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Abstract. In this paper, we describe work on Bayesian classifiers for dis-
tinguishing between homogeneous structures, textures, edges and junc-
tions. We build semi-local classifiers from hand-labeled images to dis-
tinguish between these four different kinds of structures based on the
concept of intrinsic dimensionality. The built classifier is tested on stan-
dard and non-standard images.

1 Introduction

Different kinds of image structures coexist in natural images: homogeneous image
patches, edges, junctions, and textures. A large body of work has been devoted
to their extraction and parametrization (see, e.g., [1-3]). In an artificial vision
system, such image structures can have rather different roles due to their implicit
properties. For example, processing of local motion at edge-like structures faces
the aperture problem [4] while junctions and most texture-like structures give a
stronger motion constraint. This has consequences also for the estimation of the
global motion. It has turned out (see, e.g., [5]) to be advantageous to use differ-
ent kinds of constraints (i.e., line constraints for edges and point constraints for
junctions and textures) for these different image structures. As another example,
in stereo processing, it is known that it is impossible to find correspondences at
homogeneous image patches by direct methods (i.e., triangulation based meth-
ods based on pixel correspondences) while textures, edges and junctions give
good indications for feature correspondences. Also, it has been shown that there
is a strong relation between the different 2D image structures and their under-
lying depth structure [6, 7]. Therefore, it is important to classify image patches
according to their junction—ness, textured-ness, edge—ness or homogeneous—ness.

In many hierarchical artificial vision systems, later stages of visual processing
are discrete and sparse, which requires a transition from signal-level, continuous,
pixel-wise image information to sparse information to which often a higher se-
mantic can be associated. During this transition, the continuous signal becomes
discretisized; i.e., it is given discrete labels. For example, an image pixel whose
contrast is above a given threshold is labeled as edge. Similarly, a pixel is classi-
fied as junction if, for example, the orientation variance in the neighborhood is
high enough.
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Fig. 1. How a set of 54 patches map to the different areas of the intrinsic dimensionality
triangle. Some examples from these patches are also shown. The horizontal and vertical
axes of the triangle denote the contrast and the orientation variances of the image
patches, respectively.

The parameters of this discretization process are mostly set by its designer
to perform best on a set of standard test images. However, it is neither trivial
nor ideal to manually assign discrete labels to image structures since the domain
is continuous. Hence, one benefits from building classifiers to give discrete labels
to continuous signals. In this paper, we use hand-labeled image regions to learn
the probability distributions of the features for different image structures and
use this distribution to determine the type of image structure at a pixel. The
local 2D structures that we aim to classify are listed below (examples of each
structure is given in Fig. 1):

— Homogeneous image structures, which are signals of uniform intensities.

— Edge-like image structures, which are low-level structures that constitute
the boundaries between homogeneous or texture-like signals.

— Junction-like structures, which are image patches where two or more edge-
like structures with significantly different orientations intersect.

— Texture-like structures, which are often defined as signals which consist of
repetitive, random or directional structures. In this paper, we define texture
as 2D structures which have low spectral energy and high variance in local
orientation (see Fig. 1 and Sect. 2).

Classification of image structures has been extensively studied in the literature,
leading to several well-known feature detectors such as Harris [1], SUSAN [2] and



intrinsic dimensionality (iD)* [8]. The Harris operator extracts image features
by shifting the image patch in a set of directions and measuring the correlation
between the original image patch and the shifted image patch. Using this mea-
surement, the Harris operator can distinguish between homogeneous, edge-like
and corner-like structures. The SUSAN operator is based on placing a circular
mask at each pixel and evaluating the distribution of intensities in the mask. The
intrinsic dimensionality [8] uses the local amplitude and orientation variance in
the neighborhood of a pixel to compute three confidences according to its being
homogeneous, edge-like and corner-like (see Sect. 2). Similar to the Harris opera-
tor, SUSAN and intrinsic dimensionality can distinguish between homogeneous,
edge-like and corner-like structures.

Up to the authors’ knowledge, a method for simultaneous classification of
texture-like structures together with homogeneous, edge-like and corner-like struc-
tures does not exist. The aim of this paper is to create such a classifier based
on an extansion of the concept of intrinsic dimensionality in which semi-local
information is included in addition to purely local processing. Namely, from a
set of hand-labeled images®, we learn local as well as semi-local classifiers to
distinguish between homogeneous, edge-like, corner-like as well as texture-like
structures. We present results of the built classifier on standard as well as non-
standard images.

The paper is structured as following: In Sect. 2, we describe the concept
of intrinsic dimensionality. In Sect. 3, we introduce our method for classifying
image structures. Results are given in Sect. 4 with a conclusion in Sect. 5.

2 Intrinsic Dimensionality

When looking at the spectral representation of a local image patch (see Fig. 2(a,b)),
we see that the energy of an i0D signal is concentrated in the origin (Fig. 2(b)-
top), the energy of an i1D signal is concentrated along a line (Fig. 2(b)-middle)
while the energy of an i2D signal varies in more than one dimension (Fig. 2(b)-
bottom).

Recently, it has been shown [8] that the structure of the iD can be understood
as a triangle that is spanned by two measures: origin variance and line variance.
Origin variance describes the deviation of the energy from a concentration at
the origin while line variance describes the deviation from a line structure (see
Fig. 2(b) and 2(c)); in other words, origin variance measures non-homogeneity
of the signal whereas the line variance measures the junctionness. The corners of
the triangle then correspond to the ’ideal’ cases of iD. The surface of the triangle
corresponds to signals that carry aspects of the three ’ideal’ cases, and the dis-

44D assigns the names intrinsically zero dimensional (i0D), intrinsically one dimen-
stonal (11D) and intrinsically two dimensional (12D) respectively to homogeneous,
edge-like and junction-like structures.

® The software to label images is freely available for public use at http://www.mip.
sdu.dk/covig/software/label_on_web.html.
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Fig. 2. Illustration of the intrinsic dimensionality (Sub-figures (a,b,c) taken from [8]).
(a) Three image patches for three different intrinsic dimensions. (b) The 2D spatial
frequency spectra of the local patches in (a), from top to bottom: i0D, i1D, i2D. (c)
The topology of iD. Origin variance is variance from a point, i.e., the origin. Line
variance is variance from a line, measuring the junctionness of the signal. cinp for
N =0, 1,2 stands for confidence for being i0D, i1D and i2D, respectively. Confidences
for an arbitrary point P is shown in the figure which reflect the areas of the sub-triangles
defined by P and the corners of the triangle. (d) The decision areas for local image
structures.

tance from the corners of the triangle indicates the similarity (or dissimilarity)
to ideal i0D, i1D and i2D signals.

As shown in [8], this triangular interpretation allows for a continuous for-
mulation of iD in terms of 3 confidences assigned to each discrete case. This is
achieved by first computing two measurements of origin and line variance which
define a point in the triangle (see Fig. 2(c)). The bary-centric coordinates (see,
e.g., [9]) of this point in the triangle directly lead to a definition of three con-
fidences that add up to one. These three confidences reflect the volume of the
areas of the three sub-triangles which are defined by the point in the triangle and
the corners of the triangle (see Fig. 2(c)). For example, for an arbitrary point
P in the triangle, the area of the sub-triangle i0D-P-i1D denotes the confidence
for i2D as shown in Fig. 2(c). That leads to the decision areas for i0D, i1D and
i2D as seen in Fig. 2(d). For the example image in Fig. 2, computed D is shown
in Fig. 3.

3 Methods

In this section, we describe the labeling of the images that we have used for learn-
ing and testing (Sect. 3.1), the basic theory for Bayesian classification (Sect. 3.2),
the features we have used for classification (Sect. 3.3), as well as the three clas-
sifiers that we have designed (see Sect. 3.4).



Fig. 3. Computed D for the image in Fig. 2, black means zero and white means one.
From left to right: ciop, ciip, ciep and highest confidence marked in gray, white and
black for i0D, i1D and i2D, respectively.

Fig. 4. Images with various classes labeled. The colors blue, red, yellow and green corre-
spond to homogeneous, edge-like, junction-like and texture-like structures, respectively.

3.1 Labeling Images

As outlined in Sect. 1, we are interested in the classification of four image struc-
tures (i.e., classes). To be able to compute the prior probabilities, we labeled
a large set of images using a software that we developed. The software allows
for the labeling arbitrary regions in an image, which are saved and then used
for computing the prior probabilities (as well as evaluating the performance of
learned classifiers that will be introduced in 3.4) for classifying image structures.
Fig. 4 shows a few examples of labeled images patches.

We labeled only image patches that were close to be the 'ideal’ cases of their
class because we did not want to make decisions about the class of an image
patch which might be carrying aspects of different kinds of image structures.
We would like a Bayesian classifier to make manifestations about the type of
‘non-ideal’ image patches based on what it has learned about the ’ideal’ image
structures.

3.2 Bayesian classification

If C;, for i = 1,...,4, represents on the the four classes, and X is the feature
vector extracted for the pixel whose class has to be found, then the probability
that the pixel belongs to a particular class C; is given by the posterior probability



P(C;|X) of that class C; given the feature vector X (using Bayes’ Theorem):

P(X|C)P(Ci)
T? (1)

where P(C;) is the prior probability of the class C;; P(X|C;) is the probability
of feature vector X, given the pixel belongs to the class C;; and, P(X) is the
total probability of the feature vector X (i.e., >, P(X|C;)P(C;)).

A Bayesian classifier first computes P(C;|X) using equation 1. Then, the
classifier gives the label Cy, to a given feature vector Xy if P(Cy,|Xo) is maximal,
i.e., Cy, = arg max; { P(C;|X)}. The prior probabilities P(C;), P(X) and the
conditional probability P(X|C;) are computed from the labeled images. The
prior probabilities P(C;) are 0.5, 0.3, 0.02 and 0.18 respectively for homogeneous,
texture-like, corner-like and edge-like structures. An immediate conclusion from
these probabilities is that corners are the least frequent image structures whereas
homogeneous structures are abundant.

P(Ci|X):

3.3 Features for classification

As can be seen from Fig. 1, image structures have different neighborhood pat-
terns. The type of an image structure at a pixel can be estimated from the signal
information in the neighborhood. For this reason, we utilize the neighborhood
of a given pixel for computing features that will be used for estimating the class
of the pixel.

Now we define three features for each pixel P in the image. For two of these

we define a neighborhood which is a ring of radius 7°:

— Central feature (Zcentral; Yeentral): The co-ordinates of pixel p = (pg, py)
in the ¢D triangle (see Sect. 2): Teentral = 1 — i0Dp, Yeentrar = 11D,. The
central feature has been used in [8] to distinguish between edges, corners and
homogeneous image patches based on the barycentric co-ordinates. As we
show in this work, it can also be used in a Bayesian classifier to characterize
also texture, however not surprisingly with a large degree of misclassification
in particular between texture and junctions.

— Neighborhood mean feature (Z,mean, Ynmean): The mean value of the
co-ordinates (z,y) in the D triangle of all the pixels in the circular neigh-
borhood of the pixel P. More formally, Z,mean = % Efvzl 1—i0D;, Ynmean =
LN ilD;.

— Neighborhood variance feature (zyqr, Ynvar): The variance value of the
co-ordinates (z,y) in the ¢D triangle of all the pixels in the neighborhood of
pixel p. SO, Tnvar = iODnvaT’,ynvar = ianvar, where iODnvar and i]-Dnvar
are respectively the variance in the values of i0D and i1D in the neighborhood
of pixel P.

5 The radius r has to be chosen depending on the frequency the signal is investigated
at. In our case, we chose a radius of 3 pixels which reflects that the spatial features
at that distance, although still sufficiently local, give new information in comparison
to the iD values at the center pixel.
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Fig. 5. The distributions of the features for each of the individual classes.

The motivation behind using these three features is the following. The cen-
tral feature represents the classical iDconcept as outlined in [8] and has already
been used for classification (however, not in a Bayesian sense). The neighbor-
hood mean represent the mean iDvalue in the ring neighborhood. For edge-like
structures it can be assumed that there will be iDvalues representing edges (at
the prolongation of the edge at the center) as well as homogeneous image patches
orthogonal to the edge. For junctions, there will be a more distributed pattern
at the i2D corner while for textures, we will expect rather similar iD values on
the ring due to the repetitive nature of texture. These thoughts will also be re-
flected in the neighborhood variance feature. Hence the two last features should
give complementary information to the central feature. This is becoming clear
looking at the distribution of these features over example structures as outlined
in the next paragraph.

Fig. 5 shows the distribution of the features for selected regions in different
images, and the total distribution of the features for each type of image structure
is given in Fig. 6 (computed from a set of 65 images). The labeling process led
to 91.500 labeled pixels which included 45.000 homogeneous, 20.000 edge-like,
1.500 corner-like and 25.000 texture-like pixels.

By observing the central feature distributions in Fig. 6, we see that many
points labeled as corners have overlapping regions with textures and edges. How-
ever, we see from Fig. 6 that the neighborhood mean as well as the neighborhood
variance can further help to distinguish between the four classes. Another im-
portant observation from Fig. 6 is that the neighborhood variance divides the
points into two distinct divisions: the high variance classes (edges and corners)
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Fig. 6. The cumulative distribution of the features collected from a set of 65 images.
There are 91,500 labeled pixels in total, which includes 45,000 homogeneous, 20, 000
edge-like, 1,500 corner-like and 25,000 texture-like pixels.

and the low variance classes (homogeneous and texture). This is due to the fact
that edges and corners have, by definition, more variance in their neighborhood.

3.4 The classifiers
We design five classifiers:

— Naive classifier (NaivC): Classifier just using the iD based on barycentric
co-ordinates, which is only able to distinguish junctions, homogeneous image
patches and edges.

— Central Bayesian Classifier (CentC): The first and elementary Bayesian
Classifier that we built is based on (z,y) co-ordinates of the pixel in the iD
triangle, where x = 1 —i0Dp and y = {1DP. Our experiments with this
classifier showed that though it is good at detecting edges and the other
classes, its detection of corners is poor: It could only detect only about 35%
of the corners in the training set of images and only 20% in the test set.
With the intention of building a better classifier, therefore, we decided to
enhance the performance of the classifier by taking into account the features
of the neighborhood of a pixel.

— Classifier using neighborhood mean (NmeanC): Our next classifier
(NmeanC) is based on the central and neighborhood mean features of a pixel;
i.e., classifier NmeanC has the following feature vector: (Zcentral, Yeentrals Tnmean, Ynmean )-

— Classifier using neighborhood variance (NvarC): Though classifier
NmeanC is much better than the CentC, it made many errors in the de-
tection of corners. We can observe from figure 6 that there is some overlap
between the neighborhood mean distributions of corners and edges, and also
corners and textures. With this observation, we build a classifier taking into
account the central and neighborhood variance features of a pixel; i.e., clas-
sifier NvarC has the following feature vector: (X central, Ycentrals Tnvars Ynvar)-



— Classifier using all features (CombC): CombC consists of all three fea-
tures: central, neighborhood mean and neighborhood variance; i.e., classifier
COI’HbC has the fOHOWng feature vector: (xcentrala Ycentraly Tnmean Ynmeans Tnvar; ynvar) .

4 Results

We used 85 hand-labeled images for training the classifiers. The performance of
the classifiers on the training as well as the test set is given in table 1. Due to
computational reasons, we were unable to test the CombC classifier.

Table 1. Accuracy (%) of the classifiers on the training set (in parentheses) and the
non-training set. Since there is no training involved for the NaivC classifier, it is tested
on all the images.

Class NaivC CentC NmeanC NvarC
Homogeneous 95 85 (88) 98 (99) 95 (99)
Edge 70 80 (85) 90 (95) 89 (97)
Corner 70 20 (35) 70 (97) 86 (98)
Texture —  75(83) 77 (96) 73 (90)

We observe that the classifiers NmeanC, NvarC and CombC are good edge
as well as corner detectors. Comparing NmeanC, NvarC and CombC against
CentC, we can see that inclusion of neighborhood in the features improves the
detection of corners drastically, and other image structures quite significantly
(both on the training and non-training sets). Fig. 7 provide the responses of
the classifiers on the non-training set. A surprising results is that combination
of neighborhood variance and neighborhood mean features (CombC) performs
worse than neighborhood variance feature (NvarC).

5 Conclusion

In this paper, we have introduced simultaneous classification of homogeneous,
edge-like, corner-like and texture-like structures. This approach goes beyond
current feature detectors (like Harris [1], SUSAN [2] or intrinsic dimensionality
[8]) that distinguish only between up to three different kinds of image structures.
The current paper has proposed and demonstrated a probabilistic extension to
one of such approaches, namely the intrinsic dimensionality.

Acknowledgements: This work is supported by the EU Drivsco project
(FP6-IST-FET-016276-2).

References

1. Harris, C.G., Stephens, M.J.: A combined corner and edge detector. In: Proc.
Fourth Alvey Vision Conference, Manchester. (1988) 147-151



(a) (b) 9 @ ©)

Fig. 7. Responses of the classifiers on a subset of the non-training set. Colors blue,
red, light blue and yellow respectively encode homogeneous, edge-like, texture-like and
corner-like structures.

o

. Smith, S., Brady, J.: SUSAN - a new approach to low level image processing. Int.

Journal of Computer Vision 23(1) (May 1997) 45-78

Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. Pattern Anal. Mach. Intell. 27(10) (2005) 1615-1630

Kalkan, S., Calow, D., Worgotter, F., Lappe, M., Kriiger, N.: Local image structures
and optic flow estimation. Network: Computation in Neural Systems 16(4) (2005)
341-356

Rosenhahn, B., Sommer, G.: Adaptive pose estimation for different correspond-
ing entities. In van Gool, L., ed.: Pattern Recognition, 24th DAGM Symposium.
Springer Verlag (2002) 265-273

Grimson, W.: Surface consistency constraints in vision. CVGIP 24(1) (1983) 28-51
Kalkan, S., Worgotter, F., Kriiger, N.: Statistical analysis of local 3d structure in 2d
images. IEEE Int. Conference on Compter Vision and Pattern Recognition (CVPR)
1 (2006) 1114-1121

Felsberg, M., Kalkan, S., Kriiger, N.: Continuous dimensionality characterization of
image structures. Image and Vision Computing (in press) (2008)

Coxeter, H.: Introduction to Geometry (2nd ed.). Wiley & Sons (1969)



