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a b s t r a c t

Optical-flow computation is a well-known technique and there are important fields in which the appli-
cation of this visual modality commands high interest. Nevertheless, most real-world applications
require real-time processing, an issue which has only recently been addressed. Most real-time systems
described to date use basic models which limit their applicability to generic tasks, especially when fast
motion is presented or when subpixel motion resolution is required. Therefore, instead of implementing
a complex optical-flow approach, we describe here a very high-frame-rate optical-flow processing sys-
tem. Recent advances in image sensor technology make it possible nowadays to use high-frame-rate sen-
sors to properly sample fast motion (i.e. as a low-motion scene), which makes a gradient-based approach
one of the best options in terms of accuracy and consumption of resources for any real-time implemen-
tation. Taking advantage of the regular data flow of this kind of algorithm, our approach implements a
novel superpipelined, fully parallelized architecture for optical-flow processing. The system is fully work-
ing and is organized into more than 70 pipeline stages, which achieve a data throughput of one pixel per
clock cycle. This computing scheme is well suited to FPGA technology and VLSI implementation. The
developed customized DSP architecture is capable of processing up to 170 frames per second at a reso-
lution of 800 � 600 pixels. We discuss the advantages of high-frame-rate processing and justify the opti-
cal-flow model chosen for the implementation. We analyze this architecture, measure the system
resource requirements using FPGA devices and finally evaluate the system’s performance and compare
it with other approaches described in the literature.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Optical-flow is a well-known technique used to recover 2D mo-
tion from image sequences. Different approaches to the subject in-
clude image block-matching, gradient constraints, phase
conservation and energy models [1]. Until now most comparative
studies have focused on the different estimation approaches and
their accuracy [1,2]. Some of them have also gone on to cover
implementation feasibility [3]. These studies have usually taken
synthetic sequences with known ground-truth flow fields to com-
pare their accuracy with different types of motion. They have con-
cluded that greatest accuracy is achieved when using phase-based
and differential methods but, though these models work well for
low-velocity motion, they fail when trying to estimate fast motion,
i.e. their accuracy is significantly degraded due to temporal aliasing
[4,5]. In these cases, phase-based and differential models use com-
plex methods and typically multi-scale approaches [4,6–8] to im-
prove their estimations. Another valid alternative is that of
block-matching approaches, which are quite capable of computing

fast motion but with high computational cost and usually without
subpixel accuracy. This feature makes them interesting for real
applications but we do not include them in the following discus-
sion because their flow is not very accurate [1]. A third option is
to combine the properties of block-matching and differential
methods [9] to take advantage of the positive features of both ap-
proaches. Finally, some authors have combined multiscale ap-
proaches and iterative-diffusion methods to improve flow
accuracy and the range of velocities [10]. It is important to note
that temporal aliasing is a complex problem in which we cannot
separate the temporal sampling rate and the image structure.
According to the Nyquist–Shannon theorem (discussed in [5]), spa-
tial frequency is very important in calculating the maximum speed
that can be recovered from an image sequence.

These approaches partially overcome the problem of fast mo-
tion but their real-time implementation is still beyond the possi-
bilities of current technology (at least at affordable system costs).
Furthermore, these models require very complex architectures
that imply very high hardware resource consumption to achieve
real-time processing, and in some cases their inherent parallelism
is constrained, by the warping method in multiscale approaches
for instance, or due to the use of iterative algorithms. Our
approach focuses on an alternative method which involves the
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implementation of a very regular motion–estimation approach
that allows the efficient use of high-frame-rate cameras. Advances
in imaging-sensor technology have made it possible to acquire
images at a very high-frame-rate (for instance, see products from
[11–13]). The use of such hardware reduces the range of motion
in the video sequences, thus allowing the simplification of the
optical-flow models and increasing the accuracy of the system
[5]. The specific-purpose computing architecture described here
is able to compute at significantly higher frame rates than the
standard 25 frames per second (fps), allowing us to take advan-
tage of modern sensor capabilities.

In various previous works, the Lucas & Kanade (L&K) approach
[1,14] has been highlighted as a good candidate to be implemented
on hardware with affordable resources [2,3,15,16]. A comparison of
L&K with other differential approaches [17,18] (also of feasible
hardware implementation [19]) concludes that the L&K least-
squares-fitting approach results in the greatest accuracy. From
our previous experience [16,17], and also according to [5], we con-
clude that to achieve accurate estimations with this model a high
acquisition and processing frame-rate is desirable. This motivates
the development of a high-frame-rate optical-flow computing sys-
tem. Although in previous works we have described a system capa-
ble of processing 41 kilopixels per second (Kps) [15,16], the
approach presented here adopts a different algorithmic strategy
according to the modifications proposed in [20]. Furthermore, we
implement here a novel superpipelined processing architecture
capable of computing one pixel per clock cycle. We have had to
undertake a deep analysis of the circuit arithmetic to achieve accu-
rate results with affordable hardware resources. These innovative
aspects result in our approach outperforming any previous system
described in the literature by one order of magnitude. This perfor-
mance allows real-time processing of over-sampled frame rates,
which opens the door to the use of advanced image sensors in
real-time motion–estimation systems and their potential
applications.

The challenge is to design a novel architecture capable of pro-
cessing optical-flow at over-sampled frame rates. The state-of-
the-art processing architectures (see Section 3.5) are unable to pro-
cess 640 � 480 resolution images (we will assume this resolution
in the rest of the paper unless explicitly mentioned) at frame rates
higher than 13 fps for subpixel methods or 26 fps for correlation-
based approaches (see Table 4 in Section 3.5) and therefore a novel
design strategy is needed. In the following sections we describe the
architecture of a customized DSP designed for FPGA with this aim
in mind. We illustrate how our superpipelined architecture outper-
forms the fastest processing system described to date by more than
one order of magnitude. In Section 3.4, we evaluate the system re-
source’s cost and the performance of the final system.

2. Description of the model

In our discussion, we have presented the L&K model as being a
good candidate for real-time optical-flow computation but one
important point must be born in mind: most of the evaluations
and tests of this model use the implementation described by Bar-
ron et al. [1], which is open to significant improvement. Brandt
[20] explores this topic in a study in which he demonstrates that
a suitable choice of the different parameters improves flow accu-
racy and density significantly. Furthermore, other publications re-
veal that commonly used optical-flow measurements [1] are
biased due to errors in numerical differences [18,20].

In Appendix A, we describe briefly the computations upon
which the L&K approach is based and the adopted modifications
of the system parameters according to [20]. Appendix B reviews
3D spatio-temporal sampling theory and investigates the effects

of motion aliasing as well as the main limitations of the L&K model.
Readers not familiar with these topics may find these appendixes
useful for a better understanding of the motivation and specific
motion-estimation model addressed in this work.

2.1. High-frame-rate system motivation

The analysis in Appendix B calls for the use of a first-order
Gaussian-derivative kernel of 5 taps. According to the sampling
theorem and as described in [5] we cannot reliably compute
the velocity of objects with a high spatial-frequency content;
we can only compute fast motion for low spatial-frequency
objects using complex multiscale methods, as described in
[4,6–8]. Therefore, we propose to increase the temporal sampling
frequency to recover fast motion patterns and improve model
assumptions.

We have commented in Section 1 upon the availability of image
sensors with very high frame rates at different image resolutions.
The combination of such high-frame-rate image sensors and a spe-
cific processing system capable of computing the incoming data
stream is of considerable interest for a wide range of real-world
applications. The main improvements to such a system are the
following:

1. The processing scheme is simplified, avoiding complex multi-
scale approaches which require equally complex architectures
and translate into higher system costs. The improved version
of the L&K optical-flow model that we have adopted combines
high accuracy and implementation feasibility [3,15,16].

2. Temporal aliasing is reduced significantly through high-frame-
rate sampling. This allows the computation of high-spatial-fre-
quency contents of image motion, thus increasing the density of
the flow field.

3. The constant luminance condition is better satisfied [5] through
high-frame-rate sampling. Therefore the first-order constraint
is better satisfied, thus improving the accuracy.

To date there have only been a few approaches capable of pro-
cessing optical-flow in real-time at standard video rates of up to
30 fps, and faster processing systems are required to deal with high
frame rates in real-time. Nevertheless, even though we are able to
compute flow at one order of magnitude faster than previous ap-
proaches, there is a trade-off between flow accuracy and camera
image signal-to-noise ratio (SNR). SNR is usually proportional to
the square root of the exposure time. Thus, a higher frame rate im-
plies a lower exposure time, which can increase noise dramatically.

As shown in [5], an over-sampled factor of 3 (90 fps) increases
the accuracy of motion-estimation models dramatically but this
strategy is not recommended for factors higher than 6 due to the
degradation of the image SNR.

In Fig. 1, we show the qualitative results of an optical-flow
sequence computed at 90, 30 and 10 fps using a progressive area
scan CCD sensor. Because the over-sampling factor is small, as a
first approximation we consider image SNR to be constant at the
different frame rates. The results shows that the flow computed
at 90 fps is very homogeneous and stable and the confidence
areas clearly identify the motion boundary, which corresponds
with the areas of higher spatio-temporal structure. The results
computed at 10 fps are quite noisy, which may well derive from
the reliability areas of the third row. Note that at 30 fps the flow
quality is significantly degraded (compared with the 90 fps flow)
and the fastest movements (the left arm pattern for instance) are
lost. This demonstrates the importance of having a computing
system capable of processing the data stream of 90 fps
sequences.
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2.2. Target applications

The high-frame-rate computation has two important implica-
tions. First, this allows us to achieve very high optical-flow accu-
racy, which is of considerable interest. Second, the system image
latency is significantly reduced (for instance a system running at
25 fps with 3 frame latency has a delay of 120 ms, whilst when
running at 125 fps the delay is 24 ms).

The first property (high accuracy) is important for applications
that require the use of motion as input for further processing to ex-
tract higher level sequence information. Highly accurate motion is
required for higher level tasks such as motion-in-depth estimation
[21], structure from motion [22], the computation of independent
moving objects [23] and accurate tracking [24]. The final system
performance of these techniques dependents very much upon
the accuracy of the input flow field because errors lead to wrong
higher level estimations (since some of these tasks depend on local
variances of the input optic-flow).

The second property (low latency) is of crucial importance for
physical systems which interact with other agents in the real-
world. For instance, in dynamic scenarios where an autonomous
agent has to close the perception action loop [25], long latencies
make grasping operations more unstable. Furthermore, tasks such
as autonomous navigation also require low latency motion in order
to avoid collisions and properly compute time-to-contact [26] on
the loop. This property is of critical importance in the field of ad-
vanced driver assistance systems for vehicular technology, as is
shown in [27] (the warning distance is closely related to system la-
tency, making this a very critical factor for the viability of the final
system). Finally, other examples of target scenarios are in the field
of augmented view applications, which also require low latency.
For instance, some vision-aid systems need to fuse the input
images dynamically with the processed ones and display the re-
sults to the vision impaired subject by using a head-mounted dis-

play [28]. If motion cues are going to be used for improving image
information but the latency is high, the results will be difficult to
integrate with the remaining visual capabilities of the subject
due to the temporal delay of the extracted cues. This will make
augmented-vision aids based on long-latency processing engines
useless.

The previous examples represent several fields of applications
where the system described here is of interest.

3. Hardware architecture

Standard PC processors nowadays have considerable computing
power for image processing thanks to high system clock frequency
and MMX and SSE instruction extensions, which allow them to ex-
ploit their DSP capabilities. Nevertheless, although there are some
optical-flow approaches running on software in near real-time
[29], the intensive computation required to process optical-flow
still renders it unrealistic to process over-sampled sequences in
real-time. DSPs are suitable for embedded image-processing appli-
cations but their computing performance is also below the over-
sampled rate. Therefore, we consider reconfigurable hardware,
which has already shown their suitability in diverse applications,
to be a suitable option [30]. On the basis of previous experience
[15,16] the main theoretical drawback to this technology is the
limited system clock frequency compared to processors but, as
we shall see, the efficient use of the pipeline and parallel comput-
ing resources available on such devices allows us to achieve the
outstanding performance presented here.

3.1. Coarse-pipelined optical-flow architecture

The overall concept is a pipelined architecture (Fig. 2) and the
basic computational stages represent the different steps of the

Fig. 1. Qualitative effects of different frame-rate sequence acquisitions. The top row shows the example of a ‘‘walking and raising the arms” sequence captured at 90 fps. The
low-level structure of the clothes allows us to focus on the motion at the body boundaries. The second row shows three optical-flows, computed at 90, 30, and 10 fps using
sequence subsampling. The third row shows the pixels over the confidence threshold for the sequences computed at the three different frame rates. Note that although the
walking movement is slow (the camera-to-object distance is approximately 4 m), the system is unable to compute its motion pattern at 10 fps. At 30 fps the flow is still noisy
and some important details (such as the left arm pattern) are lost.
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L&K algorithm. The system has been designed as an embedded pro-
cessing platform that can be used on mobile applications and thus
we have designed the user interface, hardware controller for mem-
ory, VGA visualization and input camera interface for the same
FPGA device. This strategy means that the system can be used in
combination with a high-frame-rate camera as a stand-alone pro-
cessing platform for various potential applications. The scheme of
the entire system is shown in Fig. 2. Note that the thin dotted line
marks the optical-flow processing core, the functional stages of
which can be summarized as follows:

� S0. Gaussian-filter smoothing stage.
� S1. The FIR temporal filter computes temporal-derivative and

space-time smoothed images.
� S2. Spatial derivatives and complementary Gaussian filtering

operations.
� S3. Construction of least-square matrices for the integration of

neighborhood velocity estimations.
� S4. Custom floating-point unit. The final velocity estimation

requires the computation of a matrix inversion, which includes
a division operation. Although the previous stages use fixed-
point arithmetic, in S4 the resolution of the incoming data bits
is significant and expensive arithmetic operations are required.
Thus, fixed-point arithmetic becomes unaffordable, prompting
us to design a customized floating-point unit.

The frame-grabber buffers the inputs from the camera to allow
for the difference in the clock rates between the input circuitry
(pixel acquisition) and processing engine. The MMU handles this
buffering and reads the pixels needed to be buffered. Since internal
memory of the FPGA is very limited, only a few image lines are
stored at each processing stage. For 2D convolution operation we
use a memory buffer of kernel length minus one number of pixels
for the horizontal kernel. For the vertical kernel we need once more
to store a number of columns equal to the kernel length minus one.
In our design horizontal convolution buffers are implemented
using small distributed registers. The vertical convolution opera-
tion uses embedded memory blocks for data buffering. This leads
to the following internal FPGA memory usage: we store four rows
for image smoothing, 12 rows for image derivative computations
and 24 rows for the least-squares-fitting stage. Due to the organi-

zation of the FPGA’s internal memory use is fixed for address
depths up to 1024 elements. Image resolutions with more than
1024 pixels per column need to duplicate the internal memory
usage (allowing an image resolution of up to 2048 pixels per col-
umn). Nevertheless, this represents no critical constraint since, as
shown in Section 3.4, we have plenty of resources in our target
chip.

Although we maintain the coarse structure described in [15]
and [16], each stage of our new architecture has been carefully
redesigned. Below we highlight the points that are completely no-
vel with respect to our previous works:

We have adopted improved optical-flow parameters according
to [20] and designed 3D complementary smoothing-derivative
FIR filters based on Simoncelli kernels [31] to improve the deriva-
tion operations. This structure is shown in Fig. 3.

In previous works we used Fleet & Langley [32] IIR filters for
optical-flow computation, which are more hardware-friendly than
FIR ones because they reduce the system memory requirements to
three images. The drawback of this approach is that due to the iter-
ative process required for IIR operations fixed-point arithmetic
magnifies errors, leading to a significant degradation in temporal
derivative accuracy. The modifications adopted from [20] allow
the use of smaller FIR filters in our new approach, which makes
this option more reliable.

We have implemented a superpipelined processing architecture
able to compute one pixel per clock cycle, as described in the next
section.

3.2. From coarse to superpipeline architecture

The previous scheme, with a pipelined structure divided into 5
basic stages, would give a good performance but still far from high-
frame-rate processing requirements. The main reason is that the
architecture in Fig. 2 is similar to a DSP processor. There is a
trade-off between pipeline length and system performance based
on dependence problems (branch conditions often break the pipe-
line, causing a significant waste of time). For this reason long pipe-
lines are not included in standard DSPs and microprocessors. We
describe here, therefore, a specific-purpose processing architecture
that benefits greatly from a fine-grain pipeline datapath. In this
way we take full advantage of the regular data flow of the L&K

Fig. 2. Optical-flow system structure. The thin dotted line marks the processing core. Light-grey blocks indicate external memories and hardware controllers inside the FPGA.
The user interface consists of a LCD display plus mode-selection buttons. All the computations are made inside the FPGA device.
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algorithm. According to [33], the best architecture is a superscalar,
superpipelined structure. This design strategy has been adopted
and the resulting system allows our system to be used as an
embedded coprocessor in the resolution of other problems, for
inclusion in mobile devices such as the one described in [34] for in-
stance. In Fig. 4 we present the overall scheme. Each coarse stage
has been finely pipelined, leading to a processing datapath of more
than 70 stages. The number of scalar units grows in stages required
by the L&K model to maintain system throughput. This expansion
of parallelism is outlined in the following:

� Stage S0 uses one scalar unit for spatial smoothing.
� Stage S1 uses two scalar units, one for temporal smoothing and

another for temporal differentiation.

� Stage S2 uses three scalar units; corresponding to the three
dimensions Ix, Iy, and It in which the image derivatives are
computed.

� Stage S3 uses five scalar units, corresponding to the five cross-
products Ix�Ix, Iy�Iy, Ix�Iy, Ix�It and Iy�It, which are used in the
weighted-squared sum during the least-squares-fitting stage of
the L&K approach (see Appendix A).

� Finally, stage S4 uses one scalar unit to compute the final motion
for each pixel but internally several parallel pathways drive the
data process. Therefore, this stage must be seen as a superscalar
floating-point unit.

The legend to Fig. 4 indicates the internal data representation of
the scalar units. The number of parallel units is driven by the

Fig. 3. Complementary 3D smoothing-derivative filter structure. There are two basic primitives corresponding to the smoothing and derivation operation. First, we compute
these two primitives in the temporal domain and then complementary smoothing/derivation is carried out in the spatial dimension. The final results correspond to a 3D
derivation over each spatio-temporal axis. For a high-performance design, all the operations (2 temporal and 6 spatial FIR filtering) are processed in parallel based on
separable convolutions.

Fig. 4. Optical-flow processing core. Coarse pipeline stages are represented at the top and superpipelined scalar units at the bottom. Gray levels indicate the type of scalar
units according to the legend at the bottom of the figure. The number of parallel datapaths increases according to the structure of the optical-flow algorithm. The whole
system has more than 70 pipelined stages (counting the motion-processing core and other interfacing hardware controllers). This allows the computation of one optical-flow
measurement per clock cycle. The number of substages for each coarse-pipeline stage is indicated in brackets.

266 J. Díaz et al. / Computer Vision and Image Understanding 112 (2008) 262–273
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intrinsic parallelism of the model. Note that the level of parallelism
is only schematically represented at each stage. There are some
internal operations computed in parallel at each scalar unit to
get the final throughput of one estimation per clock cycle (there-
fore some of these datapaths can be seen as being superscalar
units). We used fixed-point representation for all the stages but
S4, which uses floating-point representation. This was a critical
decision motivated by the large incoming bit-width at this stage,
which makes fixed-point representation very expensive in terms
of computational resources. This topic is amply discussed in the
next section.

The floating-point stage has been designed to execute each
instruction in one cycle. The division operation has been carefully
pipelined with a total number of 14 pipelined stages (of the 25 of
the S4 floating-point unit). This is the limiting clock-frequency
stage. Although it can be further pipelined to increase the clock fre-
quency, it is unnecessary because the system already fulfills the
high-frame-rate specification.

Fig. 4 also shows scalar units with memory access, correspond-
ing to the temporal filtering stages (smooth and derivation filters).
The limited number of memory banks accessible on board puts
constraints upon the parallelism available within the system,
which translates into performance degradation and increases de-
sign complexity. Therefore an efficient memory management unit
(MMU) is essential to abstract the sequential access to external
memory resources. We have designed an efficient MMU, which
makes it feasible to describe systems at a high abstraction level.
The specific-purpose MMU allows the easy management of the
large number of read-write processes necessary for FIR temporal
filters with a minimum FPGA resource consumption.

It is worth mentioning that latency of the system is high as far
as the number of clock cycles is concerned but negligible in terms
of time for image-processing applications. The 70 processing stages
require 70 cycles to produce output data. According to the discus-
sion in Section 3.1, each 2D convolution operation requires fetch
data to the internal FPGA memory before starting the processing
stages. This means that each section, S1, S2 and S3, needs to read
a number of pixels approximately equal to four times the horizon-
tal image resolution, producing a final latency of 12 image-column
clock cycles. For instance, working at 80 MHz with an image reso-
lution of 800 columns, the total latency is less than 120 ls (includ-
ing data fetching and pipeline filling). This is completely negligible
for most of the image-processing applications and so there is no
performance degradation due to large pipelined architecture.

3.3. Bit-width optimization

A proper choice of data structuring is essential to the successful
implementation of a customized system. First we need to consider
the trade-off between accuracy and resource consumption. Great-

est accuracy is obtained with double floating-point representation,
which is the choice most often adopted in software approaches.
This choice leads to maximum precision at the cost of low perfor-
mance. Custom processors for real-time systems lack large re-
sources compared to current general purpose processors, so
customized datapaths need to be carefully designed to achieve
either a comparable or higher performance. Customized systems
normally use fixed-point data representation because it fits better
onto current digital technology but this strategy requires careful
analysis to avoid any degradation in accuracy. Second, good bit-
width design is very important for power consumption [35]: low
significant bits tend to switch their state more frequently and this
should be avoided if they do not drive any information. Therefore
the elimination of low significant data allows us to decrease the
transition of bit values, thus reducing the switching power, which
is important for migration to VLSI devices.

In our design process, we have incorporated several measures
and strategies to evaluate how well the specifications are fulfilled.
First, conscious of the fact that our goal is to optimize optical-flow
accuracy, we have used a simulator of our circuits with several bit-
width configurations and the well-known synthetic sequence of a
flight through the Yosemite valley [1] as a reference to measure
the degradations involved in each approach compared to a dou-
ble-precision data representation. The decision as to what bit-
widths should be used at each stage has a considerable impact
on the accuracy of the system. Fig. 5 shows the effects of an insuf-
ficient use of bit-width at stage S4, which leads to significant quan-
tization noise (visually similar to salt-and-pepper noise).

Stages S0 to S3 are implemented using fixed-point arithmetic
because these operations are based on convolutions. After an
extensive analysis of the accuracy vs. resource-consumption
trade-off we decided to implement stages S0 to S2 with 9 bits and
stage S3 with 18 bits.

This corresponds to using one fractional bit in the image deriv-
atives. With these choices and using a threshold that allows an
optical-flow density of 36.47%, the angular error and its changes
in variance from 3.38� (8.93� variance) for double-floating-point
to 3.43� (8.96� variance) for fixed-point representation (Fig. 6). This
choice of bit-width is also motivated by hardware structure (some
of the internal hardware resources, such as embedded multipliers
and memories, are optimally used for a maximum of 18 bits) and
to the fact that the increase in absolute error remains very low
(0.05�). Note that along the datapath the accuracy of previous
stages limits the maximum precision achievable during the follow-
ing stages and thus their requirements must be studied carefully in
the light of the whole datapath. According to this, increasing the
bit-width of these stages only makes sense if the bit-widths of
the next stages also increase in order to obtain higher accuracy.

At stage S4 the incoming bit-width is too large and specific
arithmetical representation is required. With these precision

Fig. 5. Magnitude of the velocity for the Yosemite valley fly-through sequence (thresholds not used). From left to right: (a) velocity real ground-truth module; (b) module
computed with the software program; (c) module computed with the designed system; (d) module computed with inadequate bit-width for stage S4 (floating-point mantissa
of 6 bits). Note that the quantization errors are visible as a salt-and-pepper-like noise but there is no significant difference between the module of the software (b) and our
hardware implementation (c).
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requirements, customized floating-point arithmetic produces fas-
ter circuits with similar system resources. In Table 1 an implemen-
tation using 36-bit fixed-point arithmetic achieves similar
accuracy to the one using a customized representation with 19 bits
with similar resource consumption but the maximum clock fre-
quency is more constrained (by a factor of 0.54). Thus our study
leads us to the conclusion that floating-point arithmetic should
be applied in S4.

To decide what bit-width to use during stage S4 we carried out
an extensive batch of simulations of different cases. The main
parameters being studied were the angular error, its variance and
the SQNR of the signal. These parameters are represented against
the mantissa bit-width of S4 in Fig. 7.

Once we had decided on the bit-widths to be used at the var-
ious stages we went on to evaluate the degradation due to quan-
tization errors in our design. To this end we checked the

Fig. 6. Angular error considering image derivatives of different bit-widths. We take an integer part of 8 bits plus different values of the fractional part. The following circuit’s
stages are designed according to this decision. The dark line corresponds to a mantissa of 6 bits used at stage S4. Light one corresponds to a 12-bit implementation. There is no
appreciable improvement for larger mantissa bit-widths. It is clear that the fixed-point stages dramatically compromise the accuracy of the whole system compared to a bit-
width decision at the mantissa in stage S4, i.e., stage S4 cannot take advantage of larger bit-widths if precision is compromised in previous stages.

Table 1
System accuracy vs. resource consumption trade-off based on stage S4 precision and data format

Pipelined stages NAND gates FFs Max clock frequency (MHz) Angular error (�) Error variance (�)

S4 Floating-point unit (11 man + 7 exp) 91470 4670 57 3.42 8.95
S4 Fixed-point unit (36 bits) 90626 2603 31 3.37 8.93

Hardware resources in terms of gate consumption taken from the DK synthesizer [36]. Max clock frequency from ISE Foundation software. Optical-flow error measured using
the Fleet & Jepson method [37] at a density of 36.44%. (man stands for mantissa and exp for exponent).

Fig. 7. Angular error (top-left), variance (bottom-left) and SQNR (right) against the number of bits of the mantissa at stage S4. NB error and variance are approximately
constant for values larger than 10 bits and SQNR also becomes stable for values higher than 12 bits. As a satisfactory trade-off we chose a mantissa of 11 bits, which leads to
greater accuracy, similar to double floating-point arithmetic with a high SQNR.
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accuracy of different implementations, measuring the results in
the same pixels (and thus the same densities) (Table 2). As can
be seen in the table, the system still achieves very high accuracy.
This validates our previous data analysis and confirms that the
high bit-width used on the standard computer can be reduced
significantly.

A comparative analysis of the optical-flow reliability areas vs.
the high quantization error areas highlights the fact that the
scenarios with lower confidence are those that produce noisier
results due to the quantization effects (Fig. 8). Fig. 8a illustrates
confidence values at each image pixel. Bright-grey levels indi-
cate higher confidences. In the right-hand image (Fig. 8b), where
light areas represent pixels with higher quantization noise, we
show the difference in angular error between software and
hardware estimations. This image clearly demonstrates that
the areas prone to higher quantization noise are the ones with
lower optical-flow confidences. Therefore, the confidence filter-
ing efficiently helps to ignore mistakes caused by quantization
errors.

This effect can be easily understood in the light of image struc-
ture. Image pixels with low confidence correspond to areas of low
structure, which produce smaller image derivatives, and therefore
the division operations required to estimate motion are prone to
errors.

When these results are computed using a limited bit-width
the relative importance of their quantization is larger and trans-
lates into erroneous estimations. This requires the use of a prop-
er threshold for the optical-flow computation, allowing us to get
high accuracy circuits with lower resource consumption and
rejecting unreliable estimations (i.e. those prone to quantization
errors).

3.4. System resources and performance

The whole system benefits from the accuracy analysis of the
previous section and has been successfully implemented on sev-
eral prototyping boards for embedded image-processing applica-
tions (RC300 from Celoxica [36] and Xirca-V2 from Seven
Solutions [38]). The prototyping boards are provided with a Virtex
II XC2V6000-4 Xilinx FPGA as processing element and also video
input/output circuits and user interfaces/communication buses.
Table 3 shows the hardware costs of the motion-processing core
as well as the control/interface logic. After implementation, the
whole design (including user interface, camera, memory and
VGA) consumes 27% of the FPGA slices, 27% of the available embed-
ded memory and 8% of the internal multipliers. Its maximum fre-
quency clock rate is 82 MHz and therefore the maximum
experimental processing performance is 82 mega pixels per second
(Mpps). The image resolution can be selected according to image
input camera standard or processing capabilities. This architecture
is modular and scalable, making it possible to reduce the system’s
parallelism (and performance) to fit onto smaller devices. Further-
more, the processing core can be replicated (more than 73% of the
system’s resources are available) and. thanks to the MMU architec-
ture, the frame-grabber can be easily modified to split the image
and send it to several processing units. This high-level scalability
allows the processing performance to be multiplied if required.

It should be pointed out that the processing performance set
out in Table 3 represents the performance of the processing core
itself. The design strategy based on a highly parallel architecture
allows the optical-flow core to compute one pixel per clock cycle.
Of course, for the complete system, including memory, camera
interface and command port, the performance may be constrained
by these elements rather than by the computing core. For instance,
if all the modules work in only one clock domain, we need to use
three independent memory banks of 36 bits data words each to
avoid memory access conflicts. We use two for the temporal filter
stage and one for reading/writing results. If the incoming camera
data stream is slower than our processing circuit, this module will
determine the maximum performance. In our experiments we
have used a couple of FPGA boards for prototyping. The RC300 plat-
form from Celoxica [36] has two analog composite video inputs.
Working at 20 MHz we have been able to process video NTSC for-
mat from two cameras at 28 fps. We have also tested the system
using a coprocessing PCI board from Seven Solutions [38]. Working
at 66 MHz clock rate we have been able to compute 1 megapixel
resolution cameras at 16 fps. In both cases the limiting factors
were the camera input/PCI interface and not the processing core
itself.

Table 2
Comparing angular errors between the software double-data type and the customized
data structure used in the hardware implementation

Density (%) Software double-data
implementation

Customized hardware
implementation

Angular error (�) Variance (�) Angular error (�) Variance (�)

36.47 3.4330 9.1056 3.5166 9.2406
42.14 4.0731 9.8389 4.2128 10.0986
57.20 6.9166 12.9283 7.8611 14.5013
91.95 17.3303 20.3685 18.3185 20.6841

Note that although the bit-width has been dramatically reduced, due to the pre-
vious analysis the results obtained with the hardware approach are only slightly
degraded even at significant estimation densities.

Fig. 8. Confidence areas and quantization error: (a) logarithm of optical-flow confidence values (light-grey indicates high confidence estimations); (b) software-hardware
angular error difference. Data range (logarithmic) scaling is done to improve visualization. Note that areas prone to higher quantization noise correspond to the lower optical-
flow confidence areas.
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Finally, it is important to indicate why the optical-flow core has
a lower maximum frequency clock than that of the whole system,
as is shown in Table 3. The maximum clock rate estimations for the
different modules are produced by the vendor FPGA tool (ISE Foun-
dation of Xilinx). We have used advanced synthesis and place &
route capabilities such as retiming with the result that under sev-
eral circumstances complex circuits are able to run faster than
their different sub-modules. Since our design uses a long pipeline,
the tool has a significant chance to move registers for path delay
balancing (retiming). Therefore, the performance of the optical-
flow core is improved when it is placed and routed together with
more logic, which explains the differences that appear in Table 3.

3.5. Performance comparison with other approaches

The implementation of the optical-flow algorithm with FPGAs
has only been addressed by some authors in very recent years. Ta-
ble 4 summarizes the performances obtained by the different ap-
proaches. In previous works [15,16] we proposed the basic
implementation of the L&K model and presented a detailed study
into its performance vs resources trade-off. These papers also cover
the topic of system degradation related to bit-widths at different
processing stages. Although the performance was correct, neither
the image resolution nor frame rates measured up to the high-
frame-rate requirements addressed here. The iterative algorithm
of Horn & Schunk (H&S) [39] has also been implemented by differ-
ent authors. Martin et al. [40] described a system implementation
that conforms quite well to the specifications of a standard-frame-
rate optical-flow system. The main disadvantage of their approach
is that the accuracy of the model itself does not compare well with
the L&K model, as shown by Barron et al. [1]. Cobos et al. [41] have
also described the implementation of the H&S model but using
modest resources and therefore achieving lower performance.

Using the block-matching approach, the implementation de-
scribed by Niitsuma & Maruyama [42] achieves 30 fps with an im-
age size of 640 � 480 but with high hardware cost (90% slices of a

XC2V6000 FPGA) and without subpixel accuracy. Strictly speaking,
our approach is only 5 times faster than [42]. Nevertheless, using
the same target device, our system requires only 24% of the re-
sources, which allows us to increase our performance by means
of core replication (up to 4 cores fit in this device and therefore
we could still scale up the system’s performance). Furthermore
their approach [42] does not provide subpixel accuracy.

Based on the L&K approach, Correia & Campilho [43] described a
real-time implementation of the system using a MaxVideo200
pipeline image processor. Though still far from our results, they
achieved high-performance (1666 Kpps) because they took full
advantage of the pipeline architecture. Nevertheless, the use of
an acceleration processor (such as the MaxVideo200) makes it dif-
ficult to transfer the system to embedded platforms.

For standard PC platforms, the approach described in [29]
achieves high accuracy but with a performance still far below
our results. Moreover, the method used in [29] is not hardware.

Finally, the model described here, running on software on an In-
tel Pentium 4 HT, 3200 MHz, can compute 47.6 fps of 160 � 120
pixels (914 Kpps, as indicated in the last row of Table 4), though
this can be further optimized by using MMX and SSE instructions.
But in any case this requires the full computing power of the
machine.

It is important to remark that the differences are not only in
terms of frame rates; we should also consider the range of speeds
supported by different implementations. Systems based on gradi-
ent models, such as like H&S or L&K, have similar ranges of speed.
On the other hand, the method described on [42] is based on block-
matching and has a maximum speed range of ±13.5 pixels. The sys-
tem described in [29] uses a global energy minimization technique
and therefore the speed range is not explicitly limited by local fil-
ters. The speed range of the approach presented here depends on
the input image stimulus as shown in Appendix B but, taking
advantage of a high-frame-rate camera, this is not a limitation
for our system.

Since the cited works are very recent (some of then using even
the same evaluation devices), the outstanding performance of our
approach is not due to improvements in technology but rather to a
very efficient processing architecture (superpipelined and super-
scalar datapath) that has extensive recourse to the parallel re-
sources of the FPGA device.

4. Conclusions

The need for high-frame-rate optical-flow systems has been
clearly demonstrated. Current image sensors make very fast image
acquisition possible and this leads in turn to significant improve-
ments in optical-flow accuracy [5]. Simple gradient-based opti-
cal-flow approaches seem to be a suitable alternative for
moderate cost systems (compared with complex multi-scale ap-
proaches). Accordingly, we have implemented an improved ver-
sion of the L&K model [20] that complements the capabilities of
high-frame-rate cameras, providing highly accurate real-time im-
age-motion analysis.

Table 3
Resource consumption of the different stages (results taken from the DK synthesizer [36]) and maximum clock-frequency values (results from the Xilinx ISE Foundation)

Pipelined stages NAND Kgates FFs Memory bits Max clock frequency (MHz) Maximum frame rate

Interfaces + hardware controllers 83.4 2148 23584 99 170
Motion-processing core 1641.9 8022 737280 57
Complete system 1731.9 10433 760864 82

First row: interfaces and hardware controllers (camera frame-grabber, MMUs, VGA signal output and user configuration interface). Second row: motion-processing core.
Third row, complete system resources required. The last column shows the complete system maximum performance (frame rate) at a resolution of 800 � 600 pixels. The
results presented allow a maximum horizontal image resolution of 1024 pixels. If greater resolution is required, then the use of memory resources will be doubled (allowing a
maximum horizontal resolution of 2048 pixels) with a very small extra logic overhead.

Table 4
Comparison with previous works

Implementation Throughput
(Kps)

Image size
(pixels)

Image rate
(frames/s)

Improved L&K (described here) 82000 800 � 600 170
L&K (stand-alone board, [15]) 4100 320 � 240 53
L&K (PCI-board [16]) 1776 320 � 240 24
H&S (Martin et al. [40]) 3932 256 � 256 60
Block-matching,(Niitsuma &

Maruyama [42])
9216 640 � 480 30

L&K (Correia and Campilho [43]) 1666 256 � 256 25
H&S (Cobos et al. [41]) 47.5 50 � 50 19
Variational (Bruhn et al. [29])Intel

Pentium4, 3 GHz
1444.7 316 � 252 18

Intel Pentium 4 HT (3.2 GHz) 914 160 � 120 47.6

Our data uses the maximum available clock frequency for comparison with previ-
ous approaches.
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We have designed a scalable, modular, versatile architecture
and have described how parallel and superpipelined structures
can be used in the implementation of algorithms to create novel
high-performance architectures for image processing. Our system
outperforms by more than one order of magnitude any previous
approach, thus validating the computing scheme adopted. From
our accuracy analyses we conclude that with a much reduced
bit-with data representation the system achieves accuracy close
to the software implementation (with double-precision floating-
point representation).

One of the important contributions of this paper is the novel
digital design technique based on long pipelines, which go beyond
an optimized hardware implementation. This technique is signifi-
cantly different from standard processors or DSP architectures, in
which the pipeline paths are be kept short to reduce backing-up
pipeline operations due to cache miss. This paper represents an
illustrative example of this design technique, rather than a specific
processing engine design for motion estimation.

In addition, fine pipeline architecture design is a useful proce-
dure for developing complex systems that result in other benefits
apart from high performance. As shown in [44,45], the power con-
sumption of FPGA devices is lower when deep pipelines are used
and this can be easily explained, circuit glitches significantly con-
tribute to the power consumption in digital devices. Intense data
registering reduces the combinational logic path length and there-
fore reduces the propagation of the glitches. Thus, fine circuit pipe-
lining leads to a saving of up to 70% of the power consumption
with this kind of device, just by reducing glitch propagation.

Finally, we have evaluated the system’s resources consumption
and the performance of an implementation on a stand-alone plat-
form, which fulfills the high-frame-rate optical-flow requirements.
A comparison with publications by other authors clearly shows the
improved performance of our new system and opens the door to a
wide range of fields of application.

Future work will cover the use of such systems for real-world
applications involving moving robotic platforms, such as robot
navigation and tracking [46], and structure extraction from motion
analysis. On-chip integration schemes of multiple vision cues, such
as stereo information and colour [47], are currently being explored.
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Appendix A. The L&K model and adopted improvements

In the following equations, we describe briefly the computa-
tions upon which the L&K approach is based and the modification
of the system parameters according to [20]. The L&K algorithm be-
longs to gradient-based techniques. Upon the assumption of con-
stant luminance values through time, the first-order gradient
constraint Eq. (A.1) is obtained as:

rxyIðx; y; tÞ � ðVx;VyÞ þ Itðx; y; tÞ ¼ 0 ðA:1Þ

This equation only allows us to estimate velocity in the direction of
maximum gradient, i.e. in the normal direction of moving surfaces.
To overcome this limitation the L&K method constructs a flow esti-
mation based on the first-order derivatives of the image. By least-
square fitting, the model extracts an estimation of motion based
on the hypothesis of similarity of velocity values in the neighbour-
hood of a central pixel. This is described mathematically by the
minimization of Eq. (A.2).

min
X
x2X

W2ðxÞ½rxyIðx; y; tÞ � ðvx; vyÞ þ Itðx; y; tÞ�2 ðA:2Þ

where W(x) weighs the constraints of the spatial neighbourhood X
(with larger values near the centre).

The known solution to this problem is expressed in Eq. (A.3),

~v ¼ ½AT W2A��1AT W2~b ðA:3Þ

where

AT W2A ¼

P
x2X

W2I2
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64

3
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75 ðA:5Þ

The main parameters to modify with respect to the most widely
used implementation [1] are described in [20]. We encourage the
reading of this work for a fuller understanding of these modifica-
tions. To summarize, the changes are the following:

1. The pre-filter can be reduced from 11 � 11 � 11 taps (Gauss-
ian variance 1.5) to a separable kernel of 3 � 3 � 3, P = [1,2,1]/
4 attached to the rest of the modifications described below.
Without any pre-filters the density of the system increases
dramatically but undergoes a deterioration in accuracy, which
means that the pre-filter rejects useful information as well as
noise. A good trade-off solution consists of using these 3 taps
smoothing kernel P, which also contributes as an anti-aliasing
filter.

2. The derivative kernels used in the standard implementation
of L&K [1] ([�1 8 0 �8 1]/12) have a systematic bias towards
1 pixel/frame in the optical-flow, thus degrading its accuracy.
Brandt [20] shows that the adequate use of smoothing and
derivative kernels, as proposed also by Simoncelli [31], signif-
icantly improves the accuracy of the system. Such a task
requires the use of 3D complementary derivative kernels,
which work as smoothing kernels in 2 dimensions and a
derivative operator on the other axis. In terms of perfor-
mance, these kernels represent n factor 3increase in computa-
tion load during this stage, but this only represents slightly
higher resource consumption when designing customized
hardware because it can be implemented into the pipeline
structure without throughput degradation.

3. Neighbourhood area X. In their implementation Barron et al. [1]
use a 5 � 5 spatial central-weighting neighbourhood with a
separable kernel [0.0625,0.25,0.375,0.25,0.0625]. Brandt dem-
onstrates in [20] that a uniformly weighted kernel of 5x5
increases the density with only a small degradation in accuracy.
Another option is to use a 3D smoothing neighborhood with a
small separable kernel [121]/4. This kernel optimizes the
space/time resolution of the estimator symmetrically and,
depending on the motion flow field, also improves accuracy.

We adopt the first two modifications of the original L&K imple-
mentation, which improve motion accuracy as well as flow density,
as can be seen in Table A.1. Furthermore, for the spatial integration
of constraints we have used the spatial kernel [0.0625,0.25,
0.375,0.25,0.0625] to enhance accuracy. The overall support of
the algorithm is reduced from 19 � 19 � 15 pixels (in the imple-
mentation of Barron et al. [1]) to 11 � 11 � 7 pixels in Brandt’s
[20] modifications; thus just 7-image storage capacity is required.
In a previous implementation of the L&K model [15,16] we used
the IIR temporal filter described by Fleet et al. [32], which requires
only 3-image storage capacity.
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The drawback of this approach is that IIR filters are not so accu-
rate for the estimation of optical-flow and need a higher fixed-
point bit width to compute filter values. The 7-image storage
requirement of the modified L&K model is less than half that of
Barron’s approach [1] and feasible on embedded systems.

All the accuracy tests commented upon above are conditioned
by the reliability test parameter used. The equations to estimate
pixel velocities are often under-determined or ill-conditioned be-
cause the gradient direction does not vary sufficiently within the
integration neighbourhood. Several measures can be used to detect
these situations [18]. According to the results provided by Brandt
[20], we use the product of the Eigen-values of the matrix of Eq.
(A.4) since it provides similar results to those obtained when using
the well-known minimum Eigen-value criteria from Barron et al.
[1] and is more hardware-friendly because it corresponds to the
determinant of Eq. (A.4), which is already computed in the motion
estimation datapath.

Appendix B. First-order Gradient model limitation analysis

This section reviews 3D spatio-temporal sampling theory and
investigates the effects of motion aliasing (this being, as a first
approximation, the main limitation of the L&K model). It is dis-
cussed in a simplified but insightful way.

The L&K model is based on a first-order Taylor expansion of
the image [Eq. (B.1)], which is correct only if quadratic and fur-
ther terms can be neglected. This is true for small velocity vec-
tors but errors grow fast when high-order terms become
significant. Nevertheless, the consideration of how large or small
a velocity might be depends on the structure of the image pre-
sented in the neighbourhood of each pixel. According to the Ny-
quist-Shannon theorem, the maximum velocity that can be
measured in an image without aliasing is limited by the local
spatial bandwidth. According to Weber et al. [4], if we consider
a sinusoid grating of wavelength k, we can limit the maximum
acceptable displacement given by Eq. (B.1.a):

VMax�theoretical < k=2 ðB:1:aÞ
VMax�exp erimental < k=2p ðB:1:bÞ

For real images, they show an even smaller velocity limit, about one
third of the theoretical limit [Eq. (B.1.b)] [4]. This equation implies
that maximum velocity is strongly correlated with the spatial fre-
quencies presented at each image position. The maximum fre-
quency in units of pixels is 0.5 pixels-1 which means that k = 2
pixels and thus the maximum theoretical speed that can be recov-
ered is less than 1 pixel per frame at the highest spatial frequency.
Therefore, using pixels as units, the sampling period is 1 pixel and
we cannot recover 1 pixel motion of k = 2 sinusoidal gratings. This
also means, however, that the maximum value of the velocity can
be very high for images with spectral contents of long wavelengths.
For example, if we consider k = 100 pixels, the algorithms could the-
oretically recover motion up to 49 pixels/frame (first integer value
below 100/2) and experimentally 16 pixels/frame. But note that in

order to get this estimation we need to tune the image derivative
to the proper frequency in order to get a response from the filters.

The next point concerns the pre-filters and derivative kernel
sizes. The derivative operation is usually computed as a convolu-
tion with Gaussian derivatives, which works as band-pass filters
with an optimum frequency response given by Eq. (B.2), where
r2 represents the variance and n the derivative order [48].

xn ¼
ffiffiffiffiffiffiffiffiffiffiffi
n=r2

q
ðB:2Þ

The use of large filters allows us to recover fast motion because it
corresponds to long wavelengths but high-frequency image infor-
mation is lost. Furthermore, the Gaussian derivative bandwidths
are approximately constant and asymptotically equal, as expressed
in (B.3) [49]. This means that the spatial extension of the Gaussian
derivative filters is inversely proportional to the filter bandwidth.

Dx! 1ffiffiffiffiffiffiffi
2r
p ðB:3Þ

According to Eq. (B.3), smaller kernels allow us higher flow densities
because a larger frequency range is considered (although filters are
not optimally tuned for the whole range). Nevertheless, the draw-
back is that these small-spatial-resolution filters provide estima-
tions prone to noise, which typically affect high spatial
frequencies more significantly. Thus, for low noise sequences, a
small smoothing kernel may be profitable for real images but the fi-
nal decision as to which pre-filters and derivative kernels are best
must take into account the SNR of the input images and their spec-
tral properties.

Another important hypothesis is the implicit assumption of
constant luminance. Large temporal filters impose a high restric-
tion on the illumination condition, which is not always preserved
in real scenarios. This might advise the use of shorter temporal
windows for computing the optical-flow. The drawback of this ap-
proach, however, is that higher temporal frequencies are available,
thus increasing the aliasing artefacts.

We decided to use 5-pixel-long, first-order Gaussian-derivative
kernels, which is a strategy that is widely used in most implemen-
tations and evaluations because it results in a good trade-off be-
tween accuracy and computing resources. This strategy implies
two basic assumptions:

1. Low noise. Standard micro-cameras achieve SNR > 45 dB in
standard environments (i.e. not industrial) with homogenous
illumination.

2. Only low speeds can be computed, at least for high spatial fre-
quencies. This is a more restrictive assumption. First-order
Gaussian-derivative kernels of 5 pixels have a variance of 1
pixel and a top cut-off frequency of 1.35 rad/pixels [using Eqs.
(B.2) and (B.3), x0+Dx/2] which corresponds to a wavelength
of k = 1.48p pixels and gives us an experimental maximum
speed for this frequency of 0.74 pixels/frame. This highly rec-
ommends the use of high-frame-rate cameras for motion esti-
mation in real scenarios.

Table A.1
Accuracy evaluation of different implementations of the L&K model using the Yosemite fly-through synthetic sequence with known ground-truth

Motion estimation approach Average error (�) Standard deviation (�) Density (%)

Standard L&K implementation (from [1]) 4.28 11.41 35.1
Standard L&K implementation (using Eigen-values product as confidence parameter) 4.57 12.77 36.44
L&K using IIR temporal filters such as those described in [32] 6.4716 13.0057 36.46
Improved L&K (based on [20]) 3.3757 8.9263 36.44

The error measure is described in Fleet et al. [37]. Note that the confidence thresholds are slightly different for each version to arrive at similar optical-flow densities. The
threshold parameter used is the product of Eigen-values because it is hardware friendly and gives a good error discrimination sensibility [20].
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