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Visual System Based on Artificial Retina
for Motion Detection

Francisco Barranco, Javier Díaz, Eduardo Ros, and Begoña del Pino

Abstract—We present a bioinspired model for detecting spa-
tiotemporal features based on artificial retina response models.
Event-driven processing is implemented using four kinds of cells
encoding image contrast and temporal information. We have eval-
uated how the accuracy of motion processing depends on local
contrast by using a multiscale and rank-order coding scheme
to select the most important cues from retinal inputs. We have
also developed some alternatives by integrating temporal feature
results and obtained a new improved bioinspired matching algo-
rithm with high stability, low error and low cost. Finally, we define
a dynamic and versatile multimodal attention operator with which
the system is driven to focus on different target features such as
motion, colors, and textures.

Index Terms—Artificial retina, bioinspired vision, block match-
ing, motion processing, multiscale motion estimation, rank-order
coding, retinomorphic chip.

I. INTRODUCTION

V ISION IS one of the most useful and efficient sensory
systems developed throughout evolution. Together with

the other senses, its purpose is to provide animals with in-
formation about the world so that they can operate efficiently
within a changing environment to achieve their ends and help
ensure their survival. The visual system in humans is quite
complex and structured in multiple processing layers that deal
with different aspects of the visual input [1]. Motion processing
is a key function for the survival of most living beings, and so,
their visual systems have specific areas dedicated to this task
[2]. Neurophysiological data [3] suggest that primary visual
areas are modeled using spatiotemporal receptive filters [4]–[6]
to compute motion.

Artificial processing architectures designed for tasks that
biological systems solve with impressive efficiency can benefit
considerably from mimicking computing strategies evolved in
nature over millions of years. We have developed a visual model
for motion estimation that integrates different bioinspired con-
cepts. Simoncelli and Heeger modeled how the cortical areas
(V1 and MT cells) can extract the structure of motion through
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local competitive neural computation [6]–[8]. We have devel-
oped this model following an engineering strategy. We integrate
the multiresolution scheme carried out by the brain cells using
a multiscale computation scheme [9], [10], as described by
Willert [11], and use rank-order coding [12] as a natural way
to choose the relevant information (salient maps according to
a specific cost function). The processing scheme presented in
this paper is based on Boahen’s retinomorphic system, which
translates visual stimuli using a population of cells that mimics
retinal functions [13]–[16].

The first aim of this paper was to design and implement a
bioinspired model based on artificial retinas for motion esti-
mation using multiscale and rank-order coding computation.
The system uses restricted-density saliency maps and is conse-
quently of great interest for applications with strict bandwidth
constraints.

By selecting responses in an intelligent way, we significantly
improve the accuracy of the region-based matching model. As
will be demonstrated in Section II, neurons that fire trains of
spikes with the highest energy are the most reliable ones for
region-based matching. We also implement new strategies for
the matching algorithm integrating temporal information. To
choose the best strategy, we define a cost function by comparing
different ones in the search for that with the lowest average cost
and the highest stability over different scheme parameters.

Finally, we define a versatile multimodal attention operator
that focuses the matching algorithm on different features such
as motion, colors, textures, etc., by preselecting the input re-
sponses for the model using rank-order coding biasing. The
system scheme processing is shown in Fig. 1.

II. BIOINSPIRED MOTION COMPUTATION BASED ON

NEURAL POPULATION

Our novel development is an event-driven processing scheme
based on the artificial-retina model described in Boahen’s work
[13], [14], [17]. These events are spikes fired by the encoding
neurons when they tune different spatiotemporal features.

The retinomorphic front end uses four different kinds of
neurons: sustained neurons (center-surround ON_OFF and
OFF_ON units) and transient neurons (temporal INCREASING
and DECREASING units). They can be seen as four output
cells firing specific spikes in response to concrete stimuli. These
spikes represent the input data for our model.

One of the main outcomes of this paper is the study of which
kind of “retinal modality” (cell type) or group is more suitable
for accurate motion estimation.
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Fig. 1. System processing scheme. The dotted square is the part implemented
using the attention operator described in Section IV. The cue-selection unit
biases the rank order of the sustained responses according to other feature
responses (e.g., transient responses, colors, textures, etc.). On the other hand,
the dashed square is the unit for the different matching strategies that also
integrate transient responses in order to incorporate temporal information into
the matching computation.

A. Neuromorphic Chip Emulation: Sustained and
Transient Neurons

We mimic Boahen’s retinomorphic chip [13], [14], [17] using
the following models.

1) Sustained neurons are modeled using difference of Gaus-
sians (DoGs) with different inner and outer ratios or
standard deviations to model a center-surround response
model. Sustained ON–OFF neurons tune local regions
with more intensity than surrounding regions; in this
way, they fire a spike train with an instantaneous rate
which depends on a Gaussian response. In a digital image,
sustained ON–OFF neurons respond when a pixel has
more intensity than the pixels in its neighborhood. Sus-
tained OFF–ON neurons tune regions with less intensity
than surrounding neighborhoods. In this case, they fire
a spike train with an instantaneous rate which depends
on a Gaussian response. In a digital image, sustained
OFF–ON neurons respond when a pixel has less intensity
than the pixels in its neighborhood. The calculus of all the
sustained responses needs the definition of the different
receptive fields, which are characterized by their size. The
receptive field sizes for sustained neurons set the spatial
features obtained or tuned (typically, we use the values of
7 and 11 pixels for the spatial center-surround Gaussian
filters in our experiments).

2) Transient neurons model temporal changes with differ-
ent filters. INCREASING transient neurons tune local
regions where light intensity increases. DECREASING
transient neurons tune local regions where intensity de-
creases. For transient neurons, we do not have spatial
receptive fields but just temporal filters. To calculate
transient responses, we use the previous and following
frames, taking into account different weights for each of
them. After evaluating different alternatives, we choose

TABLE I
PARAMETER CONFIGURATION USED FOR THE EXPERIMENTAL RESULTS.

THE NUMBER OF RESPONSES IS NOT RESTRICTED BUT

SET TO THE MAXIMUM NUMBER

the one that uses the two previous, the current, and the
two following frames with weights of −1, −2, 0, 2, 1,
respectively.

In the image processing computations, errors are generated
by noise, temporal aliasing, model limitations, and so on.
Therefore, we need a threshold to reduce the impact of these
errors. In our experiments, we used a threshold for the sustained
responses with a value of 5 and another one for the transient
responses with a value of 10. To produce a stable level of acti-
vation (rate of active cells), we also define a dynamic threshold.
In this way we define the minimum number of responses our
model needs and the other parameters are tuned to achieve it.

Only the cells with a stimulus suitably tuned to their receptive
field fire a spike, and therefore, they produce a saliency map
with a restricted density. We calculated the response density
for different sequences and features to evaluate the activity rate
(in percent) over the total number of pixels in the sequences.
In standard images, using the parameters in Table I, the activity
rate is around 11%–12% for each kind of response. An example
is shown in Fig. 2.

Thus, our model is of potential interest for a wide variety
of applications with strict bandwidth constraints. Nevertheless,
activity depends strongly on the standard deviations of the
DoGs used and also on the characteristics of the image.

B. Multiscale Motion Model for Spike Matching

Our motion-processing system computes a region-based
matching method, as described in [19], in which we define the
motion estimation as v = (dx = d, dy) for the neighborhood
of a specific cell as the best fit between the current image
region and the previous one. In this way, we find the best
matching region using a distance measure, the sum of squared
difference (SSD) value, or the minimum mean square error
(mse). In our experiments, to design the block-matching model,
we implemented a full search using an exploration window of
14 pixels and a block size of 8 pixels. The block-matching
example pseudocode is detailed in Appendix I-A.

The first processing stage computes the four neuron-cell
responses emulating retinal processing. The second stage com-
putes motion displacement by matching the responses produced
by the sustained and transient neurons throughout every frame
taken at different instants by mimicking the MT area of the
cerebral cortex [6]. Bioinspired motion-estimation models are
usually based on energy models due to their affinity to a neural-
like description, but they are rather complex and require much
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Fig. 2. Retina responses for a frame from the Yosemite sequence [18]. Activity varies from 11% to 12% for each type of neuron. (Left) Original image from the
Yosemite sequence. (Center) Transient responses. (Right) Sustained responses.

Fig. 3. (Right) Multiscale images for the Yosemite sequence. (Left) Generic scheme for multiscale with three scales and factor two, as in our tests.

more computational resources. As shown by Simoncelli [7],
matching methods are equivalent to energy models but are
much more efficient in terms of computational load.

For the matching process, we used a standard block-matching
method, as described in [19] and [20], but relied on the neuron
responses as input. We evaluated multiple matching cost func-
tions combining the sustained and transient neuron responses.
In this section, we focus on the use of sustained neurons for the
matching process. In Section III, we will discuss other matching
alternatives, including sustained and/or transient neurons.

We introduce here a new bioinspired element, multiscale
processing [9], [10]. We use in our work three scales, one
of them being the original sequence and the other two being
obtained by subsampling with a factor of two. An illustrative
example is shown in Fig. 3.

We apply our sustained neuron model to three well-known
benchmark sequences to extract the responses (the Yosemite,
the translation tree, and the diverging tree sequence). Different
scales will tune better spatial features of different sizes.

At the smallest scale, the system computes the motion-
estimation field, and at the next scale, this estimation is an
input parameter for the new motion estimation, oversampled
by a factor of two. The block matching in the next scale guides
its own motion estimation using the previous motion estimation
for fixing a search window of 3 pixels.

For instance, if the previous motion estimation is v = (i, j)
for the neuron n, as input parameter for the next scale, we
will use v = (2 · i, 2 · j) and oversample it by a factor of
two (Fig. 4). This motion estimation guides the new motion-
estimation computation by setting up a redefined search win-

Fig. 4. Oversampling of a neuron motion estimation used for guiding the
motion-estimation search at the next scale with a search window of 3 pixels,
as in (1).

dow for the algorithm and by exploring the region defined
by (1)

ER = {v = (2 · i + α, 2 · j + β) : α, β ∈ {−1, 0, 1}} (1)
ER = {v = (2 · i + α, 2 · j + β) : α, β ∈ {−2,−1, 0, 1, 2}} .

(2)

The system fixes the best motion estimation for the new
scale, and we follow the same process for the last scale, the
original image, using a search window of 5 pixels instead of
3 pixels, as defined in (2).

The pseudocode for the multiscale approach is given in
Appendix I-B. The minimum mse motion estimation updating
uses a new threshold, which is set to 1.0 in our implementation.

One of the first results obtained from the last paragraphs
is that if a sequence for the smallest scale contained a large
object with a high contrast between it and the background,
we would obtain the motion estimation for this region, but
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Fig. 5. Average angular error for test sequences. The rate of selected cues from rank-order coding is the percentage of responses chosen from sustained responses
because of their local energy measure value (local structure support). This represents the optical flow estimation density.

if we had a small object with a low contrast, we would not
detect it. This object will be invisible at the coarse scale due
to the low-pass filter operations. As the motion-estimation field
guides the following scale fields, we lose the smallest objects
for the next scales and cannot retrieve them (this is caused by
spatiotemporal aliasing).

To solve this problem, we could compute all the estimations
at each scale, but the computational complexity would be very
high, and there are other ways of solving these problems, as we
propose in Section IV, where we explain the techniques used to
reduce this computational complexity.

C. Rank-Order Coding: Contrast Versus Accuracy Tradeoff

Focusing on the use of sustained neurons, our first goal is
to demonstrate that those neurons with larger firing responses
produce more accurate motion estimations.

First of all, rank-order coding [12] consists of selecting only
the most important responses or cues, sorting all the data or
responses according to a measure or a criterion (cost function),
the local energy measure for instance. The energy measure
used for rank-order coding, in this case, is just the normalized
sum of responses from every ON–OFF and OFF–ON sustained
neuron (which, in a neural-like computing scheme, can be done
by a collecting neuron). Therefore, we sort the responses by
the energy values and select the highest ones according to a
predefined rate threshold (in percent). The set of selected cues
from a rank-order coding is the percentage of most important
or most reliable responses that we are going to use in the block-
matching algorithm according to the local light contrast. This is
a concrete setup, but we also define this selection procedure
in a different way, implementing a multimodal operator, as
described in Section IV.

We use a set of well-known sequences to test our model:
the Yosemite, the translation tree, and the diverging tree se-
quence [18]. The results are shown in Fig. 5. To facilitate the
comparison of accuracy, the proposed motion-estimation model
is compared with a standard block-matching method (which
directly matches image luminance instead of neuron responses),
as shown in Fig. 5.

In Fig. 5, there are three different plots, each of which
has two different groups of columns. The first represents a
bioinspired block matching, as can be seen in the legend, in
which we use rank-order coding to select the most important

responses and apply an adapted block-matching algorithm. The
second column shows the results of a standard block-matching
algorithm based on sustained neuron responses.

The metric used is the average angular error, which is the
average of the angle difference between the computed motion
vectors and the ground-truth ones, as defined in the following:

AAE = mean
(
cos−1(ê · ĝ)

)
(3)

where AAE is the average angular error, ê is the normalized
estimated motion vector, and ĝ is the normalized ground-truth
vector.

An analysis of the average angular error clearly supports the
bioinspired approach. As can be seen in every test, the average
angular error increases concomitantly with an increase in the
number of responses provided to the block-matching stage. At
the top left, diverging tree results follow a stable increasing
curve, while the percentage of responses taken (or rate (in
percent) of selected cues from rank-order coding) is growing.
Therefore, as we increase the number of cell responses provided
to the block-matching stage, the system produces higher error.
Furthermore, the same progression can be seen in all the tests.
We also have to take into account the error difference between
the two types of block-matching algorithms, and we see that
the bioinspired algorithm based on cell responses always leads
to the best results.

In conclusion, our working hypothesis is supported by the
results: Neurons that provide the best results, i.e., neurons
that fire spikes with higher energy due to their tuning regions
with specific spatial and contrast features are the most reliable
ones for estimating motion with block matching. Therefore, we
use rank-order coding to choose the image areas with higher
confidence. This is of critical importance for the subsequent
processing layers.

III. TRANSIENT NEURON INTEGRATION

INTO THE MOTION MODEL

The transient neuron responses provide us with a way to
incorporate temporal information into the matching process de-
scribed in Section II. This alternative consists of integrating the
increasing and decreasing (INC and DEC) transient response
neurons with the cues given by the sustained neurons for our
sparse block-matching algorithm.
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Fig. 6. CPU relative time graphics. The solid line represents the CPU time for the standard block-matching algorithm. This is compared with the CPU time
consumed with each of the three strategies presented and the approach that relies only upon the sustained responses, using the Yosemite sequence. On the left, the
exploration region used is of 3 × 3, and on the right, it is of 5 × 5. CPU time depends a great deal upon the ratio between the percentage of retinal responses and
the resolution, i.e., upon the activity rate (several values of activity rate are explored along the x-axis).

We have implemented the following three different
strategies.

1) Strategy 1 preselects dynamic local areas, i.e., local acti-
vation of transient response cells preselects areas of inter-
est for motion estimation. The INC and DEC responses
are used for the localization (definition) of regions where
there is motion. In this case, we use local transient
information only for finding these areas, thus providing
sustained cell responses from these areas alone to the
block-matching algorithm (the pseudocode is detailed
in Appendix I-C). This alternative is based on a block-
matching scheme that always focuses on areas where
there is movement. If it is applied to a static background,
there is no estimation provided. The scheme only gener-
ates motion estimation if temporal transitions exist in the
processed scenario. This alternative significantly reduces
the computations and helps to focus attention directly on
the moving objects.

2) Strategy 2 is based on the idea of using all the retinal
responses directly. In this case, the way to find the best
matching region is the SSD, or the search of the region
with which the current response neighborhood has the
minimum mse, as described in Section II. Using transient
and sustained responses, this strategy computes a new
error measure to guide the exploration of the block-
matching process. The new error measure, inspired by
Simoncelli’s work [6], [7], is defined in (4). It is not only
a normalization; we define a new normalized mse to find
the best matching in the region

En =
Sn∑

n∈R Sn + K
+

Tn∑
n∈R Tn + K

(4)

where En is the error value for neuron response n, Sn

is the mse for sustained response, Tn is the mse for
transient response, R is the region or neighborhood where
n belongs, and K is a constant. In addition, we use En to
choose the right motion estimation in the matching algo-
rithm search. The pseudocode is shown in Appendix I-D.

This strategy is based on energy models and represents
a preselection of areas with higher energy for sustained
and transient responses, thus normalizing their error.

3) Strategy 3 uses transient information only in specific
situations. The algorithm uses the error measure defined

in (4) in the exploration of the best region matching only
when the decision is ambiguous, i.e., when the choice
of a region is uncertain because two or more regions
have a similar mse. The algorithm uses a threshold to
decide whether to use mse or the new error measure (the
threshold is set to 1.0). The fully detailed algorithm is
shown in Appendix I-E.

The relative CPU times for the different strategies are shown
in Fig. 6. The standard block-matching CPU time is defined
by the line (1 in relative time) in the graphic. The graphic on
the left depicts the relative time with an exploration region of
3 × 3, and on the right, it is of 5 × 5. The results support our
hypothesis that our model is more efficient with lower activity
rates than the standard block-matching algorithm. Strategies 1
and 3 achieve the best results, reducing CPU time by around
75% and 60%, respectively, in the worst case. On the other
hand, strategy 2 needs more computational resources than the
standard block matching, even with low activity rates.

In addition to this, we also studied the computational load
(L) for the different strategies. These are detailed in (5)–(9),
where n is the resolution in pixels for each frame; fsust is
the activity rate for sustained cells; ftrans is the activity rate
for transient cells; fmatching ambiguity is the likelihood that the
minimum mse block search finds more than a single block;
and A, B, and C are the computational loads for the different
processing tasks of each pixel or response (note that A <
B,C). The activity rates in benchmark sequences are tuned to
be around 10%. The operations included in A, B, and C are
indicated in Appendix I

Lstandard =n(A) (5)

Lsust = fsust(n)(A) (6)

Lstr1 = (ftran(n) ∩ fsust(n)) (A) (7)

Lstr2 = (ftran(n) ∪ fsust(n)) (B) (8)

Lstr3 = fsust(n)

×
(

C + Fmatching ambiguity

(
n

blocksize
B

))
.

(9)

Finally, we used a cost function to compare the different
bioinspired block-matching strategies. The error estimation was
calculated by the angular error using the three benchmarking
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Fig. 7. (Left) Total average cost function when different scheme parameters are used for the various matching alternatives. The purpose is not to achieve an
optimum solution but rather to evaluate the configuration and the role of each kind of response. (Right) Stability model with respect to parameter tuning, using the
configurations shown in Table II.

TABLE II
COMBINATORY SCANNING OF PARAMETERS. THIS INVOLVED ANALYZING

480 CONFIGURATIONS FOR EACH STRATEGY AND SEQUENCE

sequences (comparing the obtained results with the known real
ground-truth motion fields).

Angular error is not, however, a definitive evaluation esti-
mation. It is important to emphasize that our strategies are
sparse block-matching algorithms, and therefore, we need a
cost function that selects the strategy with the smallest error
and also with a higher number of responses (higher density).

The cost function (10) is defined as the ratio between the
average angular error and the density of neurons that are active

Cost =
Ang.Error

Density
. (10)

A comparison of the accuracy of the different matching
strategies is shown in Fig. 7, in which five columns represent the
standard block matching, the block matching using only sus-
tained responses, and the other three strategies, which function
according to the responses of the transient sensitive cells. We
explored the space of the matching method parameters (mod-
ifying DoG sizes, search areas, block sizes, etc.) in order to
determine the strategy with the highest accuracy and stability as
far as parameter tuning was concerned. The optimization of the
parameters involved a combinatory scanning, with the object
being not to obtain an optimum solution but rather to evaluate
the configurations and alternatives and a way of estimating
the role of the different kinds of neuron. The multiparameter
combinatory search scans inner and outer standard deviations
for sustained responses, temporal filters for transient responses,
and block-matching parameters (Table II).

Strategies 1 and 2 turned out to be best, not just on comparing
average costs but also on analyzing their stability as far as dif-

ferent scheme parameters were concerned (Fig. 7). Strategies 3
and that consisting of just using sustained cells led to higher
average cost and greater instability. On the other hand, high
computational requirements were needed for strategy 2. After
analyzing the results, we chose the first strategy as being a good
tradeoff between accuracy, stability, and computational cost.

IV. ATTENTION MODELS

As demonstrated in Section II, it is possible to use multiscale
and rank-order coding for the implementation of a system
which is able to select a low percentage of sustained neuron
responses to calculate optical flow fields very accurately. In that
model, we did not use the transient neuron responses, but the
information involved might be useful for attention models.

We define a versatile multimodal attention operator which
is able to focus on different features such as motion, colors,
textures, and so on. We apply rank-order coding by weighting
the responses in the image that tune with a new feature, such
as temporal events (transient cues), a specific color, or even a
texture, and focus the system computing resources on them,
even dynamically. The operator is defined in (11) and (12)

Csel = R(α · SF ) (11)

where Csel is the result of the operator, i.e., the list of selected
cues from rank-order coding, R is the operator, SF is the
sustained energy value for the frame F , and α is the multimodal
factor defined in (11)

α = 1 +
ωT · TF∑
n∈F Tn+ k

+
ωC · CF∑

n∈F +k
+

ωTx · TxF∑
n∈F Txn+ k

+ · · ·
(12)

where TF , CF , and TxF are the transient, color, and texture
energy values of the F frame, respectively, and ωT , ωC , and
ωTx are the weights for each feature. The α factor is normalized
by the sum of the values of the neuron responses (n) for each
feature, and K is a constant (with a value of 1.1) used to
avoid a null denominator. The multimodal operator (R) extracts
the fixed rate of cues (in percent) from the sorted list. The
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Fig. 8. Comparison between the block-matching algorithm and the block-matching algorithm using the attention operator focusing on motion over traffic
sequences [21]. (From left to right) first row—original image, sustained responses and rank-order sustained responses; second row—flow field for the first
algorithm and flow field for the second one overlapping the original image.

criterion for sorting depends on the sustained energy and on
the multimodal factor α.

Rank-order coding can be used to reduce the number of
computations, but if not carefully used, it produces undesirable
effects. For instance, if a low-contrast object is moving in a
high-contrast static environment, rank-order coding based on
local energy rejects the moving object. This is so if the rank
order only uses information from sustained neurons. Further-
more, it is important to point out that it is possible to use the
multiscale approach, focusing the attention operator on each
scale. For example, if we have a small object and a large
object in motion, with our motion detection model, even with
multiscale, it may be impossible to extract motion for the
small object because the receptive fields do not tune its spatial
features accurately because of its size. If we use only sustained
neuron responses, we cannot improve the estimation, but if we
use transient neuron responses, it is possible to extract the small
object’s motion by weighting its temporal features. In this way,
an attention model based on motion will focus on the largest
object’s motion when they are both moving, but once the largest
one becomes static, if the smallest one continues, its motion
becomes salient.

An attention module can be implemented by defining a new
energy measure, as shown in (11) and (12), where we weight
the new features according to the application of our system.
For example, if we need to locate objects in motion irrespective
of their size, the last example would be a good solution.

Nevertheless, if we need to extract the motion or to track a red
object or one with a specific texture, we modify the attention
operator to set higher weight upon responses that tune red
objects or the specific target texture and raise them in the rank-
order coding list to the highest status. As shown in Fig. 8, the
attention operator focuses on motion, and the algorithm extracts
more information for objects that are moving, although the
contrast between them and the background is not particularly
significant. Furthermore, the number of responses is similar
for the algorithms; around 3% of the number of pixels and
the estimations in the block-matching algorithm based only
on sustained responses are the sparsest. It is assumed that
the estimations for a block-matching algorithm that uses rank-
order coding are the best because, where there is no motion,
it estimates null velocity, and the system focuses on objects in
motion, while the basic algorithm estimates different erroneous
velocities in these cases. It can be seen in Fig. 8 how the
system’s response to moving objects is enhanced and the sparse
erroneous responses to static objects in the basic model are
neatly cleaned up (see the top row in Fig. 8).

An example where the attention operator is focused on the
motion and on the red color is shown in Fig. 9, where a red car
can be seen driving south. If we apply the standard algorithm,
as the contrast with the background is not very significant,
the sustained cells do not fire a high response. Therefore, the
algorithm does not provide a motion estimation for the red car.
On the other hand, if we use the attention operator focusing
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Fig. 9. Comparison between the block-matching algorithm and the block-matching algorithm using the attention operator focusing on color and motion over
traffic sequences [21]. (From left to right) first row—original image, sustained responses, and rank-order sustained responses; second row—flow field for the first
algorithm and flow field for the second one overlapping the original image. In this latter case, the red car (inside the dotted circle) attracts a larger number of
estimations by the attention module.

on the red color, we reinforce the red car cues which emerge
at the top of the rank-order coding list. In this way, we obtain
the motion estimation for the red car. Furthermore, the operator
is also focused on the motion, as shown in Fig. 8. Fig. 10
shows the same example, now focusing on the orange color.
In Fig. 9, the focus was on the red car, but now, in Fig. 10, the
orange trams provide the focus. The block-matching algorithm
provides a sparse motion estimation for the tram in the upper
left-hand corner, but it does not give any estimation for the other
tram. Using the attention operator focused on the orange color,
we achieve more responses for the two trams, and the algorithm
provides a slightly denser motion estimation for both of them
than does the former algorithm.

The difference between the two alternatives in each case is
significant, showing more responses for the focus objects (red
car in Fig. 9 and orange trams in Fig. 10) and estimating the
motion.

Moreover, we can also define the multimodal attention oper-
ator dynamically. We are currently exploring schemes in which
we first fix the operator to extract only objects in motion, and
then, we modify the operator to extract objects of some colors
and possibly objects that match a specific texture.

V. CONCLUSION

We have designed and implemented a bioinspired model
based on artificial retinas for the detection of spatiotemporal
features.

We have demonstrated that by choosing responses in an
intelligent way, we have been able to improve the accuracy
of our model significantly. We have shown that regions with
higher local contrast lead to more accurate estimations. Fur-
thermore, the average angular error decreases to around 32%,
and the average improvement in accuracy is around 16% when
preselecting the proper responses (before computing motion by
a block-matching model). We have also implemented a new
motion-estimation bioinspired model based on the standard
block-matching algorithm integrating concepts such as multi-
scale and rank-order coding. The selection of the responses
produces low-density saliency maps (about 11%–12% of the
number of pixels in standard images for each kind of neuron),
which is of interest for applications with strict bandwidth
constraints.

We have designed a more stable improved block-matching
algorithm which also has a lower cost by integrating transient
neuron responses. We have implemented different strategies
based on energy models and defined a cost function. We
then selected the most stable and lowest cost strategy which
preselects dynamic local areas for the matching processing.
The cost-function tests show similar errors to standard block-
matching algorithms and low deviations.

Finally, we define a versatile multimodal attention operator
to extract other potential features by modifying the rank-order
coding computation.

Our models allow features to be selected according to atten-
tion processes by using rank-order coding, and thus, we can
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Fig. 10. Comparison between the block-matching algorithm and the block-matching algorithm using the attention operator focusing on color and motion in
traffic sequences [21]. (From left to right) first row—original image, sustained responses, and rank-order sustained responses using motion and orange color to
drive the attention operator; second row—flow field for the first algorithm and flow field for the second one overlapping the original image. In this latter case, the
orange trams (inside the dotted ellipses) provide the focus of attention.

choose the image features that lead to more accurate motion
estimations. This is highly relevant for efficient computation
because only a few pixels of the image need to be processed.
In tasks such as object tracking, for instance, we bias the
rank order of the sustained neurons according to the transient
neuron information by using a small number of high-confidence
features.

This computing scheme is designed to be used with appli-
cations involving embedded processors, such as video surveil-
lance [22]. For these devices, computing resources are very
limited, but using the proposed method, we can produce motion
estimations without losing the relevant features. We also plan
to optimize the parameter search and integrate our model into
a more general framework to study different vision schemes or
even into real-time processing technologies.

APPENDIX I

A. Block-Matching Pseudocode

The input parameters are as follows: F_next is the next frame
in the sequence, F_current is the frame for which we calculate
the motion estimation (ME), Max_disp defines a square explo-
ration window of (Max_disp · 2) × (Max_disp · 2) size, and
B_size is the block size.

B. Block-Matching Multiscale Pseudocode

The input parameters are as follows: F_next is the next frame
in the sequence, F_current is the frame for which we calcu-
late the motion estimation (ME), Max_disp defines a squared
exploration window of (Max_disp · 2) × (Max_disp · 2)
size, B_size is the block size, Region is a structure that defines
the search region for the new motion estimation based on
the previous estimation, and ME_old is the previous motion
estimation oversampled.

The minimum mse motion estimation is updated in two
cases: The new mse is significantly lower than the previous
one (the mse of the new ME is DIST_THRES lower than the
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previous stored mse); the new mse and the Euclidean distance to
estimation {0, 0} are lower than the previous ones. The method
is based on the distance because the lowest estimations are the
most reliable ones in a multiscale approach, since the firing
frequency is high.

C. Block-Matching Strategy-1 Pseudocode

The input parameters are as follows: FS_next is the next
frame in the sequence of sustained responses, FS_current
is the sustained response frame for which we calculate the
motion estimation (ME), FT_next is the next frame in the
sequence of transient responses, FT_current is the transient
response frame for which we calculate the motion estima-
tion (ME), Max_disp defines a squared exploration win-
dow of (Max_disp · 2) × (Max_disp · 2) size, and B_size is the
block size. The highlighted code represents the computational
load A in (4)–(6).

D. Block-Matching Strategy-2 Pseudocode

The input parameters are as follows: FS_next is the next
frame in the sequence of sustained responses, FS_current
is the sustained response frame for which we calculate the
motion estimation (ME), FT_next is the next frame in the
sequence of transient responses, FT_current is the transient
response frame for which we calculate the motion estimation
(ME), Max_disp defines a squared exploration window of

(Max_disp · 2) × (Max_disp · 2) size, and B_size is the block
size. The highlighted code represents the computational load B
in (7) and (8).

E. Block-Matching Strategy-3 Pseudocode

The input parameters are as follows: FS_next is the next
frame in the sequence of sustained responses, FS_current is
the sustained response frame for which we calculate the motion
estimation (ME), FT_next is the next frame in the sequence of
transient responses, FT_current is the transient response frame
for which we calculate the motion estimation (ME), Max_disp
defines a squared exploration window of (Max_disp · 2) ×
(Max_disp · 2) size, and B_size is the block size. The high-
lighted code in the left column represents the computational
load B in (7) and (8), and in the right column, it represents
the computational load C in (8).
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