident, the ordering it-
self is very difficult to describe (and prove!) in mathematierms. The mathemat-
ical treatments that have been considered are, strictlgispg, only valid for one-
dimensional lattices developed in one-dimensional sp&ettrell and Fort (1987)
presented a mathematical stringent (but quite long) protifeoordering process for
the one-dimensional case. For a shorter constructive pvoeofrefer to (Kohonen,
1995, pp. 100-105; for an earlier version, see Kohonen, 1984151-154). The
results of Kohonen (1984) and Cottrell and Fort (1987) haenbextended by Er-
win and co-workers (1992) to the more general case of a moiaztly decreasing
neighborhood function. However, the same authors alse #tat a strict proof of
convergence is unlikely to be found for the higher-than-dmeensional case.

1.2.1.2 Topological defects

As said before, the neighborhood function plays an impéntale in producing
topographically-ordered lattices, however, this doesimgly that we are guaran-
teed to obtain one. Indeed, if we decrease the neighborreragkertoo fast, then
there could be topological defects (Geszti, 1990; Heskdd@ppen, 1993). These
defects are difficult to iron out, if at all, when the neighbood range vanishes. In
the case of a chain, we can obtain a so-caied (Fig. 1.9).

Consider, as a simulation example, a rectangular lattied®l = 24 x 24 neu-
rons with the input samples taken randomly from a two-dinare uniform distri-
bution p(v) within the squaré0, 1)2. The initial weight vectors are randomly drawn

4 A Peano curve is an infinitely and recursively convolutedttiah curve which represents the
continuous mapping o&.g, a one-dimensional interval onto a two-dimensional serfac
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Fig. 1.9 Example of a topological defect (“kink”) in a chain consigfiof four neurons, j.k, 1 in
a two dimensional rectangular space.

from this distribution. We now perform incremental leargiznd decrease the range
as follows:

OA(t) = Ono exp(—2 Ono %) : (1.6)
max
but now witht the present time step amgdax = 275,000. For the learning rate, we
taken = 0.015. The evolution is shown in Fig. 1.10. The neighborhoodjeawas
too rapidly decreased since the lattice is twisted and, éwea would continue the
simulation, with zero neighborhood range, tiaést will not be removed.

10k

Fig. 1.10 Example of the formation of a topological defect called 4ttin a 24x 24 lattice. The
evolution is shown for different time instances (valueshbethe squares).

1.2.2 Weight convergence, energy function

Usually, in neural network learning algorithms, the weigipidate rule performs
gradient descent on an energy functiér{also termed error-, cost-, distortion- or
objective function):

JE

Aw: O —
i 0Wij’

(1.7)
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so that convergence to a local minimumEncan be easily shown, for example, in
an average sense. However, contrary to intuition, the SQdrahm does nofper-
form gradient descent on an energy function as long as tlghherhood range has
not vanished (whew, = 0, an energy function exist: one is minimizing the mean
squared error (MSE) due to the quantization of the input espato Voronoi re-
gions). Hence, strictly speaking, we cannot judge the degfeptimality achieved
by the algorithm during learning.

In defense of the lack of an energy function, Kohonen empkadhat there is
no theoretical reason why the SOM algorittsimouldensue from such a function
(Kohonen, 1995, p. 122), since: 1) the SOM algorithm is aimtedeveloping (spe-
cific) topological relations between clusters in the inppaicee, and 2) it yields an
approximative solution of an energy function (by virtue t&f connection with the
Robbins-Munro stochastic approximation technique), s tionvergence is not a
problem in practice.

Besides this, a lot of effort has been devoted to developm@reergy func-
tion which is minimized during topographic map formatiom|dt, 1990; Kohonen,
1991; Luttrell, 1991; Heskes and Kappen, 1993; Eratiml., 1992). Both Luttrell
(1991) and Heskes and Kappen (1993) were able to show thiemsésof an en-
ergy function by modifying the definition of the winner. Heskand Kappen first
ascribed docal error g to each neuron at timet:

a(W.v.t) =3 ;/\ v —w;j|?, (1.8)

with W = |w;] the vector of all neuron weights, and then defined the winseha
neuron for which the local error is minimal:

i _argmmZ/\ lv—wj|2. (1.9)

This was also the equation introduced by Luttrell (1991}, with y;A(i, j) = 1.
The actual weight update rule remains the same as in thenali§OM algorithm
and, thus, still considers several neurons around the wifithe solution proposed
by Kohonen (1991) takes a different starting point, butatleto a more complicated
learning rule for the winning neuron (for the minimum Euelah distance SOM
algorithm, see Kohonen, 1995, pp. 122-124).

1.2.2.1 Weight density

The next question is: in what sense are the converged weigbdgling the input
probability density? What is the distribution of the weighst. that of the inputs?
Contrary to what was originally assumed (Kohonen, 1984 wtleight density at
convergence, also termed the (inverse of the) magnificdéiotor, is not a linear
function of the input densitp(v).
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Ritter and Schulten (1986) have shown that, for a one-diinaaslattice, devel-
oped in a one-dimensional input space:

p(wi) 0 p(v)3, (1.10)

in the limit of an infinite density of neighbor neurons (contum approximation).
Furthermore, when a discrete lattice is used, the continapproach undergoes a
correctiong.g, for a neighborhood set witti, neurons around each winner neuron
(A(i, 1) =1iff [ri —rix| < 0p):

p(wi) O p7, (1.11)

with:

a=2- =
3 302+3(0p+1)2°

For a discrete lattice dl neurons, it is expected that, fbF— co and for mini-
mum MSE quantization, id-dimensional space, the weight density will be propor-
tional to (Kohonen, 1995):

1
p(wi) O p*d (v), (1.12)
or that in the one-dimensional case:
p(wi) 0 p(v)3. (1.13)

The connection between the continuum and the discrete approvas estab-
lished for the one-dimensional case by Ritter (1991), foristréte lattice ofN
neurons, withN — o, and for a neighborhood set withy, neurons around each
“winner” neuron.

Finally, regardless of the effect resorted by the neighbodfunction or -set, it
is clear that the SOM algorithm tends to undersample higbaiudity regions and
oversample low probability ones. This affects the sepéitgabif clusters:e.g, when
the clusters overlap, the cluster boundary will be morediffito delineate in the
overlap region than for a mapping which has a linear weigsttitiution (Van Hulle,
2000).

1.3 Applications of SOM

The graphical map displays generated by the SOM algoritleneasily understood,
even by non-experts in data analysis and statistics. The &@dfithm has led to lit-

erally thousands of applications in areas ranging fromrmatcc speech recognition,
condition monitoring of plants and processes, cloud diassion, and micro-array
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data analysis, to document- and image organization aniéveati(for an overview,
see Centre, 2008t t p: // ww. ci s. hut . fi/research/ som bi bl /). The

converged neuron weights yield a model of the training sehiee ways: vector
gquantization, regression, and clustering.

Vector quantization

The training samples are modeled in such a manner that thrageveliscrepancy
between the data points and the neuron weights is minimireather words, the
neuron weight vectors should “optimally” quantize the ihgpace from which
the training samples are drawn, just like one would desireafoadaptive vector
quantizer (Gersho and Gray, 1991). Indeed, in standardpemgised competitive
learning (UCL), and also the SOM algorithm, when the neighbod has vanished
(“zero-order” topology), the weight updates amount to oeidtestimation (usually
the mean of the samples which activate the correspondingongand minimum
Euclidean distance classification (Moronoi tessellatiany attempt to minimize the
mean squared error due to quantization, or some other qadioth metric that one
wishes to use. In fact, there exists an intimate connectdwden the batch version
of the UCL rule and the zero-order topology SOM algorithmtloe one hand, and
the generalized Lloyd algorithm for building vector quaetis, on the other hand
(Luttrell, 1989,1990) (for a review, see Van Hulle, 2000yttrell showed that the
neighborhood function can be considered as a probabilitgithefunction of which
the range is chosen to capture the noise process respofwsithe distortion of the
quantizer's output code.¢., the index of the winning neurong.g, due to noise
in the communication channel. Luttrell adopted for the agisocess a zero-mean
Gaussian, so that there is theoretical justification forodireg a Gaussian neighbor-
hood function in the SOM algorithm.

Regression

We can also interpret the map as a case of non-parametriessgn: no prior
knowledge is assumed about the nature or shape of the fanictibe regressed.
Non-parametric regression is perhaps the first succesttistical application of
the SOM algorithm (Ritteet al, 1992; Mulier and Cherkassky, 1995; Kohonen,
1995): the converged topographic map is intended to capterg@rincipal dimen-
sions (principal curves, principal manifolds) of the ingptace. The individual neu-
rons represent the “knots” that join piecewise smooth fiemst, such as splines,
which act as interpolating functions for generating valaeistermediate positions.
Furthermore, the lattice coordinate system can be regasladapproximate) global
coordinate system of the data manifold (Fig. 1.2).



14 Marc M. Van Hulle

Clustering

The most widely used application of the topographic mapuisteking;.e., the par-
titioning of the data set into subsets of “similar” data,ivaitit using prior knowledge
about these subsets. One of the first demonstrations oédlugtwas by Ritter and
Kohonen (1989). They had a list of 16 animals (birds, predeaod preys) and 13
binary attributes for each one of themg, large size or not, hair or not, 2 legged or
not, can fly or not,..). After training a 10x 10 lattice of neurons with these vectors
(supplemented with the 1-out-16 animal code vector, thustal, a 29 dimensional
binary vector), and labeling the winning neuron for eachraaticode vector, a natu-
ral clustering of birds, predators and preys appeared imtap. The authors called
this the “semantic map”.

In the previous application, the clusters and their bouiedavere defined by the
user. In order to visualize clusters more directly, we nee@dditional technique.
We can compute the mean Euclidean distance between a newveight vector
and the weight vectors of its nearest neighbors in the &atfilhhe maximum and
minimum of the distances found for all neurons in the lattgcéhen used for scal-
ing these distances between 0 and 1; the lattice then becamgesy scale image
with white pixels corresponding te.g.0 and black pixels to 1. This is called the
U-matrix (Ultsch and Siemon, 1990), for which several egtens have been de-
veloped to remedy the oversampling of low probability regigpossibly transition
regions between clusters) (Morchen and Ultsch, 2005).

An important example is the WEBSOM (Kasét al,, 1998). Here, the SOM
is used for organizing document collections (“document hhdpach document is
represented as a vector of keyword occurrences. Similanrdeats then become
grouped into the same cluster. After training, the user aanzinto the map to
inspect the clusters. The map is manually or automaticatheled with keywords
(e.g, from a man-made list) in such a way that, at each zoom-ldwekame density
of keywords is shown (so as not to clutter the map with texile WEBSOM has
also been applied to visualizing clusters in patents basé@ypword occurrences in
patent abstracts (Kohonenal,, 1999).

An example of a content-based image retrieval system isit®&IM (Laaksonen
etal, 2002). Here, low level features (color, shape, textuie, e} of each image are
considered. A separate two-dimensional SOM is trained #ehdow level feature
(in fact, a hierarchical SOM). In order to be able to retri@ree particular image
from the database, one is faced with a semantic gap: how wethe low level
features correlate with the image contents? To bridge this rglevance feedback
is used: the user is shown a number of images and he/she hesitie advhich ones
are relevant and which ones not (close or not to the imagedéeisiinterested in).
Based on the trained PicSOM, the next series of images shathen supposed to
be more relevant, and so on.

For high-dimensional data visualization, a special clastpographic maps,
called Emergent Self Organizing Maps (ESOM) (Ultsch andrdién, 2005),
can be considered. According to Alfred Ultsch, emergencéhés ability of a
system to produce a phenomenon on a new, higher level. Inr eodechieve
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emergence, the existence and cooperation of a large nunileernentary pro-
cesses is necessary. An Emergent SOM differs from the imadit SOM in that
a very large number of neurons (at least a few thousand) aé (even larger
than the number of data points). The ESOM software is pubbhehilable from
http:// dat abi oni c- esom sour cef orge. net/.

As an example, Ultsch and co-workers developedMhusicMinerfor organiz-
ing large collections of music (Rigt al., 2007). Hereto, low level audio features
were extracted from raw audio data, and static and temptatibtics were used
for aggregating these low level features into higher leved A supervised feature
selection was performed to come up with a non-redundantfd$eatures. Based on
the latter, an ESOM was trained for clustering and visuadjztollections of mu-
sic. In this way, consistent clusters were discovered thaespond to music genres
(Fig. 1.11). The user can then navigate the sound space trddhwith the maps
to discover new songs that correspond to his/her taste.

Fig. 1.11 Organizing large collections of music by means of an ESOMé&@on high level audio
features (MusicMiner). Shown is the map with several musiorgs labeled. (Riset al,, 2007,
reprinted with permission.)

As an example ESOM application, in the realm of text mining,a@nsider the
case of police reports of criminal incidents. When a victifmaoviolent incident
makes a statement to the police, the police officer has togjwaethere.g, do-
mestic violence is involved. However, not all cases areeudly recognized and
are, thus, wrongly assigned the label “non-domestic vicdéénBecause it is very
time consuming to classify cases and to verify whether orthetperformed clas-
sifications are correct, text mining techniques and a ridialassifier are needed.
Such an automated triage system would result in major costtime savings. A
collection of terms (thesaurus), obtained by a frequeneyyais of key words, was
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constructed, consisting of 123 terms. A6@2 toroidal lattice (in a toroidal lattice,
the vertical and horizontal coordinates are circular) wsesd, and trained with the
ESOM algorithm on 4814 reports of the year 2007; the valadaset consisted of
4738 cases (of the year 2006). The outcome is shown in Fig.(Pdelmans, 2008,
unpublished results).

Fig. 1.12 Toroidal lattice trained with the ESOM algorithm showing ttistribution of domestic
violence cases (red squares) and non-domestic violenes ¢geeen squares). The background
represents the sum of the distances between the weight\wéaach neuron and those of its near-
est neighbors in the lattice, normalized by the largest woay sum (white) {.e., the U-matrix).
We observe that the domestic violence cases appear in aredarster and a few smaller clus-
ters, mostly corresponding to violence in homosexual i@tahips. (Figure is a courtesy of Jonas
Poelmans.)

1.4 Extensions of SOM

Although the original SOM algorithm has all the necessagyédients for develop-
ing topographic maps, many adapted versions have emergethevyears (for ref-
erences, see Kohonen, 1995 &d p: / / www. ci s. hut . fi/research/ som
bi bl / which contains over 7000 articles). For some of these, tlietiping moti-
vation was to improve the original algorithm, or to extersriinge of applications,
while for others the SOM algorithm has served as a sourcespiration for devel-
oping new ways to perform topographic map formation.

One motivation was spurred by the need to develop a learnilegwhich per-
forms gradient descent on an energy function (as discussmdea Another was to
remedy the occurrence of dead units, since they do not tomdrito the represen-
tation of the input space (or the data manifold). Severaaeshers were inspired
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by Grossberg’s idea (1976) of adding a “conscience” to fegrjly winning neurons

to feel “guilty” and to reduce their winning rates. The sanegitstic idea has also
been adopted in combination with topographic map formaeSieno, 1988; Van
den Bout and Miller, 1989; Ahaét al,, 1990). Others exploit measures based on the
local distortion error to equilibrate the neurons’ “coreute” (Kim and Ra, 1995;
Chinrungrueng and Séquin, 1995; Ueda and Nakano, 1993)mbmation of the
two conscience approaches is the learning scheme intrddeger and co-workers
(1996).

A different strategy is to apply a competitive learning rtiet minimizes the
mean absolute error (MAE) between the input samplaad theN weight vectors
(also called thélinkowski metricof power one) (Kohonen, 1995, pp. 120, 121) (see
also Linetal,, 1997). Instead of minimizing a (modified) distortion crita, a more
natural approach is to optimize an information-theoretitedon directly. Ralph
Linsker was among the first to explore this idea in the condéxbpographic map
formation. He proposed a principle ofaximum information preservatighinsker,
1988) —infomaxfor short — according to which a processing stage has the-prop
erty that the output signals will optimally discriminate,an information-theoretic
sense, among possible sets of input signals applied totdge.dn his 1989 article,
he devised a learning rule for topographic map formation pra@babilistic WTA
network by maximizing the average mutual information begwéhe output and the
signal part of the input, which was corrupted by noise (Lersk989). Another al-
gorithm is the Vectorial Boundary Adaptation Rule (VBAR) i considers the
region spanned by a quadrilateral (4 neurons forming a gq@gion in the lattice)
as the quantization region (Van Hulle, 1997a,b), and whichkle to achieve an
equiprobabilistic mag,e., a map for which every neuron has the same chance to be
active (and, therefore, maximizes the information-th&oentropy).

Another evolution are the growing topographic map algonishIn contrast with
the original SOM algorithm, its growing map variants haveyaamically-defined
topology, and they are believed to better capture the fingtsire of the input dis-
tribution. We will discuss them in the next section.

Many input sources have a temporal characteristic, whictoisaptured by the
original SOM algorithm. Several algorithms have been dgvet! based on a recur-
rent processing of time signals and a recurrent winning eregomputation. Also
tree structured data can be represented with such topadgnaalps. We will discuss
recurrent topographic maps in this chapter.

Another important evolution are the kernel-based topogi@amaps: rather than
\Voronoi regions, the neurons are equipped with overlappgtiyation regions, usu-
ally in the form of kernel functions, such as Gaussians (Eig9). Also for this case,
several algorithms have been developed, and we will disaussmber of them in
this chapter.
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1.5 Growing Topographic Maps

In order to overcome the topology mismatches that occur tighoriginal SOM
algorithm, as well as to achieve an optimal use of the neuf@msiead units), the
geometry of the lattice has to match that of the data manifadntended to repre-
sent. For that purpose, several so-called growing (incréater structure-adaptive)
self-organizing map algorithms have been developed. Wit share is that the
lattices are gradually build up and, hence, do not have alpfieed structurei €.,
number of neurons and possibly also lattice dimensiondliig. 1.14). The lattice
is generated by a successive insertion (and possibly arsiocea deletion) of neu-
rons and connections between them. Some of these algorddmsven guarantee
that the lattice is free of topological defectsd, since the lattice is subgraph of
a Delaunay triangularization, see further). We will briefgwview the major algo-
rithms for growing self-organizing maps. The algorithme atructurally not very
different; the main difference is with the constraints irspd on the lattice topol-
ogy (fixed or variable lattice dimensionality). We first ltke properties common to
these algorithms, using the format suggested by Fritzk@@)L9

e The network is an undirected graph (lattice) consisting ofuaber of nodes
(neurons) and links or edges connecting them.

e Each neuromhas a weight vectow; in the input spac¥ .

e The weight vectors are updated by moving the winning neufpand its topo-
logical neighbors, towards the input V:

Awi = i< (V — Wi+, (1.14)
Aw; = ni(v—w), Vie A, (1.15)

with 4+ the set of direct topological neighbors of neuibifneighborhood set),
and withn« andn; the learning ratesyi- > n;.
e Ateach time step, the local error at the winning neurois accumulated:

AE;- = (error measure (1.16)

The error term is coming from a particular area around, and is likely to be
reduced by inserting new neurons in that area. A central gntgf these al-
gorithms is the possibility to choose an arbitrary error mge as the basis for
insertion. This extends their applications from unsupsadlilearning ones, such
as data visualization, combinatorial optimization andstdung analysis, to su-
pervised learning ones, such as classification and regressor example, for
vector quantizationAE;« = ||v — wj+||?. For classification, the obvious choice
is the classification error. All models reviewed here canpiimciple, be used
for supervised learning applications by associating oiiplues to the neurons,
e.g, through kernels such as radial basis functions. This maiest sense for
the algorithms that adapt their dimensionality to the data.

e The accumulated error of each neuron is used to determitex @fixed number
of time steps) where to insert new neurons in the latticeedin insertion, the
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error information is locally redistributed, which incressthe probability that the
next insertion will be somewhere else. The local error asta kind of memory
where much error has occurred; the exponential decay ofrtbe resses more
the recently accumulated error.

e All parameters of the algorithm stay constant over time.

1.5.1 Competitive Hebbian learning and Neural Gas

Historically the first algorithm to develop topologies haseh introduced by Mar-
tinetz and Schulten, and it is a combination of two methodsetitive Hebbian
learning (CHL) (Martinetz, 1993) and the Neural Gas (NG) (lifeetz and Schul-
ten, 1991).

The principle behind CHL is simple: for each input, creatén& between the
winning neuron and the second winning neurbe.(with the second smallest Eu-
clidean distance to the input), if that link does not alreaxligt. Only weight vectors
lying in the data manifold develop links between them (tmas)-zero input density
regions). The resulting graph is a subgraph of the (indu@slaunay triangular-
ization (Fig. 1.13), and it has been shown to optimally preséopology in a very
general sense.

Fig. 1.13 Left panel Delaunay triangularization. The neuron weight positians indicated with
open circles; the thick lines connect the nearest-neighieoghts. The borders of the Voronoi poly-
gons, corresponding to the weights, are indicated with lihes. Right panel:Induced Delaunay
triangularization. The induced triangularization is ob&al by masking the original triangular-
ization with the input data distribution (two disconnectgdy shaded regions). (Fritzke, 1995a,
reprinted with permission)

In order to position the weight vectors in the input spacertMatz and Schulten
(1991) have proposed a particular kind of vector quantiratiethod, called Neural
Gas (NG). The main principle of NG is: for each inputupdate thek nearest-
neighbor neuron weight vectors, wikidecreasing over time until only the winning
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neuron’s weight vector is updated. Hence, we have a neigoloorfunction but now

in input space. The learning rate also follows a decay sdeedtllote that the NG

by itself does not delete or insert any neurons. The NG regurfine tuning of the

rate at which the neighborhood shrinks to achieve a smoathergence and proper
modeling of the data manifold.

The combination of CHL and NG is an effective method for tagyl learning.
The evolution of the lattice is shown in Fig. 1.14 for a datenif@d that consists
of three-, two- and one-dimensional subspaces (MartinedzSchulten, 1991). We
see that the lattice successfully has filled and adaptednitertsionality to the dif-
ferent subspaces. For this reason, visualization is orggipte for low-dimensional
input spaces (hence, it is not suited for data visualizgiimposes where a mapping
from a potentially high-dimensional input space to a lowidnsional lattice is de-
sired). A problem with the algorithm is that one needs to deaipriori the number
of neurons, as it required by the NG algorithm (Fritzke, 199®pending on the
complexity of the data manifold, very different numbers niyappropriate. This
problem is overcome in the Growing Neural Gas (GNG; FritA@95a) (see next
subsection).

1.5.2 Growing neural gas

Contrary to CHL/NG, the growing neural gas (GNG) poses ndiexgonstraints
on the lattice. The lattice is generated, and constantlyatge] by the competitive
Hebbian learning technique (CHL, see above; Martinetz3).9%he algorithm starts
with two randomly placed, connected neurons (Fig. 1.15,pahel). Unlike the
CHL/NG algorithm, after a fixed numbey of time steps, the neuroinwith the
largest accumulated error is determined and a new neurent@gtsbetweem and
one of its neighbors. Hence, the GNG algorithm exploits tpology to position
new neurons between existing ones, whereas in the CHL/N&Gtogology is not
influenced by the NG algorithm. Error variables are locabylistributed and an-
otherA time steps is performed. The lattice generated is a subgrbalbelaunay
triangularization, and can have different dimensionadiiin different regions of the
data manifold. The end-result is very similar to CHL/NG (Flgl5, right panel).

1.5.3 Growing cell structures

In the growing cell structures (GCS) algorithm (Fritzke 949, the model consists
of hypertetrahedrons (or simplices) of a dimensionalitgsdn in advance (hence,
the lattice dimensionality is fixed). Note thatlgdimensional hypertetrahedron has
da-+1 vertices, withda the lattice dimensionality, arah < d, with d the input space
dimensionality. Examples faf = 1,2 and 3 are a line, a triangle and a tetrahedron,
respectively.
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Fig. 1.14 Neural Gas algorithm, combined with competitive Hebbiaariéng, applied to a data
manifold consisting of a right parallelepiped, a rectaragid a circle connecting a line. The dots in-
dicate the positions of the neuron weights. Lines conngetguron weights indicate lattice edges.
Shown are the initial result (top left), and further theikztafter 5000, 10,000, 15,000, 25,000 and
40,000 time steps (top-down the first column, then top-ddwensecond column). (Martinetz and
Schulten, 1991, reprinted with permission.)



22 Marc M. Van Hulle

Fig. 1.15 Growing Neural Gas algorithm applied to the same data coraigun as in Fig. 1.14.
Initial lattice (left panel) and lattice after 20,000 timeess (right panel). Note that the last one
is not necessarily the final result because the algorithmidcaun indefinitely. (Fritzke, 1995a,
reprinted with permission)

The model is initialized with exactly one hypertetrahedrahvays after a pre-
specified number of time steps, the neuravith the maximum accumulated error
is determined and a new neuron is inserted by splitting tingdst of the edges
emanating from. Additional edges are inserted to rebuild the structuretichsa
way that it consists only afia-dimensional hypertetrahedrons: Let the edge which
is split connect neurorisandj, then the newly inserted neuron should be connected
toi andj and with allcommortopological neighbors dfandj.

Since the GCS algorithm assumes a fixed dimensionality ldttice, it can be
used for generating a dimensionality-reducing mappingftbe input space to the
lattice space, which is useful for data visualization psgm

1.5.4 Growing grid

In the growing grid algorithm (GG; Fritzke, 1995b) the lagiis a rectangular grid
of a certain dimensionalitga. The starting configuration is @-dimensional hy-
percubege.g, a 2x 2 lattice forda = 2, a 2x 2 x 2 lattice fordy = 3, and so on. To
keep this structure consistent, it is necessary to alwasericomplete (hyper-)rows
and (hyper-)columns. Since the lattice dimensionalityxedi and possibly much
smaller than the input space dimensionality, the GG is u$efdata visualization.

Apart from these differences, the algorithm is very simitathe ones described
above. AfterA time steps, the neuron with the largest accumulated errdetier-
mined, and the longest edge emanating from it is identifiad, @ new complete
hyper-row or -column is inserted such that the edge is split.

1.5.5 Other algorithms

There exists a wealth of other algorithms, such as the Dyod®eil Structures
(DCS) (Bruske and Sommer, 1995), which is similar to the GM® Growing Self-
Organizing Map (GSOM, also called Hypercubical SOM) (Baaed Villmann,
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1997), which has some similarities to GG but it adapts thiecatimensionality,

Incremental Grid Growing (IGG) which introduces new newganthe lattice border
and adds/removes connections based on the similaritidseafdnnected neurons’
weight vectors (Blackmore and Miikkulainen, 1993), and tre is also called the
Growing Self-Organizing Map (GSOM) (Alahakoet al,, 2000), which also adds
new neurons at the lattice border, similar to IGG, but dodsdetete neurons, and
which contains a spread factor to let the user control theapof the lattice, to

name a few.

In order to study and exploit hierarchical relations in ttegad hierarchical ver-
sions of some of these algorithms have been developed. Bor@g, the Growing
Hierarchical Self-Organizing Map (GHSOM) (Rauledral, 2002), develops lat-
tices at each level of the hierarchy using the GG algorithredjition of columns or
rows). The orientation in space of each lattice is similahit of the parent lattice,
which facilitates the interpretation of the hierarchy, amich is achieved through
a careful initialization of each lattice. Another examp@eé\daptive Hierarchical In-
cremental Grid Growing (AHIGG; Merkét al,, 2003) of which the hierarchy con-
sists of lattices trained with the IGG algorithm, and for alhhew units at a higher
level are introduced when the local (quantization) erroa ouron is too large.

1.6 Recurrent Topographic Maps
1.6.1 Timeseries

Many data sources such as speech have a temporal chatacterts, a correlation
structure) that cannot be sufficiently captured when igrpthe order in which the
data points arrive, as in the original SOM algorithm. Selveedf-organizing map
algorithms have been developed for dealing with sequedétd, such as the ones
using:

o fixed-length windowse.g, the time-delayed SOM (Kangas, 1990), among others
(Martinetzet al., 1993; Simoret al,, 2003; Vesanto, 1997);

e specific sequence metrics (Kohonen, 1997; Somervuo, 2004);

e statistical modeling incorporating appropriate gengeatnodels for sequences
(Bishopet al, 1997; Tihoet al,, 2004);

e mapping of temporal dependencies to spatial correlagog, as in traveling
wave signals or potentially trained, temporally activatgéral interactions (Eu-
liano and Principe, 1999; Schulz and Reggia, 2004 Wiem&320

e recurrent processing of time signals and recurrent winmi@gron computation
based on the current input and the previous map activatioeh) as with the
Temporal Kohonen map (TKM) (Chappell and Taylor, 1993) ré@irrent SOM
(RSOM) (Koskeleet al, 1998), the recursive SOM (RecSOM) (Voegtlin, 2002),
the SOM for structured data (SOMSD) (Hagenbucheierl, 2003), and the
Merge SOM (MSOM) (Strickert and Hammer, 2005).
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Several of these algorithms have been proposed recentlghveihows the in-
creased interest in representing time series with topdgcapaps. For some of these
algorithms, also tree structured data can be represergeddter). We focus on the
recurrent processing of time signals and briefly descrilketibdels listed above. A
more detailed overview can be found elsewhere (Barreto anadj8, 2001; Ham-
meret al,, 2005). The recurrent algorithms essentially differ in toatext,i.e., the
way by which sequences are internally represented.

1.6.1.1 Overview of algorithms

The TKM extends the SOM algorithm with recurrent self-coctians of the neu-
rons, such that they act as leaky integrators (Fig. 1.16 Aei@a sequendes, . . ., Vi,
vj € R4, V], the integrated distand®; of neuroni with weight vectomw; € R% is:

IDi(t) = aljvi — wi||>+ (1— a)ID;(t — 1), (1.17)

with a € (0,1) a constant determining the strength of the context infolenaand

with 1D;(0) 20. The winning neuron is selected &$t) = argmin ID;(t), after
which the network is updated as in the SOM algorithm. Equelol 7) has the form
of a leaky integrator, integrating previous distances afroai, given the sequence.

The RSOM uses in essence the same dynamics, however, itatgegver the
directions of the individual weight components:

IDij(t):a(vjt—Wi)+(1—a)IDij(t—1), (1.18)

so that the winner is then the neuron for whighD;; (t)]||? is the smallest. Itis clear
that this algorithm stores more information than the TKMwdwer, both the TKM
and the RSOM compute only a leaky average of the time serkthaty do not use
any explicit context.

The RecSOM is an algorithm for sequence prediction. A giveguence is re-
cursively processed based on the already computed cohtesdto, each neurans
equipped with a weight and, additionally, a context vectax RN which stores an
activation profile of the whole map, indicating in which cexitthe weight vector
should arise (Fig. 1.16B). The integrated distance is défase

IDi(t) = a[ve —wi[[?+Blly(t— 1) — cill?, (1.19)

with y(t — 1) = [exp(—ID1(t — 1)),...,exp—IDn(t —1))], a,B8 > 0 constants to
control the respective contributions from pattern and erntnatching, and with
ID;i(0) 2 0. The winner is defined as the neuron for which the integrdtsthnce
is minimal. The equation contains the exponential functioorder to avoid nu-
merical explosion: otherwise, the activatiid; could become too large because the
distances with respect to the contexts offlheurons could accumulate. Learning
is performed on the weights as well as the contexts, in thalwsgay (thus, involv-
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ing a neighborhood function centered around the winnegewkights are adapted
towards the current input sequences; the contexts towaed®tursively computed
contextsy.



®

Fig. 1.16 Schematic representation of four recurrent SOM algorithifit&V (A), RecSOM (B), SOMSD (C), and MSOM (D). Recurrent cections indicate
leaky integration; double circles indicate the neuron’sgite and context vectors; and the filled circles indicate the winning neurdt); and (t — 1) represent

the current and the previous time steps, respectively.
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The SOMSD has been developed for processing labeled trebsfined fan-
outk. The limiting case ok = 1 covers sequences. We further restrict ourselves to
sequences. Each neuron has, besides a weight, also a oeetttodc; € R%, with
da the dimensionality of the lattice. The winning neuridrfor a training input at
timet is defined as (Fig. 1.16C):

i* = argmina [|v; — wil|* + (1— a)||rj« 1) — Gil|%, (1.20)

with ri- the lattice coordinate of the winning neuron. The weightsare moved
in the direction of the current input, as usuag( with a neighborhood), and the
contextsc; in the direction of the lattice coordinates of the winningiran of the
previous time step (also with a neighborhood).

The MSOM algorithm accounts for the temporal context by guliei vector at-
tached to each neuron which stores the preferred contelxdbfheuron (Fig. 1.16D).
The MSOM characterizes the context by a “merging” of the \Weand the context
of the winner in the previous time step (whence the algorghrame: Merge SOM).
The integrated distance is defined as:

IDi(t) = aljwi — ||+ (1—a)||c — Ct)?, (1.21)

with ¢, € RY, and with C; the expected (merged) weight/context vectar, the
context of the previous winner:

Ct = ¥Cir 1) + (1= V)Wis 1), (1.22)

with Co 40. Updating ofw; andc; are then done in the usual SOM way, thus, with
a neighborhood function centered around the winner. Thampeatera is controlled
S0 as to maximize the entropy of the neural activity.

1.6.1.2 Comparison of algorithms

Hammer and co-workers (2004) pointed out that several ofrlationed recur-
rent self-organizing map algorithms share their prindgiptlynamics, but differ in
their internal representations of context. In all cases dbntext is extracted as the
relevant part of the activation of the map in the previousetistep. The notion of
“relevance” thus differs between the algorithms (see alambheret al, 2005). The
recurrent self-organizing algorithms can be divided in tategories: the represen-
tation of the context in the data space, such as for the TKMM8®M, and in a
space that is related to the neurons, as for SOMSD and Rec8Ok first case,
the storage capacity is restricted by the input dimensityn# the latter case, it can
be enlarged simply by adding more neurons to the latticeheamore, there are es-
sential differences in the dynamics of the algorithms. TKéTdoes not converge
to the optimal weights; RSOM does it but the parameteccurs both in the encod-
ing formula and in the dynamics. In the MSOM algorithm they &e controlled
separately. Finally, the algorithms differ in memory ananguitational complex-
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ity (RecSOM is quite demanding, SOMSD is fast and MSOM is sehege in the
middle), the possibility to apply different lattice typesi€h as hyperbolic lattices,
Ritter, 1998), and their capacities (MSOM and SOMSD achibeecapacity of Fi-
nite State Automata, but TKM and RSOM have smaller capacitecSOM is more
complex to judge).

As an example, Voegtlin (2002) used the Mackey-Glass timesea well
known one-dimensional time-delay differential equatior, comparing different
algorithms:

dv avt—rt

@ =bwv(t) + Trv(i— )0 (1.23)
which fort > 16.8 generates a chaotic time series. Voegtlin usedd.2,b= —0.1
andt = 17. A sequence of values is plotted in Fig. 1.17, startinghfemiform input
conditions. For training, the series is sampled every 3 timies. This example was
also taken up by (Hammet al, 2004) for comparing their MSOM. Several £A.0
maps were trained using 150,000 iterations; note that it idimensionalityd =

1 in all cases. Fig. 1.18 shows the quantization error pdo#te a function of the
index of the past input (index= 0 means the present). The isrexpressed in terms
of the average standard deviation of the given sequenceh@ndihning neuron’s
receptive field over a window of 30 time step®( delay vector). We observe large
fluctuations for the SOM, which is due to the temporal regtyaf the series and
the absence of any temporal coding by the SOM algorithm. B @bserve that the
RSOM algorithm is not really better than the SOM algorithnm. tBe contrast, the
RecSOM, SOMSD and MSOM algorithms (the MSOM was trained witkieural
Gas neighborhood function, for details see Strickert anchidar, 2003a) display a
slow increase in error as a function of the past, but with seb@ierformance for the
MSOM algorithm.
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Fig. 1.17 Excerpt from the Mackey-Glass chaotic time series. (S#rickand Hammer, 2003b,
reprinted with permission)
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Fig. 1.18 Temporal quantization error of different algorithms foetMackey-Glass time series
plotted as a function of the past (index= 0 is present). ¢&&rt and Hammer, 2003b, reprinted
with permission)

1.6.2 Treestructures

Binary trees, and also trees with limited fan-&uhave been successfully processed
with the SOMSD and the MSOM by extending the neuron’s singletext vector

to several context vectors (one for each subtree). Staftorg the leafs of a tree,
the integrated distandd® of a tree with a given label and tHesubtrees can be
determined, and the context defined. The usual learninghemhe applied to the
weights and contexts. As a result of learning, a topograptéapping of trees ac-
cording to their structure and labels arises. Up to now, qmliminary results of
the capacities of these algorithms for tree structures haea obtained.

1.7 Kernel Topographic Maps

Rather than developing topographic maps with disjoint amifboum activation re-
gions (Voronoi tessellation), such as in the case of the S@drighm (Fig. 1.5),
and its adapted versions, algorithms have been introduwddcan accommodate
neurons with overlapping activation regions, usually ie form of kernel func-
tions, such as Gaussians (Fig. 1.19). For tHegeel-based topographic mapsr
kernel topographic mapss they are called (they are also sometimes caliea-
bilistic topographic mapsince they model the input density with a kernel mixture),
several learning principles have been proposed (for awgwee Van Hulle, 2009).
One motivation to use kernels is to improve, besides theobio&l relevance, the
density estimation properties of topographic maps. Inwfgyg, we can combine the
unique visualization properties of topographic maps withraproved modeling of
clusters in the data. Usually, homoscedastic (equal-veepGaussian kernels are
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used, but also heteroscedastic (differing variances) Sangernels and other ker-
nel types have been adopted. In the next sections, we witwethe kernel-based
topographic map formation algorithms and mention a numbeapplications. The
diversity in algorithms reflects the differences in strégsdehind them. As a result,
these algorithms have their specific strengths (and weaksgand, thus, their own
application types.

Fig. 1.19 Kernel-based topographic map. Example of a2 map ¢f. rectangle with thick lines

in V-space) for which each neuron has a Gaussian kernel as dutpion. Normally, a more

condensed representation is used where, for each neuraul|eais drawn with center the neuron
weight vector and radius the kernel range.

1.7.1 SOM algorithm revisited

The starting point is again Kohonen’s SOM algorithm. To gveeuron a ho-
moscedastic Gaussian kernel is associated with centerspmnding to the neuron’s
weight vector. Kostiainen and Lampinen (2002) showed that3OM algorithm
can be seen as the equivalent of a maximum likelihood praeeajplied to a ho-
moscedastic Gaussian mixture density model, but with tlcegbion that a winner
neuron (and, thus, kernel) is selected (the definition of'tianer” i* eq. (1.1) is
equivalent to looking for the Gaussian kernel with the latgritput). The position
of the winner’s kernel is then updated, and possibly alssehaf other kernels,
given the neighborhood function. In a traditional maximukelihood procedure,
there are no winners, and all kernels are updated (RedneWaiicer, 1984). This
means thate.g, for a vanishing neighborhood range, a Gaussian kernattecés
only updated when that neuron is the winner, hence, contioethe classical case of
Gaussian mixture density modeling, the tails of the Gaunds#anels do not lead to
center updates (they disappear “under” other kernels);hvimplies that the kernel
radii will be underestimated.
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1.7.2 Elastic net

Durbin and Willshaw's elastic net (1987) can be consideedrze of the first ac-
counts on kernel-based topographic maps. The elastic reetiged for solving the
Traveling Salesman Problem (TSP). In TSP, the objective ind the shortest,
closed tour that visits each city once and that returns tetaging point €.g, the
right panel in Fig. 1.20). When we represent the locationaathecity by a point/*

in the two-dimensional input spateC R?, and a tour by a sequencefeurons
—which comprise a ring or closed cha, then a solution to the TSP can be envis-
aged as a mapping froxftspace onto the neurons of the chain. Evidently, we expect
the neuron weights to coincide with the input points (“atjeat convergence.

Fig. 1.20 One dimensional topographic map used for solving the Tiagebalesman Problem.
The lattice has a ring topology (closed chain); the poinpsesent cities and are chosen randomly
from the input distribution demarcated by the square box @Volution of the lattice is shown for
three time instants, at= 0 (initialization), 7000 and 10,000 (from left to right). &lveights of the
lattice att = 0 form a circle positioned at the center of mass of the inpstrithution. (Reprinted
from Ritter and Schulten, 198&)1988 IEEE.)

The algorithm of the elastic net can be written as followso(im format):
Aw; =21 <Z/\“(i)(v“ —Wi) + K(Wit1— 2w; —|—Wi_1)> , Vi, (L.24)
[

where each weigh; represents a point on the elastic net. The first term on tli rig
hand side is a force that drags each peinbn the chainA towards the cities#,
and the second term is an elastic force that tends to keeplmaigg points on the
chain close to each other (and thus tends to minimize theaiteur length). The
functionAH(i) is anormalizedGaussian:

AH (i) = exp(—|[|vH _WiHZ/ZU/Z\)

_ , 1.25
5 exp(— Vi —w;|2/202) (1.25)

with w; the center of the Gaussian agyd its range, which is gradually decreased
over time (as well ag), and alsa). By virtue of this kernel, the elastic net can be
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viewed as a homoscedastic Gaussian mixture density matkd, tio the data points
by a penalized maximum likelihood term (for a formal accowwete Durbiret al,
1989). The elastic net algorithm looks similar to Kohone3@M algorithm except
thatA(i, j) has been replaced by (i), and that a second term is added. Interest-
ingly, the SOM algorithm can be used for solving the TSP evighout the second
term (Ritteret al., 1992), provided that we take more neurons in our chain than
cities, and that we initialize the weights on a circle (a atletiN-gon) positioned at
the center of mass of the input distribution. An example ef¢bhnvergence process
for a 30 city case usingd = 100 neuron chain is shown in Fig. 1.20.

The elastic net has been used for finding trajectories ofgdthparticles with
multiple scattering in high energy physics experimentsrfdoov and Kisel, 2006),
and for predicting the protein folding structure (Batl al., 2002). Furthermore, it
has been used for clustering applications (Retsal, 1993). Finally, since it also
has a close relationship with “snakes” in computer visionggét al.,, 1987) (for the
connection, see Abrantes and Marques, 1995), the elastimsealso been used for
extracting the shape of a closed object from a digital imageh as finding the lung
boundaries from magnetic resonance images (Gikt@t, 1997).

1.7.3 Generative topographic map

The Generative Topographic Map (GTM) algorithm (Bishefpal., 1996; 1998)
develops a topographic map that attempts to find a repragantar the input
distribution p(v), v = [v1,...,Vg], vV € V, in terms of a numbetL of latent vari-
ablesx = [x1,...,x_]. This is achieved by considering a non-linear transforamati
y(x, W), governed by a set of paramet®¥s which maps points in the latent variable
space to the input space, much the same way as the lattics imothee SOM relate
to positions invV-space (inverse mapping in Fig. 1.2). If we define a probability
distribution p(x) on the latent variable space, then this will induce a cooadmg
distribution p(y|W) in the input space.

As a specific form ofp(x), Bishop and co-workers take a discrete distribution
consisting of a sum of delta functions located atltheodes of a regular lattice:

1 N
p(x) = N-Zié(x_xi)' (1.26)

The dimensionality of the latent variable space is typically less than the dimen
sionalityd of the input space so that the transformaty@pecifies ah.-dimensional
manifold inV-space. Sinc& < d, the distribution inV-space is confined to this
manifold and, hence, is singular. In order to avoid thishBjs and co-workers in-
troduced a noise model M-space, namely, a set of radially-symmetric Gaussian
kernels centered at the positions of the lattice nodeg-Bpace. The probability
distribution inV-space can then be written as follows:
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1 N

PVIW,0) = ZP(V|Xi,WaU), (1.27)
i=

which is a homoscedastic Gaussian mixture model. In faistdiktribution is acon-
strainedGaussian mixture model since the centers of the Gaussianstaove in-
dependently from each other but are related through thefbamationy. Moreover,
when the transformation is smooth and continuous, the ceaf¢he Gaussians will
be topographically ordered by construction. Hence, thedogphic nature of the
map is an intrinsic feature of the latent variable model anddt dependent on the
details of the learning process. Finally, the parametérando are determined by
maximizing the log-likelihood:

M
In.Z(W,0) =In[] p(v"|W,0), (1.28)
=1

and which can be achieved through the use of an ExpectataxirMzation (EM)
procedure (Dempstest al,, 1977). Because a single two-dimensional visualization
plot may not be sufficient to capture all of the interestingestds of complex data
sets, a hierarchical version of the GTM has also been degdlffino and Nabney,
2002).

The GTM has been applied to visualizing oil flows along mphase pipelines,
where the phases are oil, water and gas, and the flows can ko 8rtgpes, strat-
ified, homogeneous and annular (Bishedgal, 1996) (Fig. 1.4, right panel). It has
been applied to visualizing electropalatographic (EPGadar investigating the
activity of the tongue in normal and pathological speechi@w-Perpifian and Re-
nals, 1998) (Fig. 1.21). It has also been applied to the ifileestion of in vivo mag-
netic resonance spectra of controls and Parkinson pafigrédsonet al,, 2002), to
word grouping in document data sets (using the newsgrowgpsgdtbenchmark) and
the exploratory analysis of web navigation sequences &4aB005), and to spatio-
temporal clustering of transition states of a typhoon fromge sequences of cloud
patterns (Kitamoto, 2002). In another application, the GisMsed for micro-array
data analysis (gene expression data) with the purpose dhjridw-confidence
value genes (D’Alimontet al, 2005).

1.7.4 Regularized Gaussian mixture modeling

Tom Heskes (2001) was able to show the direct correspondeiaeen minimum
distortion topographic map formation and maximum likeblkdoGaussian mixture
density modeling for the homoscedastic case. The starting was the traditional
distortion (vector quantization) formulation of the seliganizing map:

. A
I:quantization: z Z P(' |V“) Z/\ (|~J)§ ”Vu - Wj sz (1-29)
Mo J
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Fig. 1.21 Visualization of the trajectory in a 2020 GTM lattice of the activity of the tongue (elec-
tropalatographic (EPG) data) of speaker RK for the uttezdregment “I prefeiKant to Hobbes
for a good bedtime book” (Carreira-Perpifian and Ren&881reprinted with permission.)

with P(i|v#) the probability that input# is assigned to neuroinwith weightw;
(i.e., the posterior probability, and with; P(i|v#) = 1 andP(i|v*) > 0). Even if we
assigrvH to neuron, there exists a confusion probabilify(i, j) thatv* is assigned
to neuronj. An annealed version of the self-organizing map is obtaihae add
an entropy term:

P(i[vH)
Qi

Fentropy: % Z P(i |V“) IOg( )a (1-30)

with Q; the prior probability (the usual choice @ = ﬁ with N the number of
neurons in the lattice. The final (free) energy is now:

F = BFquantizationt Fentropy (1.32)

with B playing the role of an inverse temperature. This formulai®very conve-
nient for an EM procedure. The expectation step leads to:

Qiexp(—5 5 A1) IV —wj)

P(ijvH) = :
5 Qsexp(—5 3jA(s ) v —wi|)

(1.32)
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and the maximization step to:

_ SuZPUVHAG
w3 PUVIAG)

which is also the result reached by Graepel and co-work&8q)ifor the Soft To-

pographic Vector Quantization (STVQ) algorithm (see thetrsection). Plugging

eg. (1.32) into eq. (1.31) leads to an error function, whilkdwes for the connection

with a maximum likelihood procedure, for a mixture of homedastic Gaussians,
when the neighborhood range vanishési(j) = &;). When the neighborhood is
present, Heskes showed that this leads to a term added toigh@ablikelihood.

As an application, Heskes considers market basket anal{ysien are a list of
transactions corresponding to the joint set of productsimased by a customer at a
given time. The goal of the analysis is to map the products antvo-dimensional
map (lattice) such that neighboring products are “simil&itilar products should
have similar conditional probabilities of buying other gumts. In another applica-
tion, he considers the case of transactions in a supermdtketproducts are sum-
marized in product groups and given are the co-occurremcpincies. The result
is a two-dimensional density map showing clusters of prigitnat belong together,
e.g, a large cluster of household products (Fig. 1.22).

(1.33)
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Fig. 1.22 Visualization of market basket data in which 199 producugare clustered based on
their co-occurrence frequencies with other products (desk001). ©2001 IEEE)
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1.7.5 Soft topographic vector quantization

Another approach that considers topographic map forma®mn optimization
problem, is the one introduced by Klaus Obermayer and cdwver(Graepekt
al., 1997,1998). They start from the following cost function:

EW) =5 ¥ 3 o TAGD I i (1.34)

with ¢, j € {0,1} and for whichc,j = 1 if v# is assigned to neuron elsecyj =
0 (Jicui = 1); the neighborhood function obeys A(i, j) = 1. Thew;, Vi, for
which this function is minimal, are the optimal ones. Howetee optimization is
a difficult task, because it depends both on binary and coatia variables and has
many local minima. To avoid this, a technique known as deitgstic annealing is
applied: the optimization is done on a smooth function pataaed by a parameter
B, the so-called free energy. Whehis small, the function is smooth and only
one global minimum remains; when large, more of the strectdithe original cost
function is reflected in the free energy. One starts with avalue of 3 and attempts
to keep track of the minimum through higher valuegof

The application of the principle of maximum entropy yield tfree energy
(Graepekt al,, 1997):

1

"B

log z exp(—BE), (1.35)

C“‘i
which leads to probabilistic assignments of inpufsto neuronsP(i|v#), Vi, that
is, the posterior probabilities, and which are given by:
Pty — 2P S DIV —w )
Ssexp(—5 3 A (s J)[vH —wi?)

(1.36)

The fixed point rule for the kernel centers is then:

o TEPUMIAGIV w3

>u Y PUIVIAGLD

The updates are done through an EM scheme. We observe thattédnequation is
identical to Heskes’ rule for regularized Gaussian mixtueeling, eq. (1.33).
The STVQ has been generalized to the soft topographic mggdpimproxim-
ity data (STMP), which can be used for clustering categbiega, given a ma-
trix of pairwise proximities or dissimilarities, which isne of the first accounts of
this nature in the topographic map literature. A candidaigiaation are the DNA
micro-array data sets where the data can be described bicesatvith the columns
representing tissue samples and the rows genes, and tlieséntthe matrix cor-
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respond to the strength of the gene expression. In (Seo ard@lyer, 2004), a
modified version of the STMP is used for clustering documéiscument map”).

1.7.6 Heteroscedastic Gaussian kernel topographic map formation

In the literature, only few approaches exist that considaetoscedastic kernels,
perhaps because the kernel radius in the homoscedastidscafien used in an
annealing schedule, as shown above in the STVQ-, and thedket algorithms.
When using heteroscedastic kernels, a better density &gtitn expected. Several
algorithms for heteroscedastic kernels have been dewelfpea review, see Van
Hulle, 2009). We briefly mention a few here.

Bearing in mind what we have said earlier about the SOM in eatian to Gaus-
sian mixture modeling, one can extend the original batch,regp(1.5), to the het-
eroscedastic case (Van Hulle, 2009):

D ITAI U\
YA
o2 = z“/\(lz’lz\”g* i\)’Vl| /d, vi, (1.38)
H )

with i* = argmaxK; (which is no longer equivalent t = argmin||v — w;|, but
which is required since we now have heteroscedastic kgrnelsanactivity-based
definition of “winner-takes-all”, rather than a minimuBuclidean distancédased
one. Notice again that, by the definition of the winner, this t@&f the kernels are cut
off, since the kernels overlap.

Recently, we introduced (Van Hulle, 2005a) a learning atgor for kernel-
based topographic map formation of heteroscedastic Gaussixtures that allows
for a unified account of distortion error (vector quantira), log-likelihood and
Kullback-Leibler divergence, and that generalizes Heskg®orithm (2001) to the
heteroscedastic case.

There is also the heuristic approach suggested by Yin aniasélh (2001), which
is minimizing the Kullback-Leibler divergence, based oriden introduced by Be-
naim and Tomasini (1991) for the homoscedastic case. Athatithese authors only
suggested an incremental, gradient-based learning puoeéthus, with a learning
rate), we can cast their format into a fixed point learningescé:

YA DP( V) VH
LS uAGEDPGVE)

o T AGDPAIVF)IV —wi?/d
i Zu/\(i*;i)P(HV“) s

(1.39)
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with the winner neuron defined &= argmaxP(i|v#), thus, the neuron with the
largest posterior probability.

In a still different approach, an input to lattice transfation @ is consid-
ered that admits a kernel function, a Gaussian (Van Hulle220®(v), ®(w;)) =
K(v,w;,0):

K(v,wi,q):exp<—M>. (1.40)

207

When performing topographic map formation, we require thatweight vectors
are updated so as to minimize the expected value of the shjEaididean distance
[v—wi||? and, hence, following our transformati@n we instead wish to minimize
| ®@(v) — @(w;)||?, which we will achieve by performing gradient descent wigh r
spect tow;. The leads to the following fixed point rules to which we hadded a

neighborhood function:

Tu ALK (VH, wi, 0 vH
Tu L )K(VE Wi, 07)
2 _ 1 u AR, wi, 0)|[vH — wi?
pd Su (0, 1%)K(VH wi, 0i)

with p a scale factor (a constant) designed to relax the local Gauésndd large)
assumption in practice, and with= argmax;ca K (v, wi, 6;).

Rather than having a real-valued neural activation, onédcalgo threshold the
kernel into a binary variable: in the kernel-based maximunnapy rule (KMER) a
neuroni is activated by inpuv when||w; — v|| < gi, whereg; is the kernel radius
of neuroni, and which defines a hyperspherical activation regigr(Man Hulle,
1998). The membership functiofy,(v), equals unity when neurdris activated by
v, else it is zero. When there are no neurons active for a giveutj the neuron that
is positioned closest to that input is defined active. Theeimental learning rules
for the weights and radii of neurdrare as follows:

Aw; =n z/\(lv J)EI (V) Sign(v—wi), (1.42)

Wi =

)

, (1.41)

Aoi = n(p' (1-1(v) ~1(v)).

With sign(.) the sign function taken componentwisg the learning rate=j(v) =
z ]1 a fuzzy membership function, amg = pN . It can be shown that the ker-

neI ranges converge to the case where the average proiesbbicome equal,
(L) = § ? vi. By virtue of the latter, KMER is said to generate an equipiukis-
tic topographic map (which avoids dead units). The algaritias been considered
for a wide range of applications, such as shape clusteriag flulle and Gautama,
2004), music signal clustering (Van Hulle, 2000), and tmkilig of patent- and
scientific publications databases (Deleus and van Hull@lRWore recently, also
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a fixed point version, called batch map kMER, was introducgautama and Van
Hulle, 2006), and applied to handwritten numerals clustgri

1.7.7 Kernels other than Gaussians

In principle, kernels other than Gaussians could be usedpongraphic map for-
mation. For example, Heskes pointed out that his reguldmzixture modeling ap-
proach could, in principle, accommodate any kernel of theoexential family, such
as the Gamma, multinomial and the Poisson distribution Keles2001).

In another case, the kernel is considered for which the rdiffeal entropy of the
kernel output will be maximal given a Gaussian inpig, the incomplete gamma
distribution kernel (Van Hulle, 2002b).

Another type of kernels are the Edgeworth-expanded Gaussimels, which
consist of a Gaussian kernel multiplied by a series of Hexmpdlynomials of in-
creasing order, and of which the coefficients are specifie(th®/second- but also
higher-order) cumulants (Van Hulle, 2005b).

In still another case, a mixture of Bernouilli distribut®is taken (Verbeeé&t al.,
2005) for the specific purpose to better encode binary @agg vord occurrence in
a document). This also leads to an EM algorithm for updatiegaosteriors as well
as the expected joint log-likelihood with respect to thegpagters of the Bernouilli
distributions. However, as the posteriors become quitkegxkdor higher dimen-
sions, for visualization purposes, a power function of theas chosen. Several
applications have been demonstrated, including word dnguim document data
sets (newsgroup data set) and credit data analysis (frotd@iéMachine Learning
repositoryht t p: / / archi ve. i cs. uci.edu/n /).

1.7.8 Future developments

An expected development is to go beyond the limitation ofcilveent kernel-based
topographic maps that the inputs need to be vectors (wedglreaw the extension
towards categorical data). But in the area of structuralepatrecognition, more
powerful data structures can be processed, such as sttiegs,and graphs. The
SOM algorithm has already been extended towards stringsqien and Somervuo,
1998) and graphs, which include strings and trees (Gunt:Bainke, 2002; Seo and
Obermayer, 2004; Steil and Sperduti, 2007) (see also the S®&hd the MSOM
algorithms above). However, also new typekefnelsfor strings, trees and graphs
have been suggested in the Support Vector Machine literdthus, outside the to-
pographic map literature) (for reviews, see Shawe-Tayhakr @ristianini, 2004; Jin
al., 2005). The integration of these new types of kernels intmdédebased topo-
graphic maps is yet to be done, but could turn out to be a piogevolution for
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biochemical applications, such as visualizing and clisgesets of structure-based
molecule descriptions.

1.8 Conclusion

In this chapter we have introduced the Self-Organizing M&pN1) algorithm, dis-

cussed its properties, limitations and application typesi reviewed a number of
extensions, and other types of topographic map formatigarehms, such as the
growing-, the recurrent-, and the kernel topographic méles have also indicated
how recent developments in topographic maps enable us teidmncategorical

data, time series and tree structured data, widening futtteeapplication field to-

wards micro-array data analysis, document analysis aniévat, exploratory anal-

ysis of web navigation sequences, and the visualizatiorr@ten structures and
long DNA sequences.
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