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KERNEL-BASED TOPOGRAPHIC MAPS: THEORY
AND APPLICATIONS

INTRODUCTION

One of the most compelling features of the mammalian
brain is the topographical organization of its sensory cortex
and the parcellation of the latter into cytoarchitectonic
areas: neighboring nerve cells (neurons) that can be driven
by stimuli originating from neighboring positions in the
sensory input space, and neighboring neurons in a given
area that project to neighboring neurons in the next area. In
other words, the connections establish a so-called neighbor-
hood-preserving or topology-preserving map, topographic
map for short. In the case of the visual cortex, such a map is
said to be retinotopic, and as a result of the neighborhood-
preserving mapping, the two-dimensional retinal image is
repeatedly mapped out at different levels in the visual
cortical hierarchy (1–3). Similarly, the somatosensory cor-
tex contains a somatotopic map of the body surface (4, 5),
and the auditory cortex contains a tonotopic map of the
spectrum of possible sounds, laid out according to pitch
(6, 7).

Already in 1956, Sperry had begun his pioneering inqui-
ries into the general question of how visual pathways might
maintain topological order during embryonic development
and had put forward a model for the construction of reti-
notopic maps. Von der Malsburg also realized that the
connections cannot be entirely genetically preprogrammed
and introduced a self-organizing process for the local order-
ing of neurons (8)—self-organization refers to the genesis of
globally ordered structures out of local interactions. His
computer simulations were perhaps the first to demon-
strate self-organization.

The study of topographic map formation from a theore-
tical (i.e., formal modeling) perspective, started with basi-
cally two types of self-organizing processes, gradient-based
learning and competitive learning, and two types of net-
work architectures (Fig. 1) (for a review, see Ref. 9). In the
first architecture, two sets of formal (abstract) neurons are
arranged in two separate (one-or) two-dimensional layers
or lattices1 (Fig. 1a). The problem is then to learn a mapping
for which neighboring neurons in the input lattice are
connected to neighboring neurons in the output lattice.
This determination is called graph matching, and it could
play an important role in cortical organization. The net-
work structure is commonly known as the Willshaw–von
der Malsburg model (10).

The second architecture is less meant to be biological
but is far more studied. We now have continuously valued

inputs taken from an input region that need not be
rectangular nor have the same dimensionality as the
output lattice to which it projects (Fig. 1b). The problem
here is to learn a mapping from the input space onto the
lattice in such a way that neighboring lattice neurons code
for neighboring positions in the input space. This network
structure is often referred to as Kohonen’s model because
the popular self-organizing map (SOM) algorithm is
applied to it (11, 12). We will introduce the basic version
of the SOM algorithm and further introduce an alterna-
tive formulation that shows the connection to kernel-
based topographic map formation, the central topic of
this article.

SOM ALGORITHM

In its purest form, the SOM algorithm distinguishes two
stages: the competitive stage and the cooperative stage. In
the first case, the best matching neuron is selected, that is,
the ‘‘winner,’’ and in the second stage, the weights of the
winner are adapted as well as those of its immediate lattice
neighbors. We consider the minimum Euclidean distance
version of the SOM algorithm only (also the dot product
version exists; see Ref. 13).

Competitive Stage. Let A be a lattice of N neurons with
weight vectors wi ¼ ½wi j� 2Rd, W ¼ ðw1; . . . ;wNÞ. All neu-
rons receive the same input vector v ¼ ½v1; . . . ; vd� 2V �Rd.
For each input v, we select the neuron with the smallest
Euclidean distance (‘‘winner-takes-all’’, WTA):

i� ¼ argmin
i
kwi � vk ð1Þ

By virtue of the minimum Euclidean distance rule, we
obtain a Voronoi tessellation of the input space: To each
neuron corresponds a region in the input space, the bound-
aries of which are perpendicular bisector planes of lines
that join pairs of weight vectors (the gray shaded area in
Fig. 2 is the Voronoi region of neuron j). Note that the
neuron weights are connected by straight lines: They repre-
sent the neurons that are nearest neighbors in the lattice.
They are important for verifying whether the map is topol-
ogy preserving.

Cooperative Stage. It is now crucial to the formation of
topographically ordered maps that the neuron weights are
not modified independently of each other but as topologi-
cally related subsets on which similar kinds of weight
updates are performed. During learning, not only the
weight vector of the winning neuron is updated but also
its lattice neighbors, which, thus, end up responding to
similar inputs. This updating is achieved with the neigh-
borhood function, which is centered at the winning neuron
and decreases with the lattice distance to the winning
neuron.

1A lattice is an undirected graph in which every nonborder vertex
has the same, fixed number of incident edges and which usually
appears in the form of an array with a rectangular or simplex
topology.
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The weight update rule in incremental mode2 is given by:

Dwi ¼ hLði; i�;sLðtÞÞðv� wiÞ; 8i 2A ð2Þ

withL as the neighborhood function, that is, a scalar-valued
function of the lattice coordinates of neurons i and i�;ri and
r�i , mostly a Gaussian:

Lði; i�Þ ¼ expð�kri � ri�k2

2s2
L

Þ ð3Þ

with range sL (i.e., the standard deviation). (We also drop
the parameter sL(t) from the neighborhood function to
simplify our notation.) The positions ri are usually taken
to be the nodes of a discrete lattice with a regular topology,
usually a two-dimensional square or rectangular lattice.
The parameter sL and usually also the learning rate h,
are decreased gradually over time. When the neighborhood
range vanishes, the previous learning rule reverts to stan-
dard unsupervised competitive learning (note that the latter
cannot form topology-preserving maps, which points to the
importance of the neighborhood function).

As an example, we train a 5 � 5 square lattice with the
SOM algorithm on a uniform square distribution [�1,1]2,
using a Gaussian neighborhood function of which the range
sL(t) is decreased as follows:

sLðtÞ ¼ sL0exp �2sL0
t

tmax

��
ð4Þ

with t the current time step, tmax the maximum number of
time steps, and sL0 the range spanned by the neighborhood

function at t¼ 0. We take tmax¼ 100,000, andsL0¼ 2.5, and
the learning rateh¼ 0.01. The initial weights (i.e., for t¼ 0)
are chosen randomly from the same square distribution.
Snapshots of the evolution of the lattice are shown in Fig. 3.
We observe that the lattice initially is tangled, then con-
tracts, unfolds, and expands to span the input distribution.
We will reuse this example when illustrating the other
topographic map formation algorithms discussed in this
article. The astute reader has noticed that at the end of the
learning phase, the lattice is smooth but then suddenly
becomes more erratic (around t ¼ 50,000). This example is
an example of a phase transition, and it has been widely
studied for the SOM algorithm (see, e.g., Ref. 14).

It is important to note that no well-defined objective
function is found on which the SOM algorithm performs
gradient descent. Kohonen (13) motivated the lack of an
exact optimization by a link to an approximate one, based on
the Robbins–Munro stochastic optimization. This lack of a
well-defined objective function has motivated Luttrell (16)
and Heskes and Kappen (17) to develop topographic map
rules from energy functions. This being said, the use of the
Euclidean distance in the algorithm because it also forms
the argument of a Gaussian kernel has motivated several
authors to connect the SOM algorithm to homoscedastic
Gaussian mixture density modeling (18–22), among others.

The weight distribution of the SOM is a power law of the
true input density (for a review, see Ref. 9), which means
that when estimating the input density from the weight
distribution directly [(e.g., using averaged nearest-neighbor
neuronweightdistances, such as in theheuristical U-matrix
(23)], the low-density regions are underestimated (and vice
versa), which causes a potential masking of cluster bound-
aries. Attempts have been introduced to modify the SOM
algorithm so that the weight density is a linear function of
the input density (such as in the BDH algorithm (24), among
others). But a principled density estimation requires the
estimation of the Voronoi volumes, which is very difficult for
densities larger than 2 (several approximations for thishave
been suggested, e.g., Refs. 24 and 25). A more elegant
solution involves using kernels locally adapted to the input
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Figure 1. Two types of network architectures used for studying
topographic map formation. (a) Willshaw–von der Malsburg model.
Two isomorphic, rectangular lattices of formal neurons are shown:
One represents the input layer, and the other represents the output
layer.Neuronsarerepresentedbycircles:Filledcirclesdenoteactive
neurons (‘‘winning’’ neurons); open circles denote inactive neurons.
Because of the weighted connections from the input to the output
layer, the output neurons receive different inputs from the input
layer. Two input neurons are labeled (i, j), and their corresponding
output layer neurons are labeled (i,0 f 0). Neurons i and i0 are the only
active neurons in their respective layers. (b) Kohonen model. The
commoninputallneuronsreceiveisdirectlyrepresentedintheinput
space, v2V . The ‘‘winning’’ neuron is labeled as i�: Its weight
(vector) is the one that best matches the current input (vector).
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Figure 2. Definition of quantization region in the self-organizing
map (SOM). Portion of a rectangular lattice (thick lines) plotted in
terms of the weight vectors of neurons a; . . . ; k, in two-dimensional
input space, for example, wa; . . . ;wk.

2By incremental mode it is meant that the weights are updated
each time an input vector is presented. This mode is contrasted
with batch mode in which the weights are only updated after the
presentation of the full training set (‘‘batch’’).
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density, therebyavoidingthe estimation of Voronoi volumes
or other heuristics, and providing a natural interpolating
facility. This solution is actually the motivation to use
kernel-based topographic maps: combining the visualiza-
tion properties of topographic maps with improved density
estimation facilities. The latter is particularly important
when clustering applications are envisaged.

Finally, the SOM algorithm has led to literally thou-
sands of applications in areas that range from automatic
speech recognition, condition monitoring of plants and
processes, cloud classification, and microarray data analy-
sis, to document and image organization and retrieval.
They will not be reviewed here; instead we refer to
Ref. 26 (http://www.cis.hut.fi/research/-som-bibl/).

KERNEL-BASED TOPOGRAPHIC MAPS

Rather than developing topographic maps with disjoint and
uniform activation regions (Voronoi tessellation), such as in
the case of the SOM algorithm (Fig. 2), and its adapted
versions, algorithms have been introduced that can accom-
modate neurons with overlapping activation regions,
usually in the form of kernel functions, such as Gaussians
(Fig. 4). For these kernel-based topographic maps, or kernel

topographic maps, as they are called (they are also some-
times called probabilistic topographic maps because they
model the input density), several learning principles have
been proposed. In the next sections, we will review the
kernel-based topographic map formation algorithms.

One motivation to use kernels, besides the biological
relevance, is to improve the density estimation properties
of topographic maps. In this way, we can combine the unique
visualization properties of topographic maps with an
improved modeling of clusters in the data using kernels.
An early example is the elastic net of Durbin and Willshaw
(27), which can be viewed as an equal-variance or homo-
scedastic Gaussian mixture density model, fitted to the data
by a penalized maximum likelihood term. Other examples of
the density modeling approach are the algorithms intro-
duced by Bishop and coworkers (28, 29) (generative topo-
graphicmap,basedonconstrained,homoscedasticGaussian
mixture density modeling with equal mixings), Utsugi (18)
(also using equal mixings of homoscedastic Gaussians), and
Van Hulle (30) (equiprobabilistic maps using heteroscedas-
tic Gaussian mixtures). Furthermore, we should also men-
tion the fuzzy membership in clusters approach of Graepel
and coworkers (31) and the maximization of local correla-
tions approach of Xu and coworkers (32), both of which rely
on homoscedastic Gaussians. Heskes (20) showes the con-
nection between minimum distortion topographic map for-
mation and maximum likelihood homoscedastic Gaussian
mixture density modeling (GMM). A unifying account of the
heteroscedastic case was introduced in Ref. 33.

Kernel-based topographic map formation algorithms
can be classified in several ways: by the type of objective
function (likelihood, distortion, free energy, and informa-
tion-theoretic criteria), the type of learning principle
(incremental, batch, and fixed point learning3), and the
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Figure 3. Evolution of a 5 � 5 lattice with a rectangular topology as a function of time. The outer squares outline the uniform input
distribution. The values given below the squares represent time.

V

Figure 4. Kernel-based topographic maps. Example of a 2 � 2
map (cf. rectangle in V-space) for which each neuron has a Gaus-
sian kernel as output function. We will use the more condensed
representation in which a circle is drawn with its center the neuron
weight vector and its radius the kernel range, for each neuron.

3With fixed point learning we mean that the solution is obtained by
computing the fixed point of an iterated function. For example, an
incremental learning rule can be converted into a fixed point rule
by iterating directly on the equilibrium values of the parameter
sought.
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type of kernel, to mention a few. We will adopt a simple
division into homoscedastic and heteroscedastic Gaussian
kernels, because the majority of the algorithms are for
homoscedastic Gaussians, and the heteroscedastic case is
considered as an extension. Where possible, we will list
the objective functions and the fixed point rules used for
optimizing them. We will show the correspondences
between the different algorithms and indicate when a
proposed algorithm is unlikely to unfold lattices. We
will also list several applications of the homoscedastic
algorithms (but without going into details) and show
the performance of the heteroscedastic algorithms.
Finally, we will mention algorithms that use other kernel
types and also thresholded kernels.

Homoscedastic Kernel Topographic Map Formation

In this section, we will review several topographic map
formation algorithms that use homoscedastic Gaussian
kernels as activation functions. The order in which they
appear does not indicate any preference.

SOM Algorithm. The starting point is again Kohonen’s
SOM algorithm. We can show that the SOM algorithm is a
limiting case of a kernel-based topographic map algo-
rithm. We adopt the formalism of Kostiainen and Lampi-
nen (21) (put into our notation); a version starting from the
batch map (13) is shown later. Theoretically, the SOM
algorithm does not perform gradient descent on the error
function in Equation (5) but rather performs approxi-
mates of it in the sense of a Robbins-Munro stochastic
approximation (13). For the sake of the current discussion.
we consider the converged state of an SOM as a local
minimum in the error function (average distortion;
‘‘energy’’) (34) and assume that it can be reached or
approximated:

EðWÞ ¼
X
m

X
i

l ði�; iÞkvm � wik2 ð5Þ

Given this distortion error, if we do not make any assump-
tion about the distribution of the data points, then we can
apply Jaynes’ principle of maximum entropy, which yields
the Gibbs distribution as the probability distribution. The
Gibbs distribution is an exponential function of the distor-
tion error (energy):

pðvÞ�Z exp �b
X

i

l ði�; iÞkv� wik2
� 

ð6Þ

with p(v) as the true density and Z as a normalization
constant. A standard procedure to estimate the parameters
wi is by maximizing the likelihood for the sample S ¼
fvmjm ¼ 1; . . . ;Mg (for details, see the original article):

L ¼ Z0expð�b
X

u

X
i

lði�; iÞkvm � wik2Þ ð7Þ

with Z0 as a normalization constant and b as a constant
(noise variance; see Ref. 21). One can easily verify that for
a vanishing neighborhood range, this model is in fact a
homoscedastic Gaussian mixture density model (because
b is a constant) with one Gaussian kernel centered on
each neuron weight: Indeed, one could drop the definition
of the winner, when the lattice is trained, and estimate
p(v) by the sum of all trained Gaussian kernels (with
homogeneous prior probabilities, 1

N). However, because
the weight distribution of the SOM is a power law of the
true input density (for a review, see Ref. 9) and because the
kernel radii are not adapted to the local density, one can
expect this density estimate to be inferior to what can be
achieved with a regular fixed kernel method such as
Parzen’s.

It is important to note that the maximum likelihood
procedure described here is actually different from the
traditional one (e.g., see Ref. 35) because a winner needs
to be selected (whereas in traditional maximum likelihood
procedures, all kernels are updated). This difference means
that, for example for a vanishing neighborhood range, a
given Gaussian kernel’s center is only updated when that
neuron is the winner [the definition of the ‘‘winner’’ i

�
in

Equation (1) is equivalent to looking for the Gaussian
kernel with the largest activity]. Hence, contrary to the
classical case, the tails of the Gaussian kernels do not lead
to center updates (they disappear ‘‘under’’ other kernels),
which means that the kernel radii will be underestimated
(as we will see later).

Elastic Net. Durbin and Willshaw’s elastic net (27) can
be considered one of the first accounts of kernel-based
topographic map formation. The elastic net was used for
solving the traveling salesman problem (TSP). In TSP, the
idea is to find the shortest, closed tour that visits each city
once and that returns to its starting point. When we
represent the location of each city by a point vm in the
two-dimensional input space V �R2, and a tour by a
sequence of N neurons—which comprise a ring or closed
chain A—then a solution to the TSP can be envisaged as a
mapping from V-space onto the neurons of the chain.
Evidently, we expect the neuron weights to coincide
with the input points (‘‘cities’’) at convergence. An exam-
ple of the convergence process for a 100 city case is shown
in Fig. 5.

Without going into details, the error function that is
minimized is given by:

EðWÞ ¼ � 2sL

X
m

log
X

i

exp½� 1

2s2
L

kvm � wik2�
 !

þ k
X

i

kwi � wiþ1k2 ð8Þ

with k as a parameter. The algorithm of the elastic net can
be written as follows (in our format):

Dwi¼2h

�X
m

LmðiÞðvm�wiÞþkðwiþ1�2wiþwi�1Þ
�
; 8i ð9Þ
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where each weight wi represents a point on the elastic net.
The first term on the right-hand side is a force that drags
each point wi on the chain A toward each city vm, and the
second term is an elastic force that tends to keep neighbor-
ing points on the chain close to each other (and thus tends to
minimize the overall tour length). The function LmðiÞ is a
normalized Gaussian:

LmðiÞ¼
expð�kvm�wik2=2s2

LÞP
jexpð�kvm�wjk2=2s2

L
Þ

ð10Þ

with wi the center of the Gaussian and sL its range,
which is gradually decreased over time (as well as h

and also k). By virtue of this kernel, the elastic net
can be viewed as a (equal-variance) homoscedastic Gaus-
sian mixture density model, fitted to the data points by a
penalized maximum likelihood term, that is, the elastic
force that encourages the centers of neighboring Gaus-
sians to be close in the input space (for a formal account,
see Ref. 36).

The elastic net algorithm looks similar to Kohonen’s
SOM algorithm except that L(i, j) has been replaced by
LmðiÞ and that a second term is added. Interestingly, the
SOM algorithm can be used for solving the TSP even with-
out the second term (37), provided that we take more
neurons in our chain than cities and that we (carefully)
initialize the weights, for example, on a circle (a so-called N-
gon) positioned at the center of mass of the input
distribution {vm} and whose diameter is half of the range
spanned (as in the left panel of Fig. 5).

The elastic net has been used as a model for the devel-
opment of both topography and ocular dominance in the

mapping from the lateral genicu-late nucleus to the pri-
mary visual cortex (38). It is also applied in different areas
of optimization problem solving. For example, it has been
used for finding trajectories of charged particles with multi-
ple scattering in high-energy physics experiments, such as
the ring recognition problem of baryonic matter experi-
ments (39) (Fig. 6), and has also been used for protein
structure prediction [protein folding prediction, (40)]
(Fig. 7). Furthermore, it has been used for clustering appli-
cations (41). Finally, because it also has a close relationship
with ‘‘snakes’’ in computer vision (42) (for the connection,
see Ref. 43), the elastic net has also been used for extracting
the shape of a closed object from a digital image, such as
finding the lung boundaries from magnetic resonance
images (44) (Fig. 8).

Maximum Local Correlation. Sum and coworkers devel-
oped a new interpretation of topographic map formation,
namely in terms of maximizing the local correlations
between the activities of neighboring lattice neurons
(32). The neurons have overlapping kernels that cause their
activities to be correlated.

The kernels are defined as Gaussian probabilities that
the corresponding neurons are active:

PiðvmÞ , PðActi ¼ 1jvmÞ ¼ 1ffiffiffiffiffiffiffiffi
2pt
p exp �kv

m � wik2

t

 !
ð11Þ

else Acti¼ 0, 8 i2A (note that the definition of the range t
is slightly different). Furthermore, the range of the prob-
ability function, t, is decreased during learning. When two
neighboring neurons i and j are jointly active, a coupling

Figure 6. Elastic nets used for finding rings in
scattering patterns. The found rings are indicated
in red; the scattering patterns are indicated in blue
(courtesy of Ivan Kisel).

Figure 5. Elastic net used for solving the traveling salesman problem. The lattice has a ring topology (chain); the points represent cities and
are chosen randomly from the input distribution demarcated by the square box. The evolution of the lattice is shown for three time instants, at
t ¼ 0 (initialization), 7000, and 10,000 (from left to right). The weights of the lattice at t ¼ 0 form a circle positioned at the center of mass of the
input distribution. (Reprinted from Ref. 34; #1988 IEEE.)
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energy e is generated. The following average coupling
energy4 for this pair of neurons is defined for input vm:

hei jðvmÞi ¼ hActiðvmÞAct jðvmÞei ¼ ePiðvmÞP jðvmÞ ð12Þ

Topological information enters the learning process in the
following manner:

hei jðvmÞi ¼ ePiðvmÞP jðvmÞqi j ð13Þ

with qij¼ 1 when neurons i and j are lattice neighbors, or it
is zero. Taken over all neuron pairs, the following average
coupling energy can be defined:

EðvmÞ ¼ e
X

i

X
j

PiðvmÞPiðvmÞqi j ð14Þ

Finally, when taken over all training samples, the fol-
lowing likelihood function is defined:

C ¼
X
m

logEðvmÞ ð15Þ

and on which gradient ascent is performed. This results in
the following incremental update rules for the kernel cen-
ters (albeit that also a fixed point version could have been
derived, see further):

Dwi ¼ h
X

j

di jðvm � wiÞ; 8 i ð16Þ

with dij defined as:

di j ¼ qi jexpð� kv
m�wik2

t Þexpð� kv
m�w jk2

t ÞP
l;m qlmexpð� kvm�wlk2

t Þexpð� kvm�wmk2

t Þ
ð17Þ

The algorithm is called maximum local correlation (Max-
Corr). When comparing with the SOM algorithm, one can
say that the term dij fulfills the role of the neighborhood
function, albeit it is defined in the input space rather than
in the lattice space. Because it depends on the product of
two nearest-neighbor kernels, when they are far apart in
the input space, the product could be small. The weight
update rule then simply reduces to standard unsupervised
competitive learning (which has no unfolding capacity). In
the opposite case, when t is too large, then, almost all
neurons will have an equal probability to be active, and,
by consequence, the weights will converge to the sample set
mean (centroid). Therefore, t should be chosen with care
(but this is also the case when choosing the parameters of,
for example, the SOM algorithm). Unfortunately, because
of its statistical nature, the algorithm is relatively slow in
unfolding and spanning the input space compared with the
SOM algorithm. In addition, boundary effects are found:
The border of the input space is not filled by neurons
(foreshortening, as in the example shown next).

To speed up the algorithm and to free the user from
defining the learning rate h (and also its cooling scheme),
we can derive a fixed point version of Equation. (16) by
taking the equilibrium kernel centers (obtained by solving
for Dwi= 0, given our sample set):

wi ¼
P

m

P
j di jv

mP
m

P
j di j

ð18Þ

As an example, we reconsider the two-dimensional uniform
distribution [�1,1]2 but take from it a batch of 1000 sam-
ples, and a two-dimensional square lattice of N ¼ 5 � 5
neurons; the kernel centers are initialized by taking sam-
ples from the same distribution. The parameter t is
decreased as follows:

tðtÞ ¼ 10 tð0Þexpð�2T ð0Þ t

tmax
Þ ð19Þ

with t(0) the initial value, t the epoch number (one epoch
means that all data points in a sample set have been
shown), and tmax the maximum number of epochs; we
take t(0) ¼ 2.5, that is, half the linear size of the lattice,
and tmax ¼ 100. The result at tmax is shown in Fig. 9a. We
observe the boundary effects. By choosing an amplitude

4Note from the author: The transition to the rightmost term in
Equation (12) is only valid when the activities are independent,
which is not the case when the kernels overlap, especially when
they are lattice neighbors, in which case, this is a heuristical
procedure.

Figure 7. Elastic net used for protein folding pre-
diction. Shown are three types of proteins with the
elastic net solutions shown in green and the true
native states in red (40). (Reprinted with permission
from John Wiley & Sons, Inc.)
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larger than 10 in the previous equation, the map becomes
smoother with stronger foreshortening of the kernel cen-
ters at the border and, thus, an even larger unfilled
boundary range. We have also noticed that a phase transi-
tion occurs in the map at about T ¼ 1.3: Above this value,
the algorithm pursues topology-preservation; below it,
distortion minimization is pursued (remember the link
with unsupervised competitive learning). Phase transi-
tions have been much less studied for kernel-based algo-
rithms.

Generative Topographic Map. The generative topo-
graphic map (GTM) algorithm was introduced by Bishop
and coworkers (28, 29) and develops a topographic map that
attempts to find a representation for the input distribution
p(v), v ¼ [v1,. . .,vd], v2V �Rd, in terms of a number L of
latent variables x ¼ [x1,. . .,xL]. This effort is achieved by
considering a nonlinear transformation y(x,W), governed
by a set of parameters W, which maps points in the latent
variable space to the input space, much the same way as the
lattice nodes in the SOM relate to positions in V-space. If we
define a probability distribution p(x) on the latent variable
space, then this will induce a corresponding distribution
p(y|W) in the input space.

As a specific form of p(x), Bishop and coworkers take a
discrete distribution that consists of a sum of delta func-
tions located at the N nodes of a regular lattice:

pðxÞ ¼ 1

N

XN
i¼1

dðx� xiÞ ð20Þ

The dimensionality L of the latent variable space is
typically less than the dimensionality d of the input space
so that the transformation y specifies an L-dimensional
manifold in V-space. Because L < d, the distribution in
V-space is confined to this manifold and, thus, is singular.
To avoid this, Bishop and coworkers introduced a noise
model in V-space, namely, a set of radially symmetric
Gaussian kernels centered at the positions of the lattice
nodes in V-space. The probability distribution in V-space
then can be written as follows:

pðvjW;sÞ ¼ 1

N

XN
i¼1

pðvjxi;W;sÞ ð21Þ

which is a homoscedastic Gaussian mixture model. In fact,
this distribution is a constrained Gaussian mixture model
because the centers of the Gaussians cannot move inde-
pendently from each other but are related through the
transformation y. Moreover, when the transformation is
smooth and continuous, the centers of the Gaussians will
be ordered topographically by construction. Therefore, the
topographic nature of the map is an intrinsic feature of the
latent variable model and is not dependent on the details
of the learning process. Finally, the parameters W and s
are determined by maximizing the log-likelihood:

lnLðW;sÞ ¼ ln
YM
m¼1

pðvmjW;sÞ ð22Þ

and which can be achieved through the use of an expecta-
tion-maximization (EM) procedure (45): First, the prob-
abilities are estimated (expectation step), and then these
probabilities are used for estimating the parameters
sought (maximization step). This procedure is repeated
till convergence.

The GTM has been applied to visualizing oil flows along
multiphase pipelines in which the phases are oil, water, and
gas, and the flows can be one of three types; stratified,
homogeneous, or annular (28) (Fig. 10, right panel); also it
has been applied to visualizing electropalatographic (EPG)
data for investigating activity of the tongue in normal and
pathological speech (47) (Fig. 11). More recently, it has been
applied to the classification of in vivo magnetic resonance
spectra of controls and Parkinson patients (48) (Fig. 12), to
word grouping in document data sets (using the newsgroup
data set benchmark) (Fig. 13) and the exploratory analysis

(a) (b)

Figure 9. (a) Lattice-sized 5 � 5 neurons obtained with the fixed
point version of the maximum correlation algorithm applied to a
batch of 1000 samples taken from the two-dimensional uniform
distribution [�1, 1]2 (square box). (b) Lattice obtained with the
regularized Gaussian mixture algorithm in Equations (26) and (27).

Figure 8. Elastic net applied to finding the
lung boundaries from magnetic resonance
images (44). The left panel shows the original
image; the right panel shows the extracted
lung boundaries. Note the mismatch at the
high curvature region of the right lung. (Rep-
rinted with permission.)
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of web navigation sequences (49), and to spatio-temporal
clustering of transition states of a typhoon from image
sequences of cloud patterns (50). In another case, the
GTM is used for micro-array data analysis (gene expression
data) with the purpose of finding low-confidence value
genes (Fig. 14), which, in the map, become more spread
away from the region representing the bulk of the data (51)
than an alternative method, NeuroScale5. Furthermore, a
single two-dimensional visualization plot may not be suffi-
cient to capture all of the interesting aspects of complex
data sets. Therefore, a hierarchical version of the GTM has
been developed (53). A final note on the GTM and its
application to data mining: The mapping function used
by GTM could not be meaningful as an explanation of

the possible mappings, as it is based on a very artificial
and arbitrarily constructed nonlinear latent space. For this
reason, the prior will have to be learned from data rather
than created by a human expert, as is possible for spring-
based models.

Regularized Gaussian Mixture Modeling. Heskes (20)
showed the direct correspondence between minimum dis-
tortion topographic map formation and maximum likeli-
hood Gaussian mixture density modeling (GMM) for the
homoscedastic case. The starting point was the traditional
distortion (vector quantization) formulation of the self-
organizing map:

Fquantization ¼
X
m

X
i

PðijvmÞ
X

j

lði; jÞ1
2
kvm �w jk2 ð23Þ

with P(i|vm) the probability that input vm is assigned to
neuron i with weight wi (i.e., the posterior probability, and
with

P
i PðijvmÞ ¼ 1 and PðijvmÞ� 0). Even if we assign vm to

neuron i, there exists a confusion probability l(i, j) that vm

is assigned to neuron j. An annealed version of the self-
organizing map is obtained if we add an entropy term:

Fentropy ¼
X
m

X
i

PðijvmÞlog PðijvmÞ
Qi

� �
ð24Þ

with Qi the prior probability (the usual choice is Qi ¼
1

N
,

with N the number of neurons in the lattice). The final (free)
energy is now:

F ¼ bFquantization þ Fentropy ð25Þ

with b playing the role of an inverse temperature. This
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Figure 11. Visualization of the trajectory in a 20 � 20 GTM
lattice of the activity of the tongue (electropalatographic data) of
speaker RK for the utterance fragment ‘‘I prefer Kant to Hobbes for
a good bedtime book’’ (47). (Reprinted with permission from Else-
vier Limited.)

GTM

parkinson’s 2

parkinson’s 1

parkinson’s 3

0.900.40

0.90

0.40

–0.10–0.60

–0.60

–1.10
–1.10

–0.10

Controls

Figure 12. Magnetic resonance spectra of controls and three
types of Parkinson patients visualized in a 15 � 15 GTM map
(48). (Reprinted with permission from Wiley-Liss, Inc., a subsidi-
ary of John Wiley & Sons, Inc.)

5NeuroScale is an extension of the classical distance preserving
visualization methods of Sammon mapping and multidimensional
scaling. It uses radial basis function networks. For more informa-
tion, see Ref. 52.

Figure 10. Oil flow data set visualized using principal compo-
nents analysis (PCA) (left panel) and the GTM (right panel).
Because the GTM performs a nonlinear mapping, it can better
separate the three types of flow configurations: laminar (red
crosses), homogeneous (blue plusses), and annular (green circles)
(46). (Reprinted with permission.)
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formulation is very convenient for an EM algorithm. The
expectation step leads to:

PðijvmÞ ¼
Qiexpð� b

2

P
j lði; jÞkvm � w jk2ÞP

s Qsexpð� b
2

P
j lðs; jÞkvm � w jk2Þ

ð26Þ

and the maximization step to:

wi ¼
P

m

P
j Pð jjvmÞlð j; iÞvmP

m

P
j Pð jjvmÞlð j; iÞ ; 8 i ð27Þ

which is also the result reached by Graepel and coworkers
(54) for the soft topographic vector quantization (STVQ)
algorithm (see the next section). Plugging Equation. (26)
into Equation (25) leads to the standard error function:

EðWÞ ¼ �
X
m

log
X

i

Qi exp �b

2

X
j

lði; jÞkvm �w jk2
0
@

1
A ð28Þ

and allows for the connection with a maximum likelihood
procedure for a mixture of homoscedastic Gaussians when
the neighborhood range vanishes ðlði; jÞ ¼ di jÞ :

pðvÞ� 1

N

X
i

Kiðv;wiÞ ð29Þ

of the true input density p(v), with N the number of
Gaussian kernels (we assume a homogeneous model;
Qi ¼ 1

N):

Kiðv;wiÞ ¼
1

ð2ps2Þd
2

exp
�kv�wik2

2s2

 !
ð30Þ

with center wi ¼ ½wi1; . . . ;wid�2Rd and radius s. The like-
lihood can be written as:

L¼
X
m

log
1

N

X
i

Kiðv;wiÞ ð31Þ

which is equal to �E [Equation (28)]. When the neighbor-
hood is present, Heskes showes that:

E¼�LþEregularization ð32Þ

Figure 13. Visualization of word grouping in the
newsgroup benchmark data set (49). (Reprinted
with permission from the IEEE #2005 IEEE)

Figure 14. Distribution of genes with their con-
fidence indicated (cf., the vertical scale), for stan-
dard NeuroScale (left panel) and the GTM. The
latter seems to distinguish the low-confidence
genes better (51). (Reprinted with permission.)
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with the latter term capturing the neighborhood relations
only. This result is an important result that shows the
connection between minimum distortion topographic
map formation and a regularized form of maximum like-
lihood homoscedastic Gaussian mixture density modeling.

Let us now reconsider our two-dimensional uniform
distribution example and take a Gaussian neighborhood
function of which the range is decreased exponentially,
slðtÞ ¼ slð0Þexpð�2slð0Þt=tmaxÞ; the initial range sl(0) ¼
2.5. The kernel centers are initialized by sampling the same
distribution. For the kernel range, we take s ¼ 0.15. The
result is shown in Fig. 9b. We observe that the lattice
disentangles and that it covers well the input space.

As an application, Heskes considers market basket
analysis. Given are a list of transactions that correspond
to the joint set of products purchased by a customer at a
given time. The goal of the analysis is to map the products
onto a two-dimensional (2-D) map (lattice) such that neigh-
boring products are ‘‘similar.’’ Similar products should have
similar conditional probabilities of buying other products.
In another application, he considers the case of transac-
tions in a supermarket. The products are summarized in
product groups and given are the co-occurrence frequen-
cies. The result is a 2-D density map that showes clusters of
products that belong together, for example, a large cluster
of household products (Fig. 15).

Soft TopographicVectorQuantization. Another approach
that considers topographic map formation as an optimiza-
tion problem is the one introduced by Graepel and cow-
orkers (31; 54). They start from the following cost function:

EðWÞ ¼ 1

2

X
m

X
i

cm;i
X

j

lði; jÞkvm � w jk2 ð33Þ

with cm;i 2f0; 1g and for which cmi ¼ 1 if vm is assigned to
neuron i, else cm;i ¼ 0ð

P
i cm;i ¼ 1Þ; the neighborhood func-

tion obeys
P

j lði; jÞ ¼ 1. The wi, 8 i, for which this func-

tion is minimal, are the optimal ones. However, the
optimization is a difficult task, because it depends both
on binary and continuous variables. Also, it will possess
many local minima. To avoid this situation, a technique
known as deterministic annealing is applied by doing the
optimization on a smooth function parametrized by a
parameter b, the so-called free energy: When b is small,
the function is smooth and only one global minimum
remains; when it is large, more of the structure of the
original cost function is reflected in the free energy.
Deterministic annealing begins by determining the mini-
mum of the free energy at low values of b and attempts to
keep track of the minimum through higher values of b.

The application of the principle of maximum entropy
yields the free energy (31), which is given by:

F ¼ � 1

b
log
X
cm;i

expð�bEÞ ð34Þ

which leads to probabilistic assignments of inputs vm to
neurons, PðijvmÞ, 8i, that is, the posterior probabilities, and
which are given by:

PðijvmÞ ¼
expð� b

2

P
j lði; jÞkvm � w jk2ÞP

s expð�
b
2

P
j lðs; jÞkvm � w jk2Þ

ð35Þ

which is termed by the authors a fuzzy assignment of inputs
to clusters (neurons) (from which comes the alternative
name for the algorithm: fuzzy membership in clusters). The
fixed point rule for the kernel centers is then:

wi ¼
P

m

P
j Pð jjvmÞlð j; iÞvmP

m

P
j Pð jjvmÞlð j; iÞ ; 8 i ð36Þ

The updates are done through an EM scheme. We observe
that the latter equation is identical to Heskes’ rule for
regularized Gaussian mixture modeling, Equation (27).

Figure 15. Visualization of market basket
data in which 199 product groups are clus-
tered based on their co-occurrence frequen-
cies with other products (20). (Reprinted
with permission from the IEEE #2001
IEEE)
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Most topographic map algorithms are applied to objects
described by Euclidean feature vectors. It is therefore
important to signal that the STVQ was generalized to
the soft topographic mapping for proximity data
(STMP), which can be used for clustering categorical
data given a matrix of pairwise proximities or dissimila-
rities, which is one of the first accounts of this nature in the
topographic map literature. A candidate application is the
DNA micro-array data set in which the data can be
described by matrices with the columns representing
tissue samples and the rows representing genes and
with the entries in the matrix corresponding to the
strength of the gene expression. In Ref. 55, a modified
version of the STMP is used for clustering documents
(‘‘document map’’). Every neuron points to several docu-
ments, characterized by the 10 index words that occur
most often (Fig. 16). The map shows that the documents
are grouped by content.

Conclusion. The diversity in algorithms for homoscedas-
tic kernel-based topographic map formation reflects the
differences in strategies behind them. Some algorithms
have been introduced to exploit the use of chains to solve
specific optimization problems (such as the traveling sales-
man problem in the elastic net), others to exploit determi-
nistic annealing in an attempt to avoid local minima (such as
the STVQ), others to develop a manifold that avoids topo-
logical defects because the map is topographically ordered
by construction (such as the GTM), others to show that
topographic maps can be developed based on local correla-
tions in neural activity (such as MaxCorr), and still others to
show and exploit the connection with mixture density mod-
eling, to obtain density maps (such as Heskes’ algorithm).
Thus, by this diversity in strategies, these topographic map
algorithms have their specific strengths (and weaknesses)
and, thus, their own types of applications. Heteroscedastic
kernel-based topographic maps could also be developed with
different strategies in mind. We opt to review the algorithms
that yield extended mixture density models, extended
because it occurs in a topographic map, which means that
the data density can be visualized.

Heteroscedastic Kernel Topographic Map Formation

In the literature, only few approaches exist that consider
heteroscedastic kernels, perhaps because the kernel radius

in the homoscedastic case is often used in an annealing
schedule, as in the STVQ, the maximum local correlation,
and the elastic net algorithms. When using heteroscedastic
kernels, a better density estimate is expected. In the follow-
ing, we restrict ourselves to spherically symmetric Gaus-
sians, but one could also consider the general case where
the Gaussians are specified by covariance matrices. As a
reference, we take the homogeneous, heteroscedastic Gaus-
sian mixture density model:

pðvÞ� 1

N

X
i

Kiðv;wi;siÞ ð37Þ

with N the number of Gaussian kernels:

Kiðv;wi;siÞ ¼
1

ð2ps2
i Þ

d
2

exp
�kv� wik2

2s2
i

� 
ð38Þ

with center wi ¼ ½wi1; . . . ;wid� 2Rd, radius si, and v ¼
[v1,. . .,vd], a random vector in Rd generated from the prob-
ability density p(v). A standard procedure to estimate the
parameters wi and si, 8i, is by maximizing the (average)
likelihood or by minimizing the (average) negative log-
likelihood for the sample S ¼ fvmjm ¼ 1; . . . ;Mg(35)
through an EM approach (45).

This reference leads to the following fixed point rules:

wi ¼
P

m PðijvmÞvmP
m PðijvmÞ

s2
i ¼

P
m PðijvmÞkv� wik2=dP

m PðijvmÞ ; 8 i

ð39Þ

where we have substituted for the posterior probabilities

PðijvmÞ ¼ Km

iP
j
Km

j

. Note that in the expectation step, we

update the posterior probabilities before the maximization
step, which is the update of the kernel centers and radii.
Note also that we can easily extend the current format to
nonhomogeneous GMMs by considering the prior probabil-
ities as additional parameters.

To compare the density estimation performance of the
various heteroscedastic algorithms with that of heterosce-
dastic Gaussian mixture modeling, we again consider the
two-dimensional uniform distribution [�1,1]2 from which

Figure 16. Document map generated with a
modified version of the STMP (55). (Reprinted
with permission from Elsevier Science & Tech-
nology).
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we take 1000 samples. We consider N¼ 25 kernels of which
we initialize the centers by taking samples from the same
distribution; the kernel radii are initialized si¼ 0.2, 8i. We
train the GMM during tmax ¼ 100 epochs. At tmax, the
average log-likelihood is �1.440, and the average kernel
radius is 0.147 (see Figs. 18a and b, stippled lines). The
resulting distribution of the kernels is shown in Fig. 17a.

BatchMap and itsHeteroscedastic Extension. The original
batch map (13), called here BMo, is defined as follows:

wi ¼
P

m Lði�; iÞvmP
m Lði�; iÞ ; 8 i ð40Þ

Bearing in mind what we have said earlier about the SOM
in connection to Gaussian mixture modeling, we can extend
this rule to the heteroscedastic case:

wi ¼
P

m Lði�; iÞvmP
m Lði�; iÞ

s2
i ¼

P
m Lði�; iÞkv� wik2=dP

m Lði�; iÞ ; 8 i

ð41Þ

with i�¼ argmaxiKi (which is no longer equivalent to i� ¼
argminiv�wi but which is required because we now have
heteroscedastic kernels), that is, an activity-based defini-
tion of ‘‘winner-takes-all’’ rather than a minimum Eucli-
dean distance-based definition. We call this new EM
algorithm the extended batch map (BMe). Notice again
that, by the definition of the winner, the tails of the kernels
are cut off, because the kernels overlap.

To continue with our example, we consider a 5 � 5
lattice of which the kernels are initialized as above and
that we train with a Gaussian neighborhood function
of which the range is decreased exponentially slðtÞ ¼
slð0Þexpð�2slð0Þt=tmaxÞ; the initial range sl(0) ¼ 2.5. The
average log-likelihood and average kernel radii are shown
in Figs. 18a and b (dotted lines).

We observe that the radii quickly grow from their initial
0.2 value to over 0.7 and then converge to a value that is
smaller than what is expected for the maximum likelihood
approach (the average radius is now 0.111). This result is a
direct result of the tails of the Gaussian kernels being cut
off. The lattice at tmax is shown in Fig. 17b.

Extended Regularized Gaussian Mixture Modeling, Version
1. We will discuss in this section and the next two possible
heuristic versions of heteroscedastic Gaussian kernel-
based topographic map formation. The fixed point weight

(a) (b)

(c) (d)

(e) (f)

Figure 17. (a) Fixed point solution for a GMM with 25 kernels
and for 1000 samples taken from the two-dimensional uniform
distribution [�1, 1]2 (boxes). The circles correspond to the standard
deviations of the Gaussian kernels (‘‘radii’’). (b) Fixed point solu-
tions for a 5 � 5 lattice of Gaussian kernels using the extended
batch map BMe; (c) two update rules that correspond to the GMM
case when the neighborhood has vanished, ERGMM1; (d)
ERGMM2; (e) LDE; and (f) BM-kMER (F).

(a)

(b)

Figure 18. Average log-likelihood (a) and average kernel radius
(b) as a function of training epochs for the update rules shown in
Fig. , GMM (stippled line), BMe (dotted line), ERGMM1 (thin
dashed line), ERGMM2 (thin full line), LDE (thick dashed line),
and BM-kMER (thick full line).
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update rule proposed for the homoscedastic case in regu-
larized Gaussian mixture modeling (20), Equation (27), and
which was also proposed in the soft topographic vector
quantization (STVQ) algorithm (31, 54), Equation (36),
can be easily extended to the heteroscedastic case by obser-
ving the similarities of the latter with the maximum like-
lihood approach of Equation (39)(56):

wi ¼
P

m

P
j Lð j; iÞPð jjvmÞvmP

m

P
j Lð j; iÞPð jjvmÞ

s2
i ¼

P
m

P
j Lð j; iÞPð jjvmÞkvm � wik2=dP

m

P
j Lð j; iÞPð jjvmÞ

; 8 i

ð42Þ

We call this the extended regularized Gaussian mixture
modeling version 1 (ERGMM1).

We again consider the uniform distribution example with
thesamelatticeandneighborhoodsettingsas intheprevious
case. We now observe that this approach leads to rapidly
growing kernel radii (thin dashed line in Fig. 18b), which
causes the kernels to map the whole input space instead of
the kernel centers, which stay at the centroid of the distribu-
tion (Fig. 17c). This result is clearly a nonoptimal maximum
likelihood result (the thin dashed line in Fig. 18a is lower
than the GMM result). However, this result does not neces-
sarilymeanthat, forexampleformultimodalinputdensities,
the kernel radii would not cover the whole space, as we have
shown (56). One way to solve this problem is to smooth the
radii updates over time, using a leaky integrator such as
Wegstein’s, siðtÞ ð1� aÞsiðt� 1Þ þ asiðtÞ(13).

Extended Regularized Gaussian Mixture Modeling,
Version 2. In a recent publication (33), we introduced a
learning algorithm for kernel-based topographic map for-
mation of heteroscedastic Gaussian mixtures that
allows for a unified account of distortion error (vector
quantization), log-likelihood, and Kullback–Leibler diver-
gence. The distortion error is given by:

EðWsÞ ¼
X
m

X
i

X
j

L jiPð jjvmÞ
kvm � wik2

2s2
i

þ
X
m

X
j

Pð jjvmÞð�d

2
Þlog

X
i

L ji

s2
i

þ
X
m

X
i

PðijvmÞlogPðijvmÞ
1=N

ð43Þ

withW¼ (w1,. . .,wN) and s¼ (s1,. . .,sN) and can be shown
to be equal to a scaled version of the log-likelihood and a
regularization term:

E ¼ ð�logL þRÞMð
ffiffiffiffiffiffi
2p
p

Þd ð44Þ

R ¼ � 1

M

X
m

log

�X
i

Qi expð�
X

j

Li j

2s2
j

wi � w jk2Þ
�
ð45Þ

that is, the part that collects the topological information,
with Qi kernel i’s prior probability and where we applied a

‘‘bias-variance’’ decomposition of the weighted and nor-
malized error term:

X
r

Lri

2s2
r

kvm �wrk2 ¼
kvm �wik2

2s2
i

þ
X

r

Lri

2s2
r

kwi

�wrk2 ð46Þ
with:

wi ¼
P

r
Lriwr

s2
rP

r
Lri

s2
r

ð47Þ

1

s2
i

¼
X

r

Lri

s2
r

ð48Þ

Thus, we take as the ith kernel radius si, which we esti-
mate from the s js in Equation. (48). The s js are updated as
in Equation (42). In this way, because we perform this
weighted sum of inverse variances, we avoid the initially
large radii generated by Equation (42). We call this algo-
rithm the extended regularized Gaussian mixture model-
ing version 2 (ERGMM2).

The EM algorithm for our uniform density now behaves
better (thin full lines in Figs. 18a and b): Both the average
log-likelihood and the kernel radius are close to those of the
GMM approach. The lattice is shown in Fig. 17d.

Other Versions. One could also consider the format sug-
gested in Ref. 33:

wi ¼
P

m

P
jLð j;iÞPð jjvmÞvmP

m

P
jLð j;iÞPð jjvmÞX

m

X
j

Pð jjvmÞðs jÞ2Li j ¼
X
m

1

d

X
j

Pð jjvmÞLi jkvm�wik2; 8i

ð49Þ

with si as in Equation (48), which was derived from an
objective function (distortion minimization and log-like-
lihood maximization) but which does not lead to a closed
form solution for updating the kernel radii. This format
leads to a complex iterative update scheme because for
large neighborhood ranges, the determinant becomes
close to singular and because one should guarantee
non-negative solutions for the sis. We do not consider
this update scheme more.

Another heuristic version is obtained by adopting a
mixed strategy, namely, to update the kernel radii as in
maximum likelihood Gaussian mixture modeling but to
update the kernel centers with the neighborhood function
present:

wi ¼
P

m

P
j Lð j; iÞPð jjvmÞvmP

m

P
j Lð j; iÞPð jjvmÞ

s2
i ¼

P
m PðijvmÞkv� wik2=dP

m PðijvmÞ ; 8 i

ð50Þ

However, it also leads to rapidly increasing kernel radii
and thus behaves similarly to ERGMM1; in addition,
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because it does not use neighborhood information for its
kernel radii, it is more prone to getting trapped in solutions
that do not show the correct the number of data clusters (as
was observed in Ref. 56).

Also, an heuristic approach is suggested by Yin and
Allinson (19) that minimizes the Kullback–Leibler diver-
gence, based on an idea introduced by Benaim and Toma-
sini (57) for the homoscedastic case. Albeit that these
authors only suggested an incremental, gradient-based
learning procedure (thus, with a learning rate), we can
easily cast their format into a fixed point learning scheme:

wi¼
P

m Lði�; iÞPðijvmÞvmP
m Lði�; iÞPðijvmÞ

s2
i¼

P
m Lði�; iÞPðijvmÞkvm � wik2=dP

m Lði�; iÞPðijvmÞ ; 8 i

ð51Þ

with the winner neuron defined as i� ¼ argmaxi PðijvmÞ,
thus, the neuron with the largest posterior probability.
However, this learning scheme has very limited lattice
unfolding capacity: For example the lattice does not unfold
for our uniform distribution example (Fig. 19a). There
seems to be a confusion between the posterior probability
and the neighborhood function (because their products are
taken for the same kernel i): Omitting the posteriors leads to
the extended batch map algorithm, which can unfold the
lattice. The neighborhood functions in the ERGMM1 and
ERGMM2 EM rules act as smoothing kernels (summing
over all posteriors) and do not impede lattice unfolding. To
remedy the problem with Yin and Allinson’s, one could
replace PðijvmÞ by Pði�jvmÞ in the above equations. The
lattice unfolds, but the solution is now similar to that of
BMe, also with the underestimated kernel radius size (Fig.
19b). As applications, Yin and Allinson consider density
estimation of X-ray diffraction data and capillary electro-
phoresis data; for the latter, the width of the peaks in the
density estimate relate to the diffusion coefficients of the
chemical analysis, which shows the benefit of heteroscedas-
tic kernels.

In a still different approach, an input to lattice trans-
formation C is considered that admits a kernel function, a
Gaussian (58)hCðvÞ;CðwiÞi ¼ Kðv;wi;siÞ

Kðv;wi;siÞ ¼ exp �kv� wik2

2s2
i

� 
ð52Þ

similar to kernel support vector machines (SVMs), when
applying the kernel trick (for a tutorial on the SVM, see
Ref. 59). When performing topographic map formation,
we require that the weight vectors are updated to mini-
mize the expected value of the squared Euclidean distance
kv� wik2 and, thus, following our transformation C, we
instead wish to minimize kCðvÞ �CðwiÞk2, which we will
achieve by performing gradient descent with respect towi.
This descent leads to the following fixed point rules to
which we have added a neighborhood function:

wi¼
P

m Lði; i�ÞKðvm;wi;siÞvmP
m Lði; i�ÞKðvm;wi;siÞ

s2
i¼

1

rd

P
m Lði; i�ÞKðvm;wi;siÞkvm � wik2P

m Lði; i�ÞKðvm;wi;siÞ
; 8 i

ð53Þ

with r a scale factor (a constant) designed to relax the local
Gaussian (and d large) assumption in practice and with
i�=argmax8 i2A Kðv;wi;siÞ. We refer to this algorithm as
local density modeling (LDE). As an example, we reconsi-
der the uniform distribution example with the same lat-
tice and neighborhood settings as in the previous case. We
take r ¼ 0.4 as recommended in Ref. 58. The kernel radii
rapidly grow in size, span a considerable part of the input
distribution, and then decrease to smaller values, all of
which is evidenced by the evolution of the average radius
in Fig. 18b (thick dashed line). The converged lattice
is shown in Fig. 17e. For larger r the average radius
becomes smaller, but the lattice fails to unfold.

Finally, rather than having a real-valued neural activa-
tion, one could also threshold the kernel into a binary
variable: In the kernel-based maximum entropy rule
(kMER), a neuron i is activated by input v when
kwi � vk<si, where si is the kernel radius of neuron i
and which defines a hyperspherical activation region,
Si(30). The membership function, 1iðvÞ, equals unity
when neuron i is activated by v, else it is zero. When no
neurons are active for a given input, the neuron that is
positioned closest to that input is defined active. The incre-
mental learning rules for the weights and radii of neuron i
are as follows:

Dwi¼h
X

j

Lði; jÞJiðvÞsignðv� wiÞ

Dsi¼h
rr
N
ð1� 1iðvÞ

�
� 1iðvÞÞ; 8 i

� ð54Þ

with sign(.) the sign function taken componentwise, h the

learning rate, JiðvÞ ¼
1iP
j 1 j

a fuzzy membership function,

and rr ¼
rN

N � r
. It can be shown that the kernel ranges

converge to the case in which the average probabilities

become equal, h1ii ¼
r

N
; 8 i. By virtue of the latter, kMER

is said to generate an equiprobabilistic topographic map.
The algorithm has been considered for a wide range of
applications, such as shape clustering (60), music signal
clustering (9), and the linking of patent and scientific
publications databases (61). More recently, also a fixed
point version called batch map kMER (BM-kMER) was

(a) (b)

Figure 19. (a) Fixed point solution that corresponds to Yin and
Allinson’s approach in Equation (51); the lattice did not unfold. (b)
Idem but now when replacing the posterior probability PðijvmÞ by
Pði�jvmÞ; the lattice now unfolds.
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introduced (62) and applied to handwritten numerals clus-
tering. To illustrate BM-kMER, we reconsider the uniform
distribution example with the same lattice and neighbor-
hood settings. We take r ¼ 0.5. (Note that r acts as a
smoothness constraint for the corresponding density esti-
mate; for a strategy to choose it, see Refs. 9 and 60.) The
converged lattice is show in Fig. 17f. From Figs. 18a and b
we observe that the average log-likelihood and kernel
ranges quickly converge to their asymptotic vales (thick
full lines).

Correspondences Between Algorithms. A final note on
the algorithms based on Gaussian mixture models: We
observe that the kernel center update rules usually either
consist of normalized versions of the neighborhood func-
tion multiplied with the posterior probability or, when a
winner is defined, consist of the same but without the
posterior probability. For the heteroscedastic case, we
have usually a normalized function that contains a
term related to the local variance estimate,
kvm � wik2=d, scaled by the neighborhood function and
the posterior probability; when a winner is defined, we
can do without the posteriors. Because these update rules
were defined from different objective functions, they lead
us to conclude that the number of variations are limited, at
least when lattice unfolding is a concern (although we only
have verified the latter through simulation not through
formal proofs, which is not likely to be possible; see also the
next section). For example, summing over the product of
the neighborhood function and the posterior probability
of the same kernel leads to a confounding of the contribu-
tions of the two, which could hamper a proper lattice
unfolding.

Therefore, different algorithms exist for the Gaussian
heteroscedastic case, but because for the algorithms in this
section the vanishing neighborhood range corresponds to
Gaussian mixture modeling, the choice depends on the
computational complexity andthe lattice unfoldingcapacity.

Local Minima in Kernel-Based Topographic Map Formation

Convergence of nonprobabilistic topographic map forma-
tion rules is usually explained in terms of convergence to
(albeit in some cases only approximately, as in the SOM
algorithm) local minima of an objective function. If a well-
defined objective function is being optimized, then the
existence of local minima supports the application of fixed
point rules rather than incremental update rules, which
leads to a substantial increase in speed of convergence and
a freeing of the user from having to choose the learning rate
(and its cooling scheme). Local minima are often studied
from the perspective that they could correspond to topo-
graphic errors or topological defects (17, 63), such as kinks
in the one-dimensional case and twists in the two-dimen-
sional case. These defects are difficult to iron out, if at all,
when the neighborhood range vanishes. This discussion
goes back to the proof of the SOM ordering process by
Kohonen (12) and Cottrell and Fort (64) and the role played
by the neighborhood function, albeit that the proof applies
to the one-dimensional case only [a proof is unlikely to exist
for the higher-dimensional case (65)]. When using kernel-

based (or probabilistic) topographic maps, these defects are
of a similar concern (except for the GTM, which is topology-
preserving by construction), but this is much less studied
because the connection between local minima and topo-
graphic defects is less clear (see e.g., Fig. 1 in Ref. 21).
Indeed, for kernel-based topographic maps, an additional
issue develops because of their connection to mixture model-
ing,thus, intheabsenceoftheneighborhoodfunction:Global
optimization (maximization of the likelihood function) in
mixture modeling is a major concern on its own and has
been thoroughly studied (for a standard reference, see Ref.
66). The presence of the neighborhood function is thought to
perform a deterministic annealing of the optimization pro-
cess, which is viewed as a means to avoid local minima of the
objective function (but not necessarily to avoid topological
defects). This performance has been studied formally by
Obermayer and coworkers (31) for the homoscedastic case,
in which the kernel radius is driven by the annealing pro-
cedure. The neighborhood range can even be kept constant
during lattice unfolding. For the heteroscedastic case, for
some class of rules, the estimation of the kernel radius
depends on the gradual neighborhood range decrease (e.g.,
in Equation (42), kernel radii), but this annealing is less
efficient in avoiding minima because it is subject to the same
problems as mixture modeling: Kernel radii can shrink to
zero when the data distribution is sparse; thus, for this
reason, one often prefers to keep a minimum neighborhood
radius present (the neighborhood acts as a statistical kernel
smoother; for a discussion, see Ref. 9). For another class of
rules,localminimaexistforwhichthekernelsspanthewhole
input range, especially when a large neighborhood range at
the onset also implies a large kernel range (as in the
ERGMM1 rule). Monitoring the log-likelihood and compar-
ing it with what can be achieved with the mixture modeling
case (thus, training the kernels without using a neighbor-
hood function at all) could be a solution to detect the latter.

Kernels Other than Gaussians

In principle, kernels other than Gaussians could be used in
topographic map formation. For example, Heskes (20)
pointed out that his regularized mixture modeling
approach in principle, could accommodate any kernel of
the exponential family, such as the Gamma, multinomial,
and the Poisson distribution.

In another case, the kernel is considered for which the
differential entropy of the kernel output will be maximal
given a Gaussian input, that is, the incomplete gamma dis-
tribution kernel (67). The fixed point rules are the same as for
the extended batch map in Equation (41), but with the winner
i�defined as i� ¼ argmax 8 i2AKðv;wi;siÞ. The update of the
winner leads to a decrease of its radius and thus a decrease in
overlap with its neighboring kernels, which is used as an
heuristic to maximize the joint entropy of the kernel outputs.

Another type of kernels is the Edgeworth-expanded
Gaussian kernel, which consists of a Gaussian kernel
multiplied by a series of Hermite polynomials of increasing
order and of which the coefficients are specified by (the
second- but also higher-order) cumulants (68). However,
similar to the case considered earlier, when attempting to
derive the kernel update rules in a maximum likelihood
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format, the presence of the neighborhood means that we do
not have a closed form solution for updating the kernel
moments (and, thus, the cumulants), except for the first
moment. To remedy this lake, an heuristic procedure based
on the extended batch map was proposed.

In still another case, a mixture of Bernouilli distribu-
tions is taken (69) for the specific purpose to better encode
binary data (e.g., word occurrence in a document). This
approach also leads to an EM algorithm for updating the
posteriors and the expected joint log-likelihood with respect
to the parameters of the Bernouilli distributions. However,
as the posteriors become quite peaked for higher dimen-
sions, for visualization purposes, a power function of them
was chosen. Several applications were demonstrated,
including word grouping in document data sets (newsgroup
data set) and credit data analysis (from the UCI repository).

CONCLUSION AND OUTLOOK

In this article we have reviewed kernel-based topographic
map formation. We showes that several types of objective
functions, learning principles, and kernel types are found.
We started with the homoscedastic Gaussian kernels, con-
sidered the heteroscedastic case mostly as an extension of
the former, and briefly discussed non-Gaussian kernels. A
foreseeable development is the integration of kernel-based
activation functions into toroidal or spherical topographic
maps [which were first introduced by Helge Ritter (70)] to
avoid boundary effects, especially when the natural data
model is spherical.

Another expected development is to go beyond the lim-
itation of the current kernel-based topographic maps in
which the inputs need to be vectors (we already saw the
extension toward categorical data). But in the area of struc-
tural pattern recognition, more powerful data structures
can be processed, such as strings, trees, and graphs. The
SOM algorithm has already been extended towards strings
(71) and graphs, which include strings and trees (55, 72, 73).
However, also new types of kernels for strings, trees, and
graphs have been suggested in the support vector machine
literature (thus, outside the topographic map literature) (for
reviews, see Refs. 74 and 75). The integration of these new
types of kernels into kernel-based topographic maps (such
as the LDE algorithm that adopted the format of kernel
SVMs) is yet to be done, but it could turn out to be a
promising evolution for biochemical applications, such as
visualizing and clustering sets of structure-based molecule
descriptions, protein structures, and long DNA sequences.
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28. C. M. Bishop, M. SvensÕn, and C. K. I. Williams, GTM: A
principled alternative to the self-organizing map, Proc. 1996
International Conference in Artificial Neural Networks
(ICANN’96), 165–170, 1996.
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