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8 Abstract

9 A novel method is introduced for optimal estimation of rigid camera motion from instantaneous velocity measurements. The error
10 surface associated with this problem is highly complex and existing algorithms suffer heavily from local minima. Repeated minimization
11 with different random initializations and selection of the minimum-cost solution are a common (albeit ad hoc) procedure to increase the
12 likelihood of finding the global minimum. We instead show that the optimal estimation problem can be transformed into one of arbitrary
13 complexity, which allows for a gradual regularization of the error function. A simple reweighting scheme is presented that smoothly
14 increases the problem complexity at each iteration. We show that the resulting method retains all the desirable properties of optimal
15 algorithms, such as unbiasedness and minimal variance of the parameter estimates, but is substantially more robust to local minima.
16 This robustness comes at the expense of a slightly increased computational complexity.
17 � 2006 Published by Elsevier Inc.

18 Keywords: Egomotion; Optic flow; Calibrated camera; Local minima; Reweighting
19

20 1. Introduction

21 The instantaneous velocity or optic flow field encoun-
22 tered by a moving observer contains an enormous amount
23 of information related to the three dimensional (3D) struc-
24 ture of the environment and to the presence and motion of
25 independently moving objects. Knowledge of the egomo-
26 tion or self-motion of the observer is a necessary prerequi-
27 site to obtain this valuable information. Since small
28 observer motions can have large effects on the optic flow
29 field, it is advisable to extract the egomotion parameters
30 from the optic flow field itself. This, however, is non-trivial
31 and an active topic of research.
32 The field has matured a lot over the years and a number
33 of ‘optimal’ algorithms (unbiased and minimal variance of
34 the estimates) have appeared [1,2]. The error function of
35 the optimal problem formulation is however highly nonlin-

36ear and contains a large number of local minima [3,4],
37which renders these algorithms unreliable and hard to use
38in practical applications. The earlier approaches [5–8],
39which operate on a linearization of the problem, are no val-
40id alternative. Compared to optimal algorithms, they are
41extremely sensitive to noise [1,2,9] and the estimates they
42provide are unsuitable, even as initializations for the
43optimal methods.
44As an alternative to the time-consuming process of
45repeatedly minimizing with different, random initializations
46and selection of the minimum-cost solution, we propose to
47regularize the error function. We reformulate the problem
48in such a way that the complexity of the error function (the
49likelihood that algorithms end up in local minima) is con-
50trolled by a single parameter. We propose a reweighting
51scheme that gradually increases the problem complexity
52during the minimization, until the optimal problem formu-
53lation is obtained. We demonstrate, both in simulation and
54on real data, that the proposed method retains the accuracy
55of optimal algorithms, but is much less sensitive to local
56minima. On the extensive set of data investigated, these
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57 improvements come at the cost of less than a doubling in
58 computation time compared to previous optimal
59 algorithms.

60 2. Problem statement

61 Under a static environment assumption, the motion of
62 all points in space, relative to a coordinate system centered
63 in the nodal point of the observer’s eye, is determined by
64 the translational velocity, t = (tx, ty, tz)

T, and rotational
65 velocity, x = (xx,xy,xz)

T, of the moving observer. The
66 3D velocity, v = (vx,vy,vz)

T, of a point in space,
67 x = (x,y,z)T, is then [10]

v ¼ �t� x� x: ð1Þ6969

70 Under perspective projection and assuming, without loss of
71 generality, a focal length equal to unity, these 3D motion
72 vectors are transformed into a two dimensional velocity
73 or optic flow field. At feature location x = (x,y, 1)T, the ob-
74 served flow u(x) = (ux,uy)T equals

uðxÞ ¼ dðxÞAðxÞtþ BðxÞxþ nðxÞ; ð2Þ7676

77 where

AðxÞ ¼
�1 0 x

0 �1 y

� �
; ð3Þ

7979

BðxÞ ¼ xy �1� x2 y

1þ y2 �xy �x

� �
: ð4Þ

8181

82 The observed flow consists of three parts: a component due
83 to the observer’s translation (which also depends on the in-
84 verse depth d(x) = 1/z), a component due to the observer’s
85 rotation, and n(x) = (nx,ny)T, which is assumed to be inde-
86 pendently and identically distributed zero mean Gaussian
87 noise. These different components are illustrated in
88 Fig. 1. Also indicated is s (x, t, 1), a unit length vector
89 orthogonal to the translational component of the flow:

sðx; t; 1Þ ¼ 1

kAðxÞtk ð½AðxÞt�y ;�½AðxÞt�xÞ
T
; ð5Þ

9191

92 where [p]x and [p]y refer to the x- and y-components of the
93 vector p respectively. The meaning of the third parameter
94 (equal to unity in Eq. (5)) is explained in Section 4. When
95 depth is eliminated from Eq. (2), the well-known bilinear
96 constraint [11] on translation and rotation is obtained at
97 each location x

kAðxÞtks ðx; t; 1ÞTðuðxÞ � BðxÞxÞ ¼ 0: ð6Þ 9999

100This particular notation is chosen since it highlights that
101the constraint is weighted by iA(x)ti. This weight term ren-
102ders the constraints much simpler algebraically but, in the
103absence of prior knowledge, it is incorrect to weight the dif-
104ferent constraints unequally. Instead, the parameters ð̂t; x̂Þ
105should be estimated using the unweighted constraints [2]

ð̂t; x̂Þ ¼ argmin
t;x

X
x

½sðx; t; 1ÞTðuðxÞ � BðxÞxÞ�2: ð7Þ
107107

108These constraints represent the normalized, orthogonal
109deviations from the epipolar lines, and the estimates ob-
110tained from Eq. (7) minimize the least-squares image-
111reprojection error [4]. Since algorithms that operate on this
112error function obtain the most accurate parameter esti-
113mates, they are commonly referred to as ‘optimal’ [1,2].

1143. Previous algorithms

115A wide variety of egomotion-estimation methods have
116been proposed in the past. An important distinction can
117be made between the earlier approaches, which suffer from
118biased and/or widely varying estimates, and the more
119recent optimal algorithms.

1203.1. Non-optimal algorithms

121One of the first egomotion algorithms has been intro-
122duced by Bruss and Horn [11] and consists of a straightfor-
123ward minimization of the bilinear constraints (Eq. (6))
124using nonlinear optimization techniques. Heeger and Jep-
125son (H&J) [5] have proposed a method to compute the
126heading (normalized translation) without iterative numeri-
127cal optimization. Their linear subspace method is based on
128the construction of a set of constraint vectors that are inde-
129pendent of camera rotation. Another linear algorithm has
130been recently proposed by Ma et al. [6] and is conceptually
131similar to methods that operate on the discrete epipolar
132constraint. The heading estimates computed with this algo-
133rithm have been shown to be identical to those obtained
134with H&J but the rotation estimates are better.
135The heading estimates obtained with the aforemen-
136tioned algorithms are all systematically biased. Different
137bias correction procedures can be found in the literature.
138Kanatani [7] has introduced a method that subtracts an
139estimate of the bias from the solution. A second correction
140procedure has been introduced more recently by Maclean
141(MAC) [8] as an adaptation to H&J. Contrary to Kanatan-
142i’s method, this procedure does not require an estimate of
143the noise variance.

1443.2. Optimal algorithms

145An optimal, nonlinear algorithm has been introduced by
146Chiuso et al. (CHI) [1]. This algorithm involves a sequence
147of fixed-point iterations where each part of the sequence
148requires solving a linear least-squares problem. ChiusoFig. 1. Optic flow components.
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149 et al. have proposed iterating between estimates of t and
150 {d(x),x}. Since a spherical projection model has been used
151 in their formulation and the other algorithms assume a tra-
152 ditional pin-hole model, we have modified the formulation
153 and implemented the algorithm as follows. Starting from
154 an initial heading estimate t(1), a rotation estimate x(1) is
155 obtained as the linear least-squares solution to Eq. (7).
156 Using both estimates, the least-squares relative inverse
157 depth estimates are obtained at each location x as

dð1ÞðxÞ ¼ ðuðxÞ � BðxÞxð1ÞÞTAðxÞtð1Þ

kAðxÞtð1Þk2
; ð8Þ

159159

160 Next, the estimates {d(1)(x),x(1)} are used to compute a
161 new translation estimate t(2) as the linear least-squares solu-
162 tion to the system of Eq. (2). After normalization, the se-
163 quence is repeated until the estimates converge. The
164 iterations are stopped when the magnitude of the transla-
165 tion update, iDti, drops below a certain tolerance level �,
166 which is equal to 10�13 in all our simulations.
167 Zhang and Tomasi (Z&T) [2] have introduced a second
168 optimal algorithm. By exploiting the separability of the
169 parameters, a very fast algorithm is obtained that performs
170 Gauss–Newton updates in t. The relative inverse depth esti-
171 mates d(i)(x) are computed in the same way as CHI Eq. (8)
172 but the heading and rotation estimates are updated as

ðDtðiþ1Þ;xðiþ1ÞÞ ¼ argmin
Dt;x

X
x

½sðx; tðiÞ; 1ÞTðuðxÞ

� dðiÞðxÞAðxÞDt� BðxÞxÞ�2: ð9Þ174174

175 Since t and d(x) appear as a product in Eq. (2), their abso-
176 lute magnitudes cannot be determined. To remove this
177 ambiguity, the translation update is constrained to be
178 orthogonal to the current estimate: (t(i))TDt(i+1) = 0. From
179 Eq. (9), only the translation update is used:

tðiþ1Þ ¼ tðiÞ þ Dtðiþ1Þ; ð10Þ181181

182 the rotation estimate is recomputed as the least-squares
183 solution to Eq. (7) (with fixed t(i+1)). This way, more accu-
184 rate estimates are obtained. The translation estimate is
185 normalized to unit length only after the algorithm has
186 converged.

187 4. Proposed method

188 As mentioned in the introduction, the optimal algo-
189 rithms suffer heavily from local minima. These minima
190 are due to singularities in the unweighted error function
191 that arise from the normalization of the bilinear constraints
192 Eq. (6) by iA(x)ti. As a consequence, a singularity exists for
193 each feature where t � (x,y, 1)T. Under certain conditions,
194 which are not uncommon in real-world optic flow fields,
195 these singularities interact and influence larger regions of
196 heading space [3,4]. Optimal algorithms initialized with a
197 heading estimate in these regions are then likely to get
198 trapped in a non-optimal local minimum. The weighted
199 (bilinear) constraints on the other hand do not suffer from

200these singularities and consequently fewer local minima
201exist. Only minima due to the so-called bas-relief ambiguity
202persist (for details, see [1,3]) and these are fewer in number
203(typically two). However, since the different features are
204incorrectly weighted, algorithms operating on this error
205function are not optimal.
206We propose a novel method that arrives at optimal esti-
207mates by gradually ‘unweighting’ the bilinear constraints
208until the unweighted error function is obtained. The
209method is illustrated for Z&T but can be applied to other
210optimal algorithms as well. The relative inverse depth esti-
211mates are again computed using Eq. (8) but the heading
212and rotation updates now equal

ðDtðiþ1Þ;xðiþ1ÞÞ ¼ argmin
Dt;x

X
x

½sðx; tðiÞ; qðiÞÞTðuðxÞ

� dðiÞðxÞAðxÞDt� BðxÞxÞ�2; ð11Þ 214214

215where

sðx; t; qÞ ¼ 1

kAðxÞtkq ð½AðxÞt�y ;�½AðxÞt�xÞ
T
; ð12Þ

217217

218Note that the constraint weighting now depends on the val-
219ue of q, which we define as the regularization parameter.
220When q equals zero, Eq. (11) minimizes the weighted (bilin-
221ear) constraints and few local minima will be encountered.
222However, when q equals unity, the unweighted error func-
223tion is minimized (Z&T) and local minima are plentiful.
224The novelty of our method consists of a gradual increase
225of q (and hence of the complexity of the associated error
226function) from zero to unity during the Gauss–Newton
227iterations. Different update schemes are possible, but we
228use the following in all our experiments. At iteration i,
229the regularization parameter is updated as follows:

qðiÞ ¼ min 1; qði�1Þ þ k
log10 kDtðiÞk

log10�

� �þ !
; ð13Þ

231231

232where [x]+ = max(x, 0) and � equals 10�13 (note that
233iDti � � at convergence). The parameter k, the adaptation
234parameter, determines the adaptation speed and its value
235is set to 1/4. The choice of this parameter is discussed fur-
236ther in Section 5.4. Since q is non-decreasing and upper-
237bounded, the scheme is guaranteed to converge. In the
238remainder, we refer to the proposed regularized algorithm
239(the adaptation scheme from Eq. (13) applied to the head-
240ing and rotation updates from Z&T) as REG. Some typical
241convergence traces for both Z&T (dotted line) and REG
242(dashed line) are shown in Figs. 2(A) and (B), with the evo-
243lution of q overlaid (solid line). The traces of Fig. 2(A)
244have been obtained on a typical problem from Section
2455.1 whereas those of Fig. 2(B) have resulted from solving
246a difficult problem, involving very noisy optic flow. The
247simple update scheme from Eq. (13) smoothly increases
248the regularization parameter. If the update magnitude ex-
249ceeds unity, q is left unchanged. Otherwise, q is updated
250proportionally to the size of the update; the smaller the up-
251date (indicating that a solution is close by), the stronger q is
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252 increased. This has a stabilizing effect on the algorithm, as
253 exemplified by the traces of q and REG in Fig. 2(B) around
254 iteration 20. As a result of the increased update magnitude
255 at that point, q is increased more slowly. This in turn sta-
256 bilizes the algorithm, as can be seen from the subsequent
257 drop in the update magnitude. This increased stability war-
258 rants the slightly increased complexity of the adaptation
259 scheme as compared to one that simply increases q with
260 a fixed value at each iteration. The regularization parame-
261 ter is increased until its maximum value of unity is reached.
262 From that point on, until convergence, q is kept fixed and
263 the updates are identical to those of Z&T. The convergence
264 traces from Fig. 2 show that Z&T converges quadratically
265 and that the regularized algorithm converges somewhat
266 slower but still very smoothly. In the experiments per-
267 formed here, the proposed method requires less than twice
268 the number of iterations needed by Z&T (see below). Since
269 updating q creates little overhead, one iteration takes an
270 equal amount of time in both algorithms.

271 5. Experiments

272 In this section, the proposed method is extensively com-
273 pared to some of the algorithms discussed in Section 3.
274 First, in Section 5.1, the algorithms are compared in terms
275 of accuracy of the parameter estimates. This evaluation
276 involves synthetic data only and is applied to both optimal
277 and non-optimal algorithms. Next, in Section 5.2, the pro-
278 posed method’s superior robustness to local minima as
279 compared to other optimal algorithms is demonstrated.
280 For this purpose, a synthetic problem is specifically
281 designed so that the unweighted error function is highly
282 complex. In Section 5.3 the proposed method’s robustness
283 is also demonstrated on the well-known real-world NASA-
284 sequence [12]. Finally, Section 5.4 discusses the choice of
285 the adaptation parameter k.

286 5.1. Bias/variance

287 We compare H&J, MAC, CHI and Z&T to the pro-
288 posed method REG in terms of the bias and variance of
289 the heading estimates. Also included is an algorithm

290identical to REG but with the regularization parameter q
291fixed to zero. This algorithm (BIL) effectively minimizes
292the weighted (bilinear) constraints. We use implementa-
293tions provided by Tian et al. [9] for H&J, our own imple-
294mentations for MAC, BIL, CHI and REG and an
295implementation provided by Dr. Tong Zhang for Z&T.
296We have not included the algorithms by Ma et al. [6] (the
297heading estimates of which are identical to H&J’s) and
298by Kanatani [7] (which fails to provide unbiased estimates
299consistently throughout this dataset [2]). The rotation esti-
300mates are not analyzed since the bias is entirely due to
301heading estimation and the heading estimates can be visu-
302alized and interpreted more easily. We examine the same
303configuration of translation and rotation as Zhang and
304Tomasi [2], namely a translation and rotation direction
305equal to (4,�3,5)T and (�1,2,0.50)T respectively. The rota-
306tion rate is fixed to 0.23�/frame and the translational mag-
307nitude is chosen so that the speeds of the translational and
308rotational flow components are identical in the center of
309the random depth cloud. In each experiment, 100 feature
310locations are randomly chosen and uniformly distributed
311over the image. The focal length is set to unity. The depth
312of the features is uniformly distributed between 1 and 4
313units of focal length. Independently and identically distrib-
314uted zero mean Gaussian noise is added to the flow vectors.
315The signal-to-noise ratio (SNR), defined as: (E{iui2}/
316E{ini2})1/2, is varied between 10 and 30. For each algo-
317rithm, 100 trials are performed, in which the feature loca-
318tions, depth and noise are randomized. For the nonlinear
319algorithms (BIL, CHI, Z&T and REG), 15 heading initial-
320izations, evenly spread on the unit sphere, are used and the
321solution with the smallest residual error is retained.
322Table 1 contains the heading estimates obtained with all
323algorithms, for a SNR equal to 10. The field of view (FOV)
324is equal to 50� and 150� in the top and bottom rows respec-
325tively. The estimates are mapped to the upper hemisphere
326and projected onto a circle. The dashed cross marks the
327true heading. Example flow fields for the two conditions
328are shown in Fig. 3. For each algorithm and noise level,
329the bias, defined as the angular difference between the mean
330heading estimate and the actual heading, and a 95% confi-
331dence cone (measured in degrees), closely related to the
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Fig. 2. Convergence traces (left y-axes) for Z&T (dotted lines) and REG (dashed lines) together with the evolution of the regularization parameter q (solid
line, right y-axes) for two different problems; (A) a typical problem and (B) a problem with very noisy optic flow.
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332 variance of the estimates, are computed using techniques
333 from the domain of spherical statistics [13]. Contrary to
334 the bias/variance measures used in previous studies
335 [1,2,9], this more sophisticated analysis clearly brings out
336 the bias in the estimates obtained with H&J. Table 2 con-
337 tains the variance measure for all algorithms, SNRs and
338 FOVs. The value is underlined in the table if the mean

339heading estimate is contained within the confidence cone
340(unbiased). With FOV equal to 50�, this is the case for
341all algorithms and noise levels except, as expected, for
342H&J. We also see that the variance in the estimates is much
343smaller for the nonlinear algorithms than for the linear
344ones, as observed in other studies [1,2,9]. Note that the var-
345iance for CHI, Z&T and REG is nearly identical for all
346configurations. However, when the constraints are weight-
347ed (BIL) the variance is about 10% larger on all occasions,
348which clearly demonstrates the non-optimality of this
349approach. Table 3 contains the median number of itera-
350tions required by the nonlinear algorithms to reach conver-
351gence for the different configurations of Table 2. The
352median is used since CHI and Z&T are less stable than
353REG and sometimes fail to converge within the maximum
354number of iterations (1000) allowed in our experiments.
355Consequently, the mean would give misleading results in
356favor of the proposed method. REG needs less than twice
357the number of iterations required by Z&T to reach conver-
358gence. The alternation steps are probably responsible for
359the slow convergence of CHI. Since alternation methods
360perform coordinate-descent, flatlining often occurs in val-
361leys of the error surface [14]. The Gauss–Newton algorithm

Table 1
Heading estimates obtained with six different algorithms on 100 random trials

FOV H&J MAC BIL CHI Z&T REG

50�

150�

The FOV is equal to 50� and 150� in the top and bottom rows respectively (the SNR is equal to 10 for both). Example flow fields for these two conditions
are shown in Fig. 3.

Fig. 3. Example noisy flow fields (magnified 10 times) corresponding to a
FOV of 50� (left) and 150� (right). The SNR is equal to 10 in both cases.

Table 2
Radii of the 95% confidence cones (in degrees) of the heading estimates
obtained with all six algorithms tested for different FOVs and SNRs

FOV SNR Non-optimal Optimal

H&J MAC BIL CHI Z&T REG

50� 30 0.29 0.28 0.25 0.23 0.23 0.23
20 0.45 0.43 0.38 0.35 0.35 0.35
10 0.86 0.97 0.77 0.74 0.74 0.74

150� 30 1.25 1.05 0.45 0.41 0.41 0.41
20 2.57 1.65 0.69 0.62 0.62 0.62
10 6.10 4.13 2.25 2.02 2.03 2.02

The value is underlined if the mean heading estimate falls within the
confidence cone.

Table 3
Median number of iterations required by the nonlinear algorithms to
reach convergence in the simulations of Table 2

FOV SNR BIL CHI Z&T REG

50� 30 13 365 16 29
20 15 368 19 32
10 20 391 30 41

150� 30 11 118 16 33
20 13 132 19 36
10 16 168 26 45

K. Pauwels, M.M. Van Hulle / Computer Vision and Image Understanding xxx (2006) xxx–xxx 5

YCVIU 1259 No. of Pages 10; 4C: 8; Model 5+

28 July 2006 Disk Used Jayalakshmi (CE) / Gnanasekar (TE)
ARTICLE IN PRESS



U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

362 on the contrary, is much faster since translation and rota-
363 tion are updated simultaneously.
364 In summary, REG performs equally well as the optimal
365 algorithms CHI and Z&T in terms of unbiasedness and
366 variance of the estimates and requires less than twice the
367 number of iterations to reach convergence as compared
368 to Z&T.

369 5.2. Local minima

370 In the previous section we have shown that the accuracy
371 of the proposed method is similar to that of optimal algo-
372 rithms. Here, we demonstrate the greatly increased robust-
373 ness to local minima that is achieved by gradually
374 increasing the regularization parameter q. The error sur-
375 face associated with the optimal egomotion problem is
376 known to become flatter in a situation of lateral translation
377 and the number of local minima increases when the feature
378 locations are clustered together, even in the noiseless case
379 [3]. Using this information we have constructed a particu-
380 larly difficult scenario that enables us to investigate the
381 robustness to local minima of the optimal algorithms:
382 CHI, Z&T and REG. The egomotion consists of a transla-
383 tion and rotation direction equal to (1,0,0.1)T and (0, 1,0)T

384 respectively. The depth, translation and rotation magni-
385 tudes are chosen as in Section 5.1 and the FOV is set to
386 100�. A total of 500 features are used but, contrary to Sec-
387 tion 5.1, they are not uniformly distributed in the image.
388 Instead, their locations are drawn from 20 spatially distinct
389 clusters, the centers of which are uniformly distributed over
390 the image. The cluster centers are indicated with circles in
391 the rightmost figure of Fig. 4. Also shown in this figure is
392 the (subsampled and scaled) flow field used. No noise
393 is added to the computed flow vectors. Each algorithm is
394 run with the same 50,000 heading initializations, randomly
395 sampled from the unit sphere, and is allowed a maximum
396 of 1000 iterations to reach convergence. This large number
397 of initializations allows for a detailed account of the behav-
398 iors of the algorithms over the entire heading space.
399 The first three figures of Fig. 4 contain the estimated
400 headings (black circles) together with the normalized fea-
401 ture locations x/ixi (black dots). As before, the dashed
402 cross marks the actual heading. It is apparent from these

403figures that both CHI and Z&T suffer from a large number
404of local minima, located near clusters of image pixels,
405whereas REG does not suffer from this problem at all
406and only finds one additional local minimum besides the
407global minimum (labeled A in Fig. 4). This second mini-
408mum is located near the image center and labeled B in
409Fig. 4. This minimum is also found by the other algorithms
410and is a consequence of the bas-relief ambiguity. Tech-
411niques have been proposed to discriminate between these
412two strong minima and to quickly find the other once
413one is known [1]. In the remainder, we refer to local mini-
414ma different from these dominant minima as undesired
415local minima, and to the corresponding heading initializa-
416tions as undesired initializations. The fact that all unde-
417sired local minima are related to clusters of feature
418locations clearly indicates that they are caused by the
419singularities in the unweighted error function.
420We repeat the experiment for different noise levels and
421summarize the results in Table 4: the undesired initializa-
422tions (gray dots) are shown in relation to feature locations
423(black dots) with the number of undesired initializations
424underneath each instance. Besides the optimal algorithms
425CHI, Z&T (q = 1), and the proposed method REG, we
426also include a number of algorithms with different, fixed,
427values of q, namely 0.9, 0.8 and 0 (BIL). Each row in Table
4284 corresponds to a different noise level. In general, we
429observe that the number of undesired initializations
430increases with increasing noise. The fact that noise further
431increases the error surface complexity and the likelihood of
432convergence into a local minimum has also been observed
433by Oliensis [4]. As expected, the locations of these unde-
434sired initializations are related to the feature locations. It
435is notable that the feature clusters have a rather large spa-
436tial extent over which they exert their influence and interac-
437tions between clusters are clearly visible. The larger number
438of local minima of CHI is due to flatlining [14]. For all
439three noise levels, we see that the number of local minima
440gradually decreases as q goes to zero. When q equals zero,
441no undesired local minima are found on any occasion. This
442nicely illustrates how the problem complexity decreases
443with decreasing q. From the rightmost column of Table 4
444it is clear that the proposed method does not suffer from
445undesired local minima at all, no matter the noise level.

Fig. 4. Small circles in the leftmost figures correspond to heading estimates obtained with the optimal algorithms when initializing with 50,000 distinct
random headings. The global minimum is labeled A and the local minimum due to the bas-relief ambiguity is labeled B. Feature locations are indicated
with small black dots. The rightmost figure contains the noiseless flow field used (subsampled and magnified 10 times). In this figure, the small circles
indicate the feature cluster centers.
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446 The median number of iterations for these simulations are
447 shown in Table 5. We again see less than a doubling in
448 computation time for REG as compared to Z&T.
449 Fig. 5 contains error functions of the noiseless local min-
450 ima problem discussed in this section for different values of
451 the regularization parameter q. The error is evaluated over
452 an area of the image similar to Fig. 4 (rightmost). At each
453 location (x,y) the error has been obtained by computing
454 the least-squares rotation estimate (using Eq. (7) with the
455 current value of q) assuming a candidate heading
456 t � (x,y, 1)T. It is clear from this figure that the complexity
457 of the error function smoothly increases with increasing q.

458 5.3. Real-world data

459 We repeat the analysis from the previous section on a
460 real-world image sequence and show that the problem

461characteristics are not specific to our engineered data
462set. We use the well-known NASA-sequence [12], the cen-
463ter frame of which is shown in Fig. 6 (left), and compute
464optic flow using a phase-based algorithm [15]. Since the
465obtained flow field is very dense (around 50,000 vectors),
466we randomly select 500 flow vectors to keep the computa-
467tion times reasonable. This subsampled flow field is shown
468in Fig. 6 (right). Next, as in Section 5.2, we run the opti-
469mal algorithms with 50,000 heading initializations, ran-
470domly sampled from the unit sphere, and allow each
471algorithm a maximum of 1000 iterations to converge.
472As before, two dominant minima are obtained for all
473algorithms, one of which is the global optimum (roughly
474forward translation). These minima are then used to iden-
475tify the undesired local minima and corresponding initial-
476izations. The results are shown in Fig. 7 for CHI, Z&T
477and REG. Black dots again mark the feature locations
478(note the small FOV) and gray dots the undesired initial-
479izations. The results are in accordance with those
480obtained on the synthetic datasets: REG clearly shows a
481superior robustness to local minima. The number of unde-
482sired initializations is 10,856 for CHI, 5018 for Z&T and
483only 4 for REG. The median number of iterations is 1000
484for CHI, 48 for Z&T and 58 for REG. Although CHI
485failed to converge in more than half the trials on this very
486hard problem, the two dominant minima were clearly dis-

Table 5
Median number of iterations to reach convergence in the simulations of
Table 4

SNR CHI Z&T q = 0.9 q = 0.8 BIL REG

1 138 7 7 7 7 7
10 144 17 17 17 17 30
5 157 32 32 32 30 45

Table 4
Undesired initializations (gray dots) in relation to feature locations (black dots) for a number of different algorithms

SNR CHI Z&T q = 0.9 q = 0.8 BIL REG

1

10

5

The results are shown for three noise levels. The number of undesired initializations is shown underneath each instance.
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Fig. 5. Error functions of the noiseless local minima problem of Fig. 4 for different values of the regularization parameter q. The complexity of the error
surface smoothly increases with increasing q.

Fig. 6. The center frame of the well-known NASA-sequence (left) and 500 flow vectors (scaled) randomly selected from the complete flow field extracted
from this sequence (right).
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487 cernible. The results are consistent with those of the pre-
488 vious section: the reweighting scheme offers a largely
489 increased robustness to local minima at a relatively small
490 computational cost.

491 5.4. Choice of adaptation parameter

492 The parameter k in the reweighting scheme Eq. (13) con-
493 trols the speed at which the regularization parameter q
494 increases during the Gauss–Newton iterations. The larger
495 its value, the sooner q reaches unity and, consequently,
496 the sooner the algorithm starts minimizing the unweighted
497 error function. To examine the influence of the adaptation
498 parameter on the proposed method, we ran the algorithm
499 on the local minima problem of Section 5.2 for different
500 values of k. The SNR is fixed and equal to five on all occa-
501 sions. The results are shown in Fig. 8.
502 Fig. 8(A) shows the number of undesired initializations
503 as a function of k. As expected, this number increases with
504 increasing k. In the limit (k =1, which implies switching
505 to Z&T after one iteration) 5008 undesired initializations
506 are obtained. This is still smaller than the 7329 obtained
507 by Z&T (see Table 4) since in the proposed reweighting
508 scheme, the first iteration is always performed using the
509 weighted (bilinear) constraints (q = 0). Fig. 8(B) contains
510 the median number of iterations required, as a function
511 of k. Since the reweighting process slows down when k is
512 decreased, the number of iterations increases with decreas-
513 ing k. However, even at the smallest value of k shown here

514(1/8), the number of iterations is still less than twice the
515number required by Z&T.
516We can summarize that, as long as the adaptation
517parameter k is between zero and one, the method is rela-
518tively insensitive to its value. In this range, a reasonable
519tradeoff between robustness to local minima and computa-
520tional requirements is obtained.

5216. Discussion

522We have presented a novel method that reduces the sen-
523sitivity to local minima of optimal egomotion-estimation
524algorithms by gradually increasing the problem complexity
525during the optimization. We have demonstrated that the
526local minima encountered by these algorithms are related
527to the feature (or feature cluster) locations and, as such,
528their values can be arbitrary and unrelated to the true solu-
529tion. This makes these algorithms hard to use in practical
530applications.
531As a remedy, it has been previously suggested to initial-
532ize the optimal algorithms with estimates obtained by sim-
533plified (linear) algorithms. As shown in Section 5.1
534however, noise has a detrimental effect on the accuracy of
535linear algorithms. We have nevertheless examined this
536alternative and verified that REG still outperforms Z&T
537in terms of robustness to local minima, even when the latter
538is initialized with solutions obtained by BIL (results not
539shown). Since the variance of all linear algorithms tested
540is larger than BIL, it is unlikely that their estimates will

Fig. 7. Undesired initializations (gray dots) in relation to feature locations (black dots) for CHI, Z&T and REG.
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Fig. 8. Number of undesired initializations (A) and required number of iterations (B) to reach convergence on the local minima problem (SNR = 5) as a
function of the adaptation parameter k.
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541 prove better initializations. An alternative way to deal with
542 local minima is to perform multiple runs with different ran-
543 dom initializations and retain the solution with the smallest
544 residual. To achieve in this way the same robustness as the
545 proposed method, a large number of runs are necessary
546 and since our method uses fewer than twice the number
547 of iterations required by the fastest optimal algorithm
548 (Z&T), it is computationally more efficient.
549 Finally, we have shown that the proposed method
550 behaves very similar to BIL in terms of the number of local
551 minima found (typically two). By exploiting the relation-
552 ship between these minima, the global minimum can thus
553 be found with high certainty in only one or two runs of
554 our method.
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