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Abstract. This paper discusses the usage of different image features
and their combination in the context of estimating the motion of rigid
bodies (RBM estimation). From stereo image sequences, we extract line
features at local edges (coded in so called multi-modal primitives) as well
as point features (by means of SIFT descriptors). All features are then
matched across stereo and time, and we use these correspondences to
estimate the RBM by solving the 3D-2D pose estimation problem. We
test different feature sets on various stereo image sequences, recorded
in realistic outdoor and indoor scenes. We evaluate and compare the
results using line and point features as 3D-2D constraints and we discuss
the qualitative advantages and disadvantages of both feature types for
RBM estimation. We also demonstrate an improvement in robustness
through the combination of these features on large data sets in the driver
assistance and robotics domain. In particular, we report total failures of
motion estimation based on only one type of feature on relevant data
sets.

1 Introduction

The knowledge about the egomotion of the camera or the motion of objects in a
scene is crucial for many applications such as driver assistance systems, object
recognition, collision avoidance and motion capture in animation. In case we deal
with a rigid object, such a motion can be understood as a ‘Rigid Body Motion’
(RBM), which is defined as a continuous motion preserving the distance between
any two points of the object. The mathematical structure of this motion is well
known and has been studied for over 100 years (see e.g., [1]).
The estimation of such a motion from images faces two sub-problems. First,
based on a certain mathematical formulation of the RBM, constraint equations
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need to be defined using correspondences between image features. This problem
can become complex, in particular when correspondences of different features
(e.g., line and point correspondences) become mixed. The state of the art in
this field is described in Section 1.1. Second, correspondences between image
features need to be computed from image sequences. Here, different kinds of local
image structures are observable that lead to constraints of different structure and
strength (e.g., point and line correspondences). Point correspondences are more
valuable since they lead to stronger constraint equations. However, in general
there are much fewer point correspondences compared to line correspondences
available in natural scenes due to the dominance of edges (see, e.g., [2]). Work
addressing the correspondence problem for different feature types is discussed in
Section 1.2.
The intention of this paper is to analyze the consequences of using two dif-
ferent kinds of correspondences (i.e., point and line correspondences) as well
as their combination for motion estimation on a large set of indoor and out-
door sequences, with large variety across the sequences as well as within the
sequences. We evaluate and compare the results of line features (primitives) and
point features (SIFT) as constraints for RBM estimation. We discuss the quali-
tative advantages and disadvantages of both feature types for RBM estimation
and also demonstrate an improvement in robustness through the combination of
these features on large data sets in the driver assistance and robotics domain. In
particular, we report total failures of motion estimation based on only one type
of feature on relevant data sets stressing the importance of their combination for
robust motion estimation. Hence, our main contribution is giving empirical evi-
dence to argue that for stable motion estimation both kinds of features need to
be used. As a consequence, we state that (1) a rich feature representation needs
to be provided by the visual processing4 and (2) a mathematical framework
needs to be used that allows for such a mixing of correspondences.
The paper is structured as followed. First, we discuss related work on the for-
malization of the RBM estimation problem in Section 1.1 and about the finding
of feature correspondences in Section 1.2. Section 2 describes all methods used
in this work, including the formulation of the class of RBM. Furthermore, the
section briefly describes the process of feature extraction and matching, and the
3D-2D pose estimation algorithm. Section 3 is concerned with the settings under
which all methods are applied and presents the results. Section 4 discusses the
results and briefly summarizes the contribution of this paper.

1.1 Mathematical aspects of RBM estimation

Motion estimation in different scenarios has been approached successfully (e.g.
[4–6]), a recent overview on monocular rigid pose estimation can be found in [7].
The different methods for RBM estimation that have been proposed can be sep-
arated into feature based (see, e.g., [8, 9]), optic flow based (see, e.g., [10, 11])
and direct methods where no explicit representations as features or optic flow

4 In this context we coined the term ’early cognitive vision’ in [3].
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vectors are used but image intensities are directly matched (see, e.g., [12–15]).
A summary of the comparison of optic flow and feature based methods can
be found in [16]. Solutions for feature based methods can be divided into lin-
ear and iterative algorithms. Linear algorithms use a limited number of feature
correspondences (usually n ≥ 4, 5 ). Proposed solutions include the use of 3
points [17], 6 points [18], 4 points in general position [19] and 3 lines in general
position [20]. Iterative algorithms (see, e.g. [9, 21, 22]) make use of large corre-
spondence sets, where closed form solutions no longer perform efficiently. The
main difference to linear algorithms is that nonlinear algorithms require a start-
ing point (an initial guess of the motion parameters) and need multiple iterations
to find the motion parameters. Furthermore, feature based motion estimation
algorithms also differ in the usage of different mathematical representations and
error functions to be minimized. An example using points is proposed in [21],
using 2D to 2D, 2D to 3D and 3D to 3D point correspondences. Other examples
make use of line correspondence as in [4, 5].
All feature based solutions mentioned above require the extraction and matching
of visual features, most commonly point or line features. However, as we will
show, the RBM estimation problem can not be completely solved based one
feature type alone, since there are cases where standard methods fail due to
certain particularities in the data set. In addition, since different feature types are
localized with different accuracy, the precision of the estimated motion depends
on the feature types used. As a consequence, we argue that a general, precise and
robust motion estimation algorithm makes use of an set of features as complete
as possible for describing the scene.
The joint use of point and line correspondences requires a mathematical frame-
work that allows for such a combination. This is mathematically non-trivial
since a system of constraint equations on different entities need to be defined
and, indeed, most algorithms are based on point correspondences only (see,
e.g., [9, 18, 19, 21]). In recent years, some linear solutions have been proposed
for the pose estimation problem making use of n points or n lines [6, 23]. These
solutions provide algorithms and mathematical formulations allowing to use ei-
ther points or lines, but not a combination of both mathematical representations
within the same system of constraint equations.
However, there exist some algorithms which allow for a combination of corre-
spondences of different types of constraints (see, e.g., [24,25]). For our work, we
chose the algorithm [24], since, in addition of being able to deal with different
visual entities, it does optimization on 3D constraint equations, using a twist
formulation (see, e.g., [4, 26]). This formulation directly acts on the parameters
of rigid-body motions, (i.e., SE(3)) avoiding the use of additional non-linear
constraints (e.g. enforcing rotation quaternions) to make sure that the found
solution actually is in SE(3).
A similar approach is [27], which uses a non-linear least squares optimization to
optimize the 2D re-projection error (instead of a 3D error as in [24]). As shown
in [28], this approach performs better than the POSIT (Pose from Orthography
and Scaling with ITerations) algorithm [29] in tracking scenarios. The work [27]
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extends the original publication [30] by the possibility to include 3D-point to
2D-line correspondences.
Note that some recent work, including [31, 32], proposed monocular, multiple
view evaluation of a constrained motion (line or conic section). In this work we
are interested in the unconstrained case. Recent work in a similar driving en-
vironment as the outdoor sequences used this work include [33] concerning the
estimation of a three dimensional velocity vector using stereo data. The pro-
posed approach uses two consecutive image pairs in stereo sequences, where the
main concept is the decoupling of the postion estimation and velocity estima-
tion, allowing both the use of sparse and dense disparity estimation algorithms.
Similar work in indoor robotic environments include the work of [34] addressing
the inverse kinematics problem, providing a model for tracking kinematic chains
with restriced degrees of freedom.

1.2 Computing feature correspondences

Relevant research does not only concern the mathematical aspects of RBM esti-
mation, but also the extraction and matching of features. Visual scenes contain
different kinds of local image structures (e.g., texture, junctions, local edges,
homogeneous image patches) with different properties with regards to the corre-
spondence problem, in particular line structures suffer from the aperture prob-
lem. The statistical distribution of these structures can be efficiently represented
by making use of the concept of intrinsic dimensionality (see [2,35]). In general,
it can be stated that approximately 10% of the local image structures correspond
to edges, 1% to junction-like structures, and the remaining 90% to texture or
homogeneous areas. There is no strict delimitation, but a continuum between
texture and homogeneous image areas since recording noise on homogeneous
areas already represents some weak texture (that of course is unsuitable for
correspondence finding) and also most textured areas have very low contrast
making them unsuitable for reliable correspondence finding. The distribution of
occurrences of different image structures can vary significantly across images.
Texture and junctions lead to point correspondences, which result in a stronger
mathematical constraint (two constraint equations) than edge/line correspon-
dences (one single constraint equation). However, in particular in man-made
environments, edge features can be dominating. SIFT features [36] and their
derivatives (for a review see [37]) describe semi-local textures and allow for very
robust (but not necessarily precise, see below) correspondence finding, resulting
in point correspondences that provide two constraint equations each. In contrast
to that, edges are frequently occurring features that allow for robust and precise
line–correspondences, that are however in mathematical terms ’weak’, since they
result in only one constrain equation.
Besides the frequency of occurrence, there exist also differences in the precision
with which these features can be localized. We observed problems in the precision
of SIFT correspondences in particular in the sequences in the driver assistance
domain where motion blur and other sources of noise (such as rain drops, fog,
etc) influence the recording process. In contrast to SIFT features, edge/line
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features represent more simple structures for which sub-pixel accuracy can be
achieved with higher precision. Moreover, we observed that for scenes taken in
an indoor environment, there occur cases where not enough SIFT features could
be extracted, leading to an underconstrained estimation problem.5 This also
occurred in some (although very few) cases in the outdoor scenario.
Since feature matching is a fundamental problem in computer vision, many fea-
ture detectors and techniques for matching have been proposed over the years
(for an overview see [37]). The term of ‘feature detector’ covers the process of
extracting of wide range of interest points, where each of them usually defines a
location in an image with large gradients in several directions. The approach of
using a corner detector for stereo matching was initially proposed by Moravec [38]
and later improved by Harris and Stephens [39], and has since been used for a
wide range of computer vision applications involving point matching. Harris also
showed the value of corner features for recovering structure from motion [40].
Zhang [41] showed successful matching of Harris corners over large image ranges
and motions by using a correlation window for identifying potential correspon-
dences. Other examples of feature points used for motion estimation include
junctions [42,43] and SIFT features [44]. As an alternative to point features, line
features have been used for motion estimation [23,45].
Regardless of the type of feature or constraints introduced to matching, finding
correspondence remains a real challenge due the change of the 3D viewpoint,
resulting in the perspective distortions of features. The Harris corner detector,
for example, is very sensitive to changes in image scale. In the field of RBM
estimations, where objects move and thereby change size, Harris corners will
encounter difficulties for temporal matching. Therefore, a good feature descrip-
tor for matching is invariant towards change in rotation and scale. The SIFT
descriptor [36] provides these properties, and is therefore used in this evaluation
(for a discussion of different descriptors in the context of correspondence finding,
we refer again to [37]).

2 Methods

In this section, we explain the different parts of the motion algorithm. In Section
2.1, we briefly explain the mathematical formulation of the RBM estimation
problem. In Section 2.2, we describe the features and their extraction. The stereo
matching as well as the temporal matching is described in Section 2.3. Finally, in
Section 2.4, we describe the complete motion estimation process. In this section,
we will write 2D entities in lower case e, 3D entities in upper case E, predicted
entities as ê and the matched ones as ě. When relevant, we denote in which image
2D entities belong to using subscript, el corresponding to a 2D entity in the left
image and er to a 2D entity in the right image. Furthermore, when relevant we

5 We are confident that the reason is not a bad parameter choice of the SIFT pro-
cessing, since another group confirmed our experience on the specific data set using
their motion estimation algorithm.
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make use of superscript et for describing the instant of time t at which a given
entity was observed.

2.1 Rigid Body Motion

A Rigid Body Motion M consisting of a translation t and a rotation r is de-
scribed by six parameters, three for the translation t = (t1, t2, t3) and three for
the rotation axis r = (r1, r2, r3) (see Figure 1). This allows for the formulation
of the transformation between a visual entity according to this motion.

M(t,r)(E) = Ê (1.1)

Fig. 1. Representations of a Rigid Body Motion by a combination of rotation (coded in
axis-angle representation) and translation. First a rotation Rot(E) is performed around
the axis r. Then the 3D entity E is moved according to the translation vector t. This
allows for the formulation of the transformation between a visual entity in one frame,
and the same entity in the next frame. The norm of this rotation axis codes the angle
of rotation α = ‖r‖.

The problem of computing the RBM from correspondences between 3D objects
and 2D image entities is referred as 3D-2D pose estimation [46,47]. The 3D entity
(3D object information) needs to be associated to a 2D entity (2D correspondence
of the same object in the next image) according to the perspective projection P.

P(M(t,r)(E)) = ê (1.2)

There exist approaches (in the following called projective approaches) that for-
malize constraints directly on equation (1.2) (see e.g., [30]). An alternative is,
instead of formalizing the pose estimation problem in the image plane, to asso-
ciate a 3D entity to each 2D entity: a 2D image point together with the optical
center of the camera spans a 3D line (see figure 2a) and an image line together
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with the optical center generates a 3D plane (see figure 2b). In case of a 2D
point x̌, we denote the 3D line that is generated in this way by L(x̌). The RBM
estimation problem can be formulated for 3D entities as:

M(t,r)(X) ∈ L(x̌) (1.3)

where X is the 3D point and x̌ the 2D point it is matched with. Such a formula-
tion in 3D has been applied by, e.g., [47,48], coding the RBM estimation problem
in a twist representation that can be computed iteratively on a linearized ap-
proximation of the RBM. For that, we want to formulate constraints between
2D image entities and 3D object entities, where a 2D image point together with
the optical center of the camera spans a 3D-line (see Figure 2a) and an image
line together with the optical center generates a 3D-plane (see Figure 2b).

a) b)

Fig. 2. Geometric interpretation of constraint equations (assuming the camera geom-
etry is known): a) From an image point and the camera optical center, a 3D-line can
be generated The 3D-point 3D-line constraint realizes the shortest Euclidean distance
between the 3D-point and the 3D-line. b) From an image line and the camera optical
center, a 3D-plane can be generated. The 3D-point 3D-plane constraint realizes the
shortest Euclidean distance between the 3D-point and the 3D-plane.

A Rigid Body MotionM(t,r) can be formalized in different ways, describing the
same motion in different formulations. One of them is the formulation of twists
[26], which is used in this work and described briefly in the following. Twists
have a straightforward linear approximation (using a Taylor series expansion)
and lead to a formalization that searches in the six dimensional space of RBMs
(i.e, SE(3)). In the twist formulation, an RBM is understood as a rotation of
angle α around a line L in 3D space with direction w = (w1, w2, w3) and
moment w× q, where q = (q1, q2, q3) is a point on that line. The vectors w and
the cross-product of w × q are referred to as Plücker coordinates. In addition
to the rotation, a translation with magnitude λ along the line L is performed.
Then, an RBM can be represented as follows:

Ê = eαξ̃(E) =M(t,r)(E) (1.4)
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with

eαξ̃ =
∞∑
n=0

1
n!

(ξ̃α)n (1.5)

with ξ̃α being the 4× 4 matrix with 6 motion parameters to be estimated

ξ̃α =


0 −αw3 αw2 αv1

αw3 0 −αw1 αv2

−αw2 αw1 0 αv3

0 0 0 0

 (1.6)

with v1

v2

v3

 =

w3q2 − w2q3 + λw1

w1q3 − w3q1 + λw2

w2q1 − w1q2 + λw2

 (1.7)

By using the exponential representation in Equation 1.5, a straightforward lin-
earization is given by:

eξ̃α ≈ I4×4 + ξ̃α (1.8)

A 3D-line L can be expressed as two 3D vectors (ν,µ). The vector ν describes
the direction and µ describes the moment which is the cross product of a point
X on the line and the direction µ = X × ν. The null space of the equation
X×ν−µ = 0 is the set of all points on the line, and can be expressed in matrix
form as follows:

FL(X) =

 0 ν3 −ν2 −µ1

−ν3 0 ν1 −µ2

ν2 −ν1 0 −µ3



X1

X2

X3

1

 =

0
0
0

 (1.9)

Combining the above formulation of a 3D-line with a 3D-point X allows the
creation of the 3D-point/3D-line constraint using the linearization from Equation
1.8 as:

FL(x̌)
(

(I4×4 + αξ̃)X
)

=

0
0
0

 (1.10)

Here, the value ||FL(x̌)(X̂)|| can be interpreted as the Euclidian distance be-
tween the moved point X̂ and the closest point on the line L [47,49]. Note that,
although we have 3 equations for one correspondence the matrix is of rank 2
resulting in only 2 constraints.
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A 3D-plane P can be expressed by defining the components of the unit nor-
mal vector n and a scalar (Hesse distance) δh. The null space of the equation
n ·X − δh = 0 is the set of all points on the plane, and can be expressed in
matrix form as follows:

FP (̌l)(X) =
(
n1 n2 n3 −δh

)
X1

X2

X3

1

 = 0 (1.11)

Combining the above formulation of a 3D-plane together with a 3D-point X al-
lows for the creation of the 3D-point/3D-plane constraint using the linearization
from Equation 1.8:

FP (̌l)
(

(I4×4 + αξ̃)X
)

= 0 (1.12)

Note that the value |FP (X̂)| can be interpreted as the Euclidean distance be-
tween the moved point X̂ and the closest point on the plane P (see [47]). These
3D-point/3D-line and 3D-point/3D-plane constraints result in a system of linear
equations, the solution of which is found by iterative optimization (for details
see [50]).

2.2 Feature Extraction

Visual Primitives form a feature based image representation that has been de-
veloped in the European project ECOVISION [51], which was focused on the
modeling of early cognitive vision [3]. We believe that this representation pro-
vides robust means for finding correspondences across stereo and time, which
are necessary for addressing the problem of RBM estimation.
Visual Primitives are extracted at image points representing edge structures, en-
coded as values of different visual modalities: position m, orientation θ, phase ω,
color c and local optic flow f . Consequently, a multi-modal primitive is described
by the following vector:

π = (m, θ, ω, c,f , p)T (1.13)

where p is the size of the image patch represented by the primitive. The problem
of matching primitives was discussed in [52, 53], and we make use of the same
criteria in the present evaluation. The matching criterion over all modalities is
defined as:

d(πi,πj) =
∑
k

wkdk(πi,πj) (1.14)

where wk is the relative weighting of the modality k and dk being the distance
of the modality k modality between the two primitives πi and πj .

Scale-Invariant Feature Transform feature extraction provides a set of robust
features invariant to scaling and rotation [36]. Moreover, SIFT features are also
very resilient to the effects of image noise. These properties make SIFT features
widely used in many vision application involving the task of feature matching.
SIFT features are extracted in a four step process [36].
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a) b)

Fig. 3. The feature descriptors used in this work. a) Extracted visual primitives, mod-
eling line features using multiple visual modalities, where: 1. stands for the orientation
(θ), 2. for the phase (ω), 3. for the color (c), and 4. for the optic flow (f). b) Features
extracted using the Scale Invariant Feature Transform (SIFT).

Scale-space extrema detection: The first stage of computation searches over
all scales and image locations by using a difference-of-Gaussian function to
identify potential interest points that are invariant to scale and orientation.

Keypoint localization: During the second step a detailed model is fit to
determine location and scale for each candidate location, then keypoints are
selected based on measures of their stability.

Orientation assignment: One or more orientations are assigned to each key-
point location based on local image gradient directions.

Keypoint descriptor: The local image gradients are measured at the selected
scale in the region around each keypoint. These are transformed into a rep-
resentation that allows for significant levels of local shape distortion and
change in illumination.

During orientation assignment, the gradient orientation histogram is computed
in the neighborhood of the feature point location. This serves as the feature-
descriptor defined as a vector containing the values of all the orientation his-
togram entries, corresponding to the lengths of the arrows shown in Figure 2.2b.
All the properties of the feature point are measured relative to its dominant ori-
entation, providing invariance to rotation. Matchings are found by identifying
the nearest neighbor from the set of SIFT features, defined as the keypoint with
minimum Euclidean distance for the invariant descriptor vector.

2.3 Feature Matching

Having defined the process of feature extraction and metrics for matching, we
now want to apply these to the image sequence used in this paper. In the con-
text of RBM estimation from stereo sequences, the correspondence problem is
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twofold: first stereo correspondences have to be found, then temporal correspon-
dences (as described in Section 2.3). Note that the temporal correspondence
problem suffers from higher ambiguity than stereo matching, since the epipolar
constraint is not directly applicable, and need to be replaced by a neighborhood
search.
One of the sequences used is shown in Figure 4a, where the left column (resp.
right) contains the images obtained from the left (resp. right) camera, while the
rows show the stereo images taken at different time steps. For image acquisition, a
calibrated stereo rig was used and the captured images have been undistorted and
rectified. The task of finding correspondences consisting of two steps illustrated
in Figure 4b is briefly described in the next two subsections.

a) b)

Fig. 4. Feature matching: a) Example frames from one of the sequences, columns
showing images from the left (resp. right) camera, and the rows depicting images from
different frames over times. b) The two tasks of feature matching required in the context
of 3D-2D pose estimation. First stereo matches have to be found (at time t, see bottom
row). If a stereo match was found for a given feature, the corresponding feature in next
frame (time t+ δt) has to be identified (illustrated in the first column).

Stereo Matching: Considering a feature el in the left image, the corresponding
feature er in the right image has to be found, as illustrated by the bottom row in
Figure 4b. Since the epipolar geometry is known and the images are rectified (see
Figure 4a), the search space can be limited to horizontal scan lines. Primitives
are matched using the similarity constraint defined by their modalities (see [52]
for details). The matching of SIFT features uses a nearest neighbors search
using a k-d tree [54] and an approximation algorithm, called the Best-Bin-First
(BBF) [55]. This is an approximation algorithm in the sense that it returns
the closest neighbor with a high probability. For an evaluation of the matching
performance, we refer the reader to [36] for SIFT features, and [52] for primitives.
An example of stereo matching from SIFT features is illustrated in Figure 5.
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Having found stereo correspondences of the different features (representing lines
or points), a 3D point is computed for each correspondence. The 3D point is
regarded as valid if it is located in front of the camera.

Temporal Matching: Temporal matching involves finding correspondences
between the 3D-points reconstructed from stereo at time t and the 2D features
(primitives and SIFT) extracted at time t + δt (upper row in Figure 4a). This
is achieved by matching all etl with all et+δtl for which there exists a valid 3D
point. Temporal matching is done in the very same manner as stereo-matching
with the exception that the epipolar constraint is not applicable. Therefore, the
computational complexity is significantly higher than for stereo matching. For-
tunately, the number of features for temporal matching has already been con-
siderably reduced. Furthermore, we constrain the search of temporal matches
within a neighborhood of the feature’s previous position. The size of this neigh-
borhood is called temporal disparity threshold. For the experiments, we both use
a maximum and minimum threshold to this disparity. The minimum disparity
threshold disregards temporal feature matches which do not move sufficiently in
the image. These normally correspond to structures very distant to the camera,
which would not serve as valuable contributions to the set of temporal features
matches. During the experiments a threshold of minimum 2 and maximum of
150 pixels have been found adequate for all outdoor sequences, allowing to match
nearby features at speed over 100km/h.
For the indoor sequence (see Figure 6d) where an object is moving, rather than
the camera, a segmentation of background and the object becomes necessary.
Using a minimum disparity threshold solves this problem for all point features
(including SIFT), since the background is static, and therefore all non-moving
temporal matches can be disregarded. For primitives the problem is different.
Since primitives often are part of a global edge structure, temporal matches for
a given primitive may be found at any point along the global edge structure,
since primitives located on a global edge have similar attributes. Therefore, we
constrain the temporal matching of primitives to a region around the robot,
reducing the number of incorrect matched primitives.
After temporal matching, each correspondence contains a left entity in the cur-
rent frame etl , and the entity matched in the next left frame et+δtl , where etl
has an associated 3D point from stereopsis (matched with etr). An example of
temporal matching of SIFT features is illustrated in Figure 5.

2.4 Applying the Pose Estimation Algorithm

Having 3D-2D feature correspondences we can now apply the pose estimation
algorithm for estimating the motion in stereo sequences. The first step is to
project the 2D temporal correspondence matches from time t+ δt from the im-
age plane to 3D coordinates, by using the information from camera calibration.
The corresponding 2D-points (SIFT) or lines (primitives) from the next left
frame generate 3D-lines or 3D-planes, respectively. So, from the 3D-2D corre-
spondences, we derive constraints describing the motion between two 3D entities
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Fig. 5. Results for the matching of SIFT features (corresponding to the left-top frame
in figure 4a), depicting stereo and temporal matches. The disparity of stereo corre-
spondences between etl and etr are depicted with blue lines. The disparity of temporal
correspondences between etl and et+δtl are depicted with red lines and show radial
disparities in the images, with a point of expansion in the image center indicating a
forward translation.

(see Equation(1.10, 1.12). A 3D-point/2D-line correspondence (primitives) leads
to one independent constraint equation and a 3D-point/2D-point correspon-
dence (SIFT) leads to two independent constraint equations [50]. Earlier work
has shown [56] that 3D-point/2D-point correspondences produce more accurate
estimates with the same number of correspondences.
The constraints derived from Equation 1.10 and 1.12 result in a system of linear
equations the solution of which is found iteratively (for details see [24,50]).

Eliminating outliers using RANSAC Another challenge is the selection of
correspondences resulting in correct estimates, referred to as inlier. Erroneous
correspondences, referred to as outliers, are introduced due to the inherent ambi-
guity of stereo and temporal matching of local features, and should be neglected.
By applying the Random Sample Consensus [17] (RANSAC) approach, we iden-
tify a set of inliers resulting in more accurate estimation results. The algorithm
explained below uses a correspondence set containing either SIFT, primitives,
or a combination of both.

1. The set of correspondences is divided into generation set and evaluation set,
where the evaluation set is only to be used for performance statistics.

2. From the generation set, a random set of correspondences is selected, corre-
sponding to 8 independent constraints.

3. The pose estimation algorithm is run with this random set.
4. The inverse of the computed motion is applied to all remaining 3D entities

reprojected in the generation set and back into the image. The distance
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between the original and re-projected 2D feature, referred as the deviation,
serves as measure of accuracy for the estimated motion.

5. A consensus set is formed from all correspondences of the generation set,
using correspondences with a deviation below a given threshold τ .

6. If the size of the consensus set is above a certain percentage ξ of the of size of
the generation (referred to as the consensus threshold), the estimated motion
is regarded as correct and the algorithm continues, otherwise the algorithm
goes back to step 2.

7. The pose estimation algorithm is re-run with the whole consensus set, which
is considered to only contain inliers.

During the experiments a deviation threshold of τ = 1 pixel for SIFT an τ = 2
pixels for primitives have been found as adequate. The consensus threshold of
ξ = 70% has shown to result in precise motion estimates while at the same time
succeeding for most of the frames.

3 Results

The four stereo image sequences used are recorded with a calibrated camera
system and contain three outdoor scenes and one indoor scene (see Figure 6).
Note that the outdoor sequences are available as Set 3 on the web site http:
//www.mi.auckland.ac.nz/EISATS/. On this website, initiated by Reinhard
Klette and colleagues (see, e.g., [57]), data sets recorded in the driver assistance
domain are provided for comparison of computer vision algorithms. The indoor
sequence is provided together with calibration matrices and ground truth on the
web site http://www.mip.sdu.dk/covig/Data/PACO.

a) b) c) d)

Fig. 6. Example frames from each of the four sequences: a) Lippstadt-Town2, b)
s 03a 01#000, c) s 06a 01#000, d) PACO-5

As illustrated in Figure 6a-c the outdoor scene consists of images recorded
through a car’s windscreen. For these outdoor sequences, logging of car data
by an onboard computer provides information about velocity and steering an-
gle. Hence, this data does not describe the full motion (only translation and
rotation around the Y-axis) and is subject to noise. Therefore, it can only be
used as reference and should not be considered as actual ground truth. The car
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data is shown in Figure 8. The left column of plots shows the car’s transla-
tion in mm. and the right column shows the car’s rotation angle in radians. In
these figures, the rotation along the Y-axis corresponds to steering input and
the translation on Z-axis represents the forward motion of the car. During turns,
the car moves forward, sideways, and rotates along the Y-axis. Notice the slight
correlation between rotation (right columns) and translation along the X-axis
(see left column). For the Lippstadt-Town2 sequences no rotation data is avail-
able and the forward translation (TZ) is equal to the velocity provided by the
car’s onboard computer.

Image Sequence number of
frames

Primitives
extracted

SIFT
extracted

Primitives
matched

SIFT
matched

Lippstadt-Town2 437 1679(1427 ) 4818(2500 ) 665(194 ) 572(136 )
s 03a 01#000 1180 1223(708) 1347(70 ) 669(49 ) 395(0 )
s 06a 01#000 848 779(250) 1182(89 ) 449(291 ) 216(0 )
PACO-5 60 1857(1565) 442(335 ) 394(239 ) 15(6 )

Table 1. Average and minimal numbers (in italics) of extracted and matched (stereo
and temporal) features per frame.

The indoor scene depicts a robot holding and moving a blue vase, and consists of
a sequence of 70 stereo-frames. The camera is situated in front of the robot and,
throughout the entire sequence, the robot rotates the vase 360 degrees around
one axis. In this experiment, we used an industrial robot, meaning that the
robot’s controllet provide high accuracy ground truth data, plotted alongside
with the motion estimation results (see Figure 7)
Since the motion estimation uses statistical methods for removing outliers, the
number of extracted features is directly related to the robustness of the estimated
motion. If too few features are extracted and matched, RANSAC will no longer
be applicable. The number of extracted and matched features is shown in Table
1. The reason for the low number of correspondences in the PACO-5 sequence is
explained by the relatively small size of the moving object in the images, whereas
all outdoor sequences undergo ego-motions and therefore displays an apparent
world motion over the whole images (apart from other moving cars). Further-
more we see significant changes in the number of extracted features between
the different outdoor sequences. As depicted in Table 1, the number of extracted
SIFT features is significantly higher in an urban environment (Lippstadt-Town2)
than on a countryroad (s 03a 01#000 and s 06a 01#000).

Indoor sequence

Results are shown in Figure 7, depicting both ground truth and estimated mo-
tion. Furthermore, the mean error over whole sequences is recorded for all three
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Fig. 7. Results for ego-motion estimates for indoor sequence PACO-5. Left column
contains plots translation in mm and right column contains the plots displaying rotation
angle in radians. Each row corresponds to a different feature set: a) Primitives b) SIFT
c) Combination of primitives and SIFT.
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feature sets in Table 2. In this table, the primitives lead to more accurate mo-
tion estimates than SIFT features, and the combination of the two lead to the
best results. In particular, the motion estimation based on SIFT features shows
large deviation from the true motion for many frames (see Figure 7b), due to
the comparatively small amount of matched SIFT features (see Table 1). The
estimation would basically fail in terms of most applications that make use of
the estimated motion data. The reason for this is the small number of extracted
and matched SIFT features (see Tab.1 and Figure 12).

Feature Set Tx (mm) Ty (mm) Tz (mm) Rx (rad) Ry (rad) Rz (rad)

Primitives 1.0 4.1 3.2 0.003 0.005 0.005
SIFT 3.2 6.9 14.1 0.009 0.018 0.008
Primitives + SIFT 0.8 3.0 2.5 0.002 0.003 0.004

Table 2. Mean error for image sequence PACO-5.

Outdoor Sequences

For the outdoor sequences with a sufficient number of extracted and matched
features (see Table 1), SIFT features alone lead in general to better or similar
results than primitives alone (compare the top to the middle rows in Figure
9, 10 and 11). This is explained by the fact that line correspondences fail to
constrain the motion in all directions. Especially, in the outdoor scenes the lane
structure (in particular the lane markers) dominate the scenes, and due to their
particular orientation (i.e., nearly radial from the car’s heading), they do not
constrain the ego-motion in the z–direction. Therefore, the estimation results
of the forward translation, based on primitives alone (see Figure 9a, 10a and
11a) are very unprecise. However, it can be seen that primitive correspondences
constrain effectively the 5 other motion parameters, and even in a slightly better
way than the SIFT correspondences. We assume that this is caused by the higher
precision of the primitive localization compared to SIFT.
Furthermore we observe that usage of SIFT features in an urban environment,
provides very accurate estimations, when comparing the reference data with the
estimated motion (first row in Figure 8 and 9). Combining SIFT with addi-
tional primitive correspondences does not further improve the, since the great
number of extracted and matched SIFT features already serves as a sufficient
correspondence set.
However in the other environmets, some frames do not contain enough SIFT
features, due to the small amount of texture within the scene (see Figure 12c).
(see Figure 12a). Then, few spurious features can very quickly result in large
errors in the estimated RBM. Another source of outliers in this type of scenario
are pot holes or speed bumps (see Figure 12b). These sudden and violent vertical
motions result in blurred images, which make feature extraction and matching a
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Fig. 9. Results of ego-motion estimates for the outdoor sequence ‘Lippstadt-Town2’
over 437 frames in a city environment. The left column shows translation estimates, in
mm., and the right column shows rotation angle estimates, in radians.
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Fig. 10. Results of ego-motion estimates for outdoor sequence ‘s 03a 01#000’ over 1180
frames. The left column shows translation estimates, in mm., and the right column
shows rotation angle estimates, in radians. Each row corresponds to a different feature
set.
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Fig. 11. Results for ego-motion estimates for outdoor sequence ‘s 06a 01#000’ over
848 frames. The left column shows translation estimates, in mm., and the right column
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a) b) c)

Fig. 12. Examples of problematic image data: a) for the indoor sequence only few
SIFT features are extracted and matched. b) Some frames from the outdoor sequences
(as in ‘s 06a 01#000’, frame 723) are blurred due bumps in the road, resulting in large
estimation errors (spikes) as shown in Figure 11. c) Independently moving objects
(e.g., other vehicles on the road) provide temporal matches which are not coherent
with the ego motion. This becomes especially a problem if the scene contains few
matched features (as in ‘s 03a 01#000’, frame 600-800), resulting in erroneous motion
estimates (see Figure 10).
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difficult task. In such cases, we observe that a combination of SIFT and primi-
tives make the estimation more stable to outliers. Over all sequences, we observe
that a combination of features (see bottom row in Figure 10 and 11) consistently
improves the robustness. Note that, we did not make use of any temporal reg-
ularization (which of course would improve the results further) since we were
interested in investigating the different properties and consequences of different
kinds of correspondences. In this context, temporal regularization would effec-
tively hide the occasional failures of the estimation, that are relevant indicators
of the estimation’s robustness.

4 Conclusion

We have evaluated point and line correspondences on a set of sequences with
large variations across and within the sequences. There are a number of issues
involved in such an investigation, namely (1) the extraction process of features,
(2) the correspondence finding process, (3) the mathematical formulation of
constraints allowing for their mixing and (4) the efficient handling of outliers.
For the process of finding correspondences, an evaluation of matching needs to
been done, using ground truth data in form of disparity maps.
From a mathematical point of view, line features represent weaker correspon-
dences than point features as they provide only one constraint equation, against
two for the point constraints. Because of this, pathologic scene structures, like
the road markers in the outdoor sequences can lead to an ill-definition of the
motion estimation problem. On the other hand, point features such as SIFT
lead to an ill-definition in the case of the indoor scene, due to the lack of tex-
ture in the scene, whereas edge features give stable results. The same holds true
for certain sub-parts of the outdoor sequences which were dominated by sky
and edge structures. Besides the avoidance of severe outliers, we also observed
that the additional use of edge-features increases the precision of the estimates
due to their frequent occurrence in visual scenes as well as their more accurate
localization.
As a consequence, besides the mathematical properties of the constraints, we
need to take the actual distribution of features in images into account. Here, we
can observe that this distribution changes significantly across as well as within
sequences. Hence, a robust motion estimation must rely on the combination of
point and line features and hence relies on a rich feature processing as well as
on a formulation of the motion estimation problem that allows for the mixing of
both kinds of correspondences.
SIFT features become extracted at local textured structures. In our current re-
search, we investigate the use of junctions as an additional feature type which
is extractable with high local precision and rich semantic. We expect a further
improvement of stability and precision by such further enrichment of our repre-
sentations.
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