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Abstract -  Feature selection plays a crucial  part  for  
computer  vision  algorithms.  By  examining  properties  
of fixation points in natural images collected via eye-
tracking, we take the human visual system as a model.  
Here  we  make  use  of  intrinsic  dimensionality  (iD):  
Image  patches  with  high  i0D  values  correspond  to  
homogeneous surfaces, whereas patches with high i1D 
values  contain  edges,  lines  or  parallel  lines.  A  high 
i2D value corresponds to corners,  junctions,  and the 
like. A comparison of mean iD feature values at actual  
fixations  points  with  those  at  control  points  shows  
significant  effects:  Mean  i0D  values  are  lower  for  
actual than for control, while mean i1D and i2D values  
are  higher.  A  subsequent  information-theoretic  
analysis shows entropy to be higher at actual than at  
control points. Mutual information between successive  
fixation  points  is  found  to  be  significantly  lower  for  
actual than control sequences. This effect stems mainly  
from short  saccades,  as is revealed by calculation of  
mutual information from saccades falling into different  
length ranges.  As it turns out, the human visual system  
prefers scarce features like corners or junctions over  
common ones like homogeneous surfaces. iD provides  
an  effective  computational  means  to  extract  and  
classify such features.
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1 Introduction
Computer  vision  aims  at  developing  algorithms 

that  are  capable  of  giving  concise  descriptions  and 
interpretations  of  images.  The  selection  of  image 
features plays a crucial part in this process and turns out 
to be a key part when moving from low-level to higher-
level abstract descriptions..  In previous studies [5] we 
defined  local  image  properties  via  their  intrinsic 
dimensionality  (iD),  which  gives  a  continuous 
estimation of the numbers of dimensions that would be 
needed to describe an image patch properly.

In this study, we use the human visual system as a 
model for feature extraction by examining properties of 
fixation points in natural images. We hypothesize that 
useful and important features are frequently fixated by 

human subjects and that iD may indicate salient image 
regions.  As  the  human  visual  system  is  restricted  to 
repeatedly  sampling  small  image  regions  in  order  to 
study a particular visual scene, fixation points have to 
be chosen wisely to maximize the amount of incoming 
new  information  with  each  fixation  [cf.  6].  Thus, 
information  theory  and  algorithms  originating  in 
machine  vision  may  prove  to  be  a  useful  tool  when 
examining the human visual system. As human vision 
as  well  as  computer  vision  systems  face  similar 
problems,  we  use  methods  originating  in  machine 
vision to help assess fixation point selection strategies 
as done by humans.

Correlation of certain simple image features like 
luminance  contrast  [8]  with  fixation  is  firmly 
established.  While  multiple  such  features  (e.g.  color, 
occurrences  of  edges,  disparity)  normally  are  used to 
create a saliency map [2], that is a map that highlights 
interesting  regions  for  the  observer  to  have  a  closer 
look at, we rely on a single unified method to extract a 
multi-dimensional feature from image data.

2 Methods
The following section gives a more detailed background 
on  intrinsic  dimensionality,  then  explains  our  eye-
tracking  setup  and  the  correlational  as  well  as 
information-theoretic  analyses  applied  to  the  data  in 
more detail.

2.1 Intrinsic Dimensionality

Intrinsic  dimensionality  is  computed  from  local 
image  gradient  and  orientation  measures  [12]. 
Properties  of  image  regions  are  mapped  into  a 
triangular-shaped space. The corners of the iD triangle 
refer to extreme values regarding the dimensionality of 
the  image  region  in  question:  Patches  with  high  i0D 
values  correspond  to  homogeneous  surfaces,  whereas 
patches with high i1D values contain edges or parallel 
lines.  A  high  i2D  value  corresponds  to  corners, 
junctions, and the like. (see Figure 1 for some example 
image patches  as well  as  their  position within the iD 
triangle).  Projections  of  iD  values  onto  the  triangle's 
axes indicate the contributions from each corner point 
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and thereby give confidences as to whether a specific 
image region  contains  flat  surfaces,  edges  or  corners. 
Applying  the  iD  algorithm  to  an  image  leads  to  iD 
maps, as depicted in Figure 2.

Figure 1. Sample stimulus picture showing a fixation 
trajectory. Three fixated regions have been enlarged and 

their iD values are indicated in the iD triangle.

Our implementation of the iD algorithm [5] makes 
use  of  the  structure  tensor,  which  is  well-known  in 
image  processing  and  provides  measures  of  gradient 
and orientation variances. Mathematically, the structure 
tensor  is  a  2x2  matrix  and  computed  as  the  outer 
product of the image gradient matrix (containing both 
the gradients  from x and y axis  as row vectors)  with 
itself.  The  structure  tensor  can  be  interpreted  by 
examining  its  eigensystem.  The  larger  of  its  two 
eigenvalues   indicates  the  strength  of  the  prominent 
orientation  in  the  patch,  with  its  corresponding 
eigenvector  pointing  in  that  direction.  The  second 
eigenvalue  gives  the  strength  orthogonal  to  that 
direction.  From  the  eigenvalues  both  orientation  and 
gradient variances can be computed. While the gradient 
variance  provides  a  measure  of  image  patch 
homogeneousness,  the  orientation  variance 
distinguishes  between  lines  oriented  in  the  same 
direction  and  lines  directed  in  multiple  directions. 
Combining these two measures and normalizing them 
yields the aforementioned iD triangle.

Figure 2: ixD maps of picture shown in Figure 1. 
Brighter pixels denote higher ixD values respectively.

2.2 Eye-Tracking

We use eye-tracking on free-viewing subjects. A 
total of 64 gray-scale images are shown to 14 subjects 
in  randomized  order  for  5  seconds  each,  while  eye 
fixations are recorded. Images come from one of four 
categories:  Fractals  (mostly  Mandelbrot  sets),  man-
made objects   (all  outside,  different  size  ranges  from 
whole  buildings  to  smaller  objects),  natural  scenes 
(trees,  bushes,  leaves  at  different  scales)  and  faces 
(frontal against wall, all roughly same size and shape). 
See Figure 3 for thumbnails. Images were displayed at a 
screen  resolution  of  1024x768  pixels  on  a  21  inch 
monitor.  A  picture  as  shown  on  the  screen  spanned 
28.16° horizontally and 21.12° vertically of a subject's 
visual field. Control fixation points as later used in the 
analysis  are  generated  by  shuffling  complete 
participants' eye-traces over images regardless of image 
category  membership  when  the  whole  image  set  is 
analyzed,  while  eye-traces  are  shuffled  within 
categories when single image categories are examined. 
Fixation  points  lying  near  the  image  border  are 
discarded  from later  analysis  to  avoid  border  effects. 
Mean  saccade  length  was  148px  or  4°  of  the  visual 
field.  Short  saccades  are  abundant,  with  longer  ones 
becoming  increasingly  rare.  The  longest  saccade  that 
was included in the analysis spanned 1083px.

Stimulus  pictures  are  converted  into  iD  feature 
maps for analysis. For noise reduction purposes images 
are low-pass filtered before the iD algorithm is applied. 
The  Gaussian  window  function  that  is  used  when 
computing the structure tensor for selecting image sub-
parts has a standard deviation of 0.28° of the subjects' 
visual  field.  Averaging  iD  values  from  their  feature 
maps over all images shows a mean value of 67% for 
i0D  projections,  22%  for  i1D  and  11%  for  i2D. 
Junctions and corners are therefore the rarest features, 
edges occur twice as much, and flat surfaces dominate 
heavily.

Figure 3: Gray-scale pictures that were used as stimuli. 
Upper two rows show fractals, then man-made objects, 

natural scenes and last two rows depict faces.

2.3 Correlation of features and fixation

Correlation of features and fixations is determined 
by  applying  two-sided  sign  tests  for  single  iD 



projections,  comparing  values  of  actual  and  control 
condition. We also computed the percentage of actual 
values exceeding their control ones. A total of 12,972 
fixation points (all subjects, whole image set) are used, 
ixD values  are  averaged  within  each  of  the  three  iD 
projections  over  subjects  and  images.  Results  are 
calculated  category-wise  as  well,  with  each  image 
category  incorporating  16  images  and  roughly  4,000 
fixations each.

When  extracting  single  features  from  an  image 
like  the  occurrences  of  edges  or  luminance  contrast, 
usually  their  absolute  values  are  taken  to  build  or 
contribute  to  a  saliency  map  [2].  As  iD  is  a  multi-
dimensional  feature  and  therefore  there  doesn't  exist 
one single feature value this is not possible, so we use a 
different conversion scheme to obtain a saliency map. 
The  concept  of  self-information  provides  a  way  to 
perform  this  transformation  that  is  backed  up  by 
neuropsychological  data  as well.  The concept of self-
information  has  successfully  been  employed  as  a 
transformation  yielding  salient  image regions.  Topper 
[10]  showed  that  saliency  maps  based  on  self-
information transformations of image feature maps that 
are known to correlate with fixation give better results 
in  terms  of  similarity  with  actual  fixation  point 
densities  than  do  absolute  feature  values.  Self-
information is higher for rare events than for common 
ones. Hence, the human visual system seems to respond 
to surprising and unusual visual events rather than just 
high absolute values of certain features.

Figure 4: Computed self-information map of one of the 
stimulus pictures in the faces category. Brighter pixels 

denote higher self-information and therefore higher 
salience.

We  use  a  local  (picture-wise)  approach  to 
compute the self-information of a specific pixel within 
an iD map. To estimate the probability distribution of 
iD values, feature map entries are placed in 100 equally 
sized bins, with their relative frequency being used as 
an  estimate  of  probability.  Self-information  values  at 
actual  fixation points  are compared with control  ones 
by applying two-sided sign tests.  See Figure 4 for an 
example of a self-information map.

2.4 Information-theoretic Analysis

Entropy  of  actual  and  control  conditions  is 
calculated  by  allocating  ixD  values  into  100  bins 
respectively. 150 different control permutations of eye-
traces  are  generated  and  results  deemed  significant 
when the actual value exceeds or falls below all control 
values. These analyses were carried out for the whole 
image  set  as  well  as  for  single  image  categories 
independently.

An analysis of mutual information values between 
consecutive  fixation  points  is  carried  out  in  order  to 
examine  (first-order)  dependencies  of  newly  selected 
regions  to  previous  ones.  Hence,  sequences  of  two 
immediately  consecutive  fixation  points  are  extracted 
and mutual information between first and second points 
is calculated. We use 11,860 sequences in this analysis. 
iD  values  are  allocated  to  ten  bins  only.  In  a  later 
analysis,  fixation  sequences  are  grouped  together 
according  to  the  saccade  length  between  the  two 
fixation  points  and  mutual  information  is  calculated 
separately.  Each  of  the  resulting  five  groups  that  are 
used  here  contains  the  same  number  of  fixation 
sequences. Group boundaries are 56, 105, 166, 248 and 
434  pixels  of  saccade  length.  As  short  saccades  are 
prevalent  saccade  length  ranges  become  bigger  for 
longer  saccades  to  ensure  an  equal  number  of 
sequences.  This  analysis  is  carried  out  for  the  whole 
image set only.

3 Results
In the following section results  from the correlational 
and information-theoretic analyses are presented.

3.1 Correlation of features and fixation

Comparing  iD  values  of  actual  and  control 
fixation points shows i0D values to be lower, but i1D 
and i2D values to be higher at actual fixation points. All 
results  are  highly  significant  (P<0.0001).  i0D 
projections  show  the  biggest  effect  size,  with  only 
27.8% of  actual  values  being  higher  than  the  control 
values. i1D  values are higher than the control one in 
69.1% of cases, and i2D in 70.3%. This indicates that 
while image regions consisting only of flat surfaces are 
avoided, those with higher intrinsic dimensionality are 
fixated  more  often  than  would  be  expected  from 
chance.  Figure  5  shows  the  results  of  this  analysis 
within the iD triangle as well as actual vs control values 
for the i2D projection (inset). 

The  results  from  examining  single  image 
categories  mainly  underline  the  effect  found  when 
analyzing  the  whole  picture  set,  differing  slightly  in 
effect  sizes.  It  is  worth  noting  that  most  pronounced 
effects  are  obtained  for  the  picture  categories  man-
made  objects  (P<0.0011  for  all  projections),  faces 
(P<0.0001  for  all),  and  fractals  (P<0.0001  for  all). 
Natural  scenes  show  significant  results  for  the  i0D 
projection  only  (P=0.0268),  but  not  for  the  i1D 
(P=0.0516) and i2D (P=0.3141) ones. While faces and 
man-made objects show the highest amounts of actual 
values  exceeding control  ones  in case  of  i1D (64.4% 



and 61.2%) and i2D (73.0% and 72.2%) projections and 
the lowest amount surpassing them in the i0D (27.0% 
and  26.8%)  projection  respectively,  results  for  the 
fractals category are somewhat less pronounced (32.9% 
i0D,  59.0%  i1D,  66.7%  i2D).   Effect  sizes  for  the 
natural scenes category are by way the smallest (42.3% 
i0D, 56.8% i1D, 53.6% i2D).

Figure 5. Distribution of actual and control iD values as 
well as their respective means within the iD triangle. 
ixD values stay constant along the straight lines. The 

inset shows i2D actual vs control values.

Figure 6: Self-information at actual vs control fixations 
for the whole image set (averaged over images and 

subjects). The big dot denotes actual vs control mean.

The self-information transformation of iD values 
is  intended  to  give  an indication  of  the saliency of  a 
certain image point. Results show that actual values are 
highly significantly bigger than control ones,  both for 
the whole image set as well as single image categories. 
The results show that 77.0% of actual self-information 
values  for  the  complete  image  set  are  higher  than 
control ones (see Figure 6). Category-wise examination 
shows  the  same  effects  within  the  single  image 
categories,  however to  different  degrees  (73.7% man-
made objects, 71.6% faces, 66.7% fractals, 58.6 natural 
scenes).  As  in  the  correlational  analysis  concerning 
single  iD  projections,  self-information  results  show 
biggest effect sizes for the faces and man-made objects 
categories.  The  effect  for  fractals  is  smaller,  that  for 
natural  scenes  even  less  so.  However,  deviations  of 

actual from control values for all image categories are 
highly significant.

3.2 Information-theoretic analysis

Entropy is significantly higher at actually fixated 
than at  control  points,  meaning that  histograms of  iD 
values  are more  equalized  for  actual  than  for  control 
points. This effect is visible for all three iD projections 
and  consistent  over  image  categories  as  well. 
Differences  between  actual  and  control  distributions 
amount to 0.50 bit for i0D, 0.52 bit for i1D, and 0.64 bit 
for i2D projections or the whole image set (see Figure 
7). Absolute entropy values are decreasing from i0D to 
i2D  projections.  Effect  sizes  for  different  image 
categories  show  a  similar  hierarchy  than  in  the 
correlation analysis carried out above: Effects are most 
pronounced  for  man-made  objects  (0.33  to  0.55  bit 
difference between actual value and control maximum) 
and fractals (0.27 to 0.37 bit). Faces (0.16 to 0.52 bit) 
show a smaller effect size and natural scenes (0.01 to 
0.07 bit), although meeting the criteria for significance 
for  every  iD  projection  exhibit  only  a  tiny  effect 
compared to the other image categories. 

Figure 7: Entropy for actual and control conditions for 
the whole image set. Error bar indicate max/min control 

entropy values.

Mutual  information  is  significantly  lower  at 
fixated than at control points. Effects are biggest for the 
i2D class (0.04 bit difference), smaller when calculated 
for the i0D class (0.03 bit) and barely noticeable for the 
i1D class (0.01 bit).  The effect of mutual  information 
being  lower  turns  out  to  stem  mainly  from  short 
saccades (see Figure 8), with the group containing the 
shortest  saccades  (up  to  56px)  returning  significant 
results for all three iD projections. Differences between 
actual and control condition amount to 0.12 bit for i0D, 
0.04 bit for i1D and 0.08 bit for i2D projections. The 
next  group  (56-105px)  exhibits  significantly  lower 
mutual  information  values  for  actual  than  control 
sequences for i0D and i2D projections, while the third 
one  does  so  for  i0D  values  alone.  In  the  control 
conditions, mutual information is decreasing as saccade 
lengths  are  getting  longer.  This  is  to  be  expected,  as 
image regions near each other would be more correlated 
than  regions  further  apart.  This  effect  is  much  less 



pronounced – if present at all – for the actual condition 
though.

Figure 8. i0D mutual information as a function of 
saccade length in pixels. Error bars indicate max/min 

control mutual information values.

4 Conclusions
As shown, the iD algorithm provides a useful way 

to  encode  image  features  that  goes  along  with  what 
regions  are  determined  to  be  salient  by  the  human 
visual  system.  iD  features  are  low-level  and  can  be 
extracted  by  relatively  simple  computational  means. 
Also,  they  are  able  to  combine  edge  and  corner 
classificators  into  a  single  non-discrete  approach  and 
therefore constitute a powerful tool in machine vision. 
It has already been applied in optic flow statistics [3] 
and  as  part  of  a  larger  framework  in  multi-modal 
matching [7].

Our results suggest that the human visual system 
tends  to  prefer  edges  and  junctions/corners  over 
homogeneous surfaces [cf. 4, 8]. In fact rare iD feature 
values are favored, while frequently occurring ones are 
neglected as shown by entropy analysis. The idea that it 
is  especially  two-dimensional  image  structures 
exhibiting high curvature like corners or junctions that 
are  attracting  fixations  is  based  on  the  high 
informativeness  of  these  regions.  Krieger  et  al.  [4] 
compared the bispectra (third-order statistics) of image 
patches  at  fixation  points  with  those  at  randomly 
selected  points  and  found  a  higher  amount  of  highly 
curved  image  features.  Also,  as  shown  above,  i2D 
features  are  rare  in  natural  images.  By  exploiting 
similar  features  as  the  human visual  system – that  is 
concentrating on few but highly informative regions – 
the concept of iD has great potential for applications in 
computer vision systems.

The  key  concept  of  the  self-information  maps 
relates  to the idea  that  it  is  not  the absolute value of 
certain  feature  that  determines  its  salience  but  rather 
this  specific  feature  value  in  context  to  all  other 
occurring  feature  values  –  and  in  this  respect  the 
surprise  that  is  associated  with  encountering  this 
specific  value.  In  this  study  we  applied  the  self-
information transformation to iD maps that encode the 

intrinsic  dimensionality  of  image  patches.  This 
procedure  results  in  self-information  maps  that  can 
readily  be  seen  as  saliency  or  interestingness  maps 
since  they  highlight  image  regions  that  are  worth 
looking  at  as  these  regions  contain  image  features 
different from most of the rest of the image [cf. 1]. The 
self-information maps show bigger effect sizes than any 
of the iD features, when comparing actual with control 
fixation  points.  This  goes  along  with  the  previously 
mentioned  saliency  enhancing  effect  of  the  self-
information transformation on feature maps containing 
absolute strengths of certain image features [10].

There exist quantitative differences in the results 
pertained from different image categories – found both 
in the fixation and feature value correlation analysis as 
well as the information theoretic part. These could be 
due to the human visual system treating different image 
classes in different ways – either because of differences 
in the low-level properties or because of the application 
of  different  strategies  after  rapid  image classification. 
Torralba  et  al.  [11]  showed  that  different  image 
categories come along with distinct differences in their 
power  spectrum,  by  means  of  which  rapid  image 
classification becomes possible. They used a variety of 
different  image  classes,  containing  natural  scenes 
(mountain, beach, forest), man-made objects (highway, 
street,  indoor),  objects  (face,  car,  chair)  and  so  on. 
Another idea is that rapid scene identification is made 
possible  by  texture  recognition  that  is  highly 
parallelized [9].

Selection  of  a  fixation  point  shows  less 
dependence  on  the  iD  value  of  the  point  previously 
attended to than would be expected from chance. That 
is,  actual  mutual  information  values  are  lower  for 
consecutive fixation points than control ones. This may 
suggest  the  existence  of  a  decorrelation  mechanism 
underlying the selection of consecutive fixation points. 
Thus, while a bottom-up approach may partly explain 
which points are taken into account for fixation – or at 
least why they are – there is indication that the temporal 
order in which fixations happen follows more complex 
rules.
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