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ABSTRACT
We propose a new EEG-based wireless brain computer in-
terface (BCI) with which subjects can “mind-type” text on
a computer screen. The application is based on detecting
P300 event-related potentials in EEG signals recorded on
the scalp of the subject. The BCI uses a linear classifier
which takes as input a set of simple amplitude-based fea-
tures that are optimally selected using the Group Method of
Data Handling (GMDH) feature selection procedure. The
accuracy of the presented system is comparable to the state-
of-the-art systems for on-line P300 detection, but with the
additional benefit that its much simpler design supports a
power-efficient on-chip implementation.

1. INTRODUCTION

Research on brain computer interfaces (BCIs) has witnessed
a tremendous development in recent years (see, for exam-
ple, the editorial in Nature [1]), and is now widely consid-
ered as one of the most successful applications of the neuro-
sciences. BCIs can significantly improve the quality of life
of neurologically impaired patients with pathologies such
as: amyotrophic lateral sclerosis, brain stroke, brain/spinal
cord injury, cerebral palsy, muscular dystrophy, etc.
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Brain computer interfaces are either invasive (intra-cra-
nial) or noninvasive. The first ones have electrodes im-
planted into the premotor- or motor frontal areas or into
the parietal cortex (see review in [2]), whereas the nonin-
vasive ones mostly employ electroencephalograms (EEGs)
recorded from the subject’s scalp. The noninvasive methods
can be further subdivided into three groups. The first group
explores visually evoked potentials (VEPs) and they can be
traced back to the 70s, when Jacques Vidal constructed the
first BCI [3]. This system was used for controlling a cursor
on a screen based on the estimation of the subject’s direc-
tion of gaze. The gaze was estimated from the detection
of the harmonics f , 2f and 3f in the Fourier transform of
the EEG while the subject was observing the stimuli flick-
ering at a frequency f . This idea was further improved by
Sutter [4], Middendorf [5], among others.

The second group of noninvasive BCIs rely on the de-
tection of imaginary movements of the right or the left hand.
These methods exploit slow cortical potentials (SCP) [6,
7], event-related desynchronization (ERD) on the mu- and
beta-rhythm [8, 9], and the readiness potential (bereitschafts-
potential) [10]. The detection of other mental tasks (e.g.,
cube rotation, subtraction, word association [11]) also be-
long to this group.

The third noninvasive group are the BCIs that rely on the
’oddbal’ evoked potential in the parietal cortex. An event-
related potential (ERP) is a stereotyped electrophysiologi-
cal response to an internal or external stimulus [12]. One
of the most known and explored ERP is the P300. It can be
detected while the subject is classifying two types of events
with one of the events occurring much less frequently than
the other (“rare event”). The rare events elicit ERPs consist-
ing of an enhanced positive-going signal component with a
latency of about 300 ms [13]. In order to detect the ERP
in the signal, one trial is usually not enough and several tri-
als must be averaged. The averaging is necessary because
the recorded signal is a superposition of all ongoing brain



activities. By averaging the recordings, those that are time-
locked to a known event (e.g., attended stimulus) are ex-
tracted as ERPs, whereas those that are not related to the
stimulus presentation are averaged out. The stronger the
ERP signal, the fewer trials are needed, and vice versa. Fig-
ure 1 shows an example of two EEG responses (blue and
green curves), for the attended target (top panel) and the
nontarget (bottom panel) stimuli, as well as the average re-
sponse (red curve). The BCI system described in this article
is an elaboration of the P300-based BCI but with emphasis
on a simple design for a power-efficient on-chip implemen-
tation, which must use a computationally cheap classifica-
tion scheme. To this end in the presented system we exploit
a linear classifier which takes as input a small set of simple
amplitude-based features. The features are selected using
the Group Method of Data Handling (GMDH) [14] feature
selection method, which has not been used in the BCI do-
main so far.

There has been a growing interest in the ERP detection
problem, witnessed by the increased development of BCIs
able to transfer brain signals to computers using ERPs (for
example the P300 mind-typer [15, 16, 17]). The require-
ments for ERP detection have also increased. Now the task
is not only to be able to detect and classify ERPs but also
do it as fast and accurately as possible. Ideally, one would
like to be able to robustly detect ERPs from single trials.
Unfortunately, this is still beyond reach.

A number of off-line studies have been reported that im-
prove the classification rate of the P300 speller [18, 19, 20],
but not much work has been done on on-line classification
(which is out of scope of the BCI competition). To the
best of our knowledge, the best classification rate for on-
line mind-typers is reported in [17]. The results of our work
are compared to the latter.

2. METHODS

2.1. Acquisition hardware

The EEG recordings were performed using a prototype of
an ultra low-power 8-channel wireless EEG system, which
consists of two parts: an amplifier coupled with a wireless
transmitter (see Fig. 2) and a receiver (see Fig. 3). The pro-
totype was developed and provided to us by the Interuniver-
sity Microelectronics Centre (IMEC)1. We used a braincap
with large filling holes and sockets for ring electrodes.

The IMEC wireless EEG system interfaces to the PC
via an USB stick receiver (see Fig. 3), which uses a FTDI
FT232BM serial USB converter. The EEG system can be
accessed by a virtual serial port which behaves exactly like
a conventional serial port, except that the communication

1http://www.imec.be/
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Fig. 1. Examples of the event-related EEG responses to
the target (top panel) and nontarget (bottom panel) stim-
uli recorded from the first subject at electrode CPz. The
blue and green curves depict pairs of randomly-chosen EEG
waveforms, while the red curves show signals averaged over
the whole recording session. All recordings are filtered in
the 0.5–15 Hz frequency band. Time t = 0 marks the stim-
ulus onset.

software has to be able to handle non-standard (higher) baud
rates.

After it is switched on, the EEG system works in a con-
figuration mode. In this mode, the user can send config-
uration commands (e.g. EEG gain, bandwidth, impedance
measurement) to the system. After sending the configura-
tion commands, the system can be switched (or after 30 sec-
onds have elapsed without sending any commands, it swi-
tches automatically) into the measurement mode. In this
mode, every 2 milliseconds (500 Hz), the EEG system trans-
fers a data frame. Each frame is sized 27 bytes, and consists
of a synchronization byte, a frame counter byte, a battery
voltage byte and two samples of EEG data (each sample
has 8 values, each value is stored in 12 bits), so the actual



Fig. 2. Wireless 8 channel EEG device (amplifier and trans-
mitter).

sampling rate is 1000 Hz per channel.
A comprehensive technical description of the IMEC wi-

reless EEG system can be found in [21].

2.2. Acquisition procedure

Recordings were collected from eight electrodes in the oc-
cipital and parietal areas, namely in positions Cz, CPz, P1,
Pz, P2, PO3, POz, PO4, according to international 10–20
system. The reference electrode and ground were linked to
the left and right mastoids.

Each experiment started with a pause (approximately
90 s) needed for EEG signal stabilization. During this pe-
riod, the EEG device transmits data but it is not recorded.
The data for each symbol presentation was recorded in one
recording session. As the duration of the session was known
a-priori , as well as the data transfer rate, it was easy to es-
timate the amount of data transmitted during a session. We
used this estimate, increased by a 10% margin, as the size of
the serial port buffer. To make sure that the entire recording
session for one symbol fits completely into the buffer, we
cleared the buffer just before recording. This trick allowed
us to avoid broken/lost data frames, which usually occur due
to a buffer overflow. Unfortunately, sometimes data frames
still are lost because of a bad radio signal. In such cases, we
used the frame counter to reconstruct the lost frames, using
a simple linear interpolation.

2.3. Data-stimuli synchronization

Unlike a conventional EEG systems, the system we used
does not have any external synchronization inputs. We tried
to use one of the channels for this purpose (connecting it
to a photo-sensor attached to the screen), but this scheme
was not stable enough for long recording times. Finally, we
came up with an ”internal” synchronization scheme based

Fig. 3. USB stick receiver, plugged into the extension cable.

on high-precision (up to hectananosecond) timing2.
For the synchronization, we saved the exact time stamps

of the start and end of the recording session, as well as the
time stamps of stimulus onsets and offsets. Due to the fact
that the reconstructed EEG signal has a constant sampling
rate, it is possible to find very precise correspondences be-
tween time stamps and the data samples. We used this cor-
respondence mapping for partitioning the EEG signal into
signal tracks, for further processing.

2.4. Experiment design

Four healthy male subjects (aged 23–36 with average age of
31, three righthanded and one lefthanded) participated in the
experiments. Each experiment was composed of a training
and several testing stages.

We used the same visual stimuli paradigm as in the first
P300-based speller, which was introduced by Farwell and
Donchin in [15]: a matrix of 6 × 6 symbols. The only (mi-
nor) difference was in the type of symbols used, which in
our case was a set of 26 latin characters, 8 digits and two
special symbols ’ ’ (used instead of space) and ’¶’ (used as
an end of input indicator).

During the training and testing stages, columns and rows
of the matrix were intensified (see Fig. 4) in a random man-
ner. The intensification duration was 100 ms, followed by
a 100 ms of no intensification. Each column and each row
flashed only once during one trial, so each trial consisted of
12 stimulus presentations.

As it was mentioned above, one trial is not enough for
robust ERP detection, and we adopted the common practise
of averaging the recordings over several trials before per-
forming the classification of the (averaged) recordings.

During the training stage, all 36 symbols from the typ-
ing matrix were presented to the subject. Each symbol had
10 trials of intensification for each row/column (10-fold av-
eraging). The subject was asked to count the number of

2TSCtime high-precision time library by Keith Wansbrough.



intensifications of the corresponded symbol. The counting
was used only for keeping subject’s attention to the symbol.

The recorded data was filtered (in the 0.5 − 15 Hz fre-
quency band with a fourth order zero-phase digital Butter-
worth filter) and properly cut into signal tracks. Each of
these tracks consisted of 1000 ms of recording, starting from
the stimulus onset. Note that subsequent tracks overlap in
time, since the time between two consequent stimuli onsets
is 200 ms. Then, each of these tracks was downsampled to
30 tabs and assigned to one of two possible groups: target
and nontarget (according to the stimuli, which they were
locked to).

Amplitude values at certain moments in time of the down-
sampled EEG signals were taken as features. All these fea-
tures were normalized to [0, 1] through the estimation of
fn,t = xn(t)−xmin,n(t)

xmax,n(t)−xmin,n(t) , where xn(t) is the EEG am-
plitude of n-th channel (electrode) at time t after the stim-
ulus onset, xmax,n(t) and xmin,n(t) are the maximal and
minimal values of the EEG amplitudes of the n-th channel
at a moment of time t after stimulus onset among all tar-
get and nontarget recordings from the training set. Having
combined such features from all EEG recording channels,
feature selection was performed using the Group Method of
Data Handling (see further for a description). As an exter-
nal criterion, a 5-fold cross validation was used. A linear
discriminate analysis (LDA) was chosen for the classifica-
tion. No more than 20 features were selected for the classi-
fier. Basing on LDA we have also estimated coefficients ai

and b, where i = 1, . . . , n and n is a number of the selected
features fi, of the hyperplane a1f1+a2f2+· · ·+anfn+b =
0, which separate two subsets of the data (namely the tar-
get and nontarget subsets). After substitution of the fea-
ture values fi into the right hand side of the abovemen-
tioned equation, we obtain a distance (multiplied by fac-
tor

√
a2
1 + a2

2 + · · ·+ a2
n) from the point (f1, f2, . . . , fn)

in feature space to the separating hyperplane with a sign,
indicating one of two subspaces from both sides of the hy-
perplane. This sign is an indicator of belonging to one of the
trained groups e.g., ’+’ for target and ’−’ for non-target.

After training, all coefficients ai and b, together with the
amplitude position in time (time offset), the selected elec-
trodes, and the normalization coefficients (namely xmax,n(t)
and xmin,n(t)), were taken as features for the on-line clas-
sification.

After training the classifier, each subject performed sev-
eral test sessions and was asked to mind-type a few words
(about 30–50 symbols), the performance of which was used
for estimating the classification accuracy. For each test ses-
sion, we used the classifier that had been trained on data
averaged over a given number of trials. The number of tri-
als (k) that was used for averaging varied from 2 to 10. The
classification accuracy for each value of k was measured.

The testing stage differs from the training stage not only

Fig. 4. Typing matrix of the mind-typer. Rows and columns
are flashed in random order; one trial consists of flashing
all six rows and all six columns. The intensification of the
third column (left panel) and the second row (right panel)
are shown.

by the classification step, but also by the way of grouping
the signal tracks. During training, the system “knows” ex-
actly which one of 36 possible symbols is attended by the
subject at any moment of time. Based on this information,
the collected signal tracks can be grouped into only two
categories: target (attended) and non-target (not attended).
However, during testing, the system does not know which
symbol is attended by the subject, and the only meaningful
way of grouping is by stimulus type (which in the proposed
paradigm can be one of 12 types: 6 rows and 6 columns).
So, during the testing stage, for each trial, we had 12 tracks
(from all 12 groups) of 1000 ms EEG data recorded from
each electrode. The averaged EEG response for each elec-
trode was determined for each group. The selected features
of the averaged data were then fed into the classifier. As a
result, the classifier produces 12 (for each row/column) val-
ues (c1, . . . , c12) which describe the distance to a separating
hyperplane in the feature space together with the sign. The
row index ir and the column index ic of the classified sym-
bol were calculated as:

ir = arg max
i=1,...,6

{ci}, and ic = arg max
i=7,...,12

{ci} − 6.

The symbol on the intersection of the ir-th row and ic-th
column in the matrix, was then taken as the result of the
classification and presented, as a feedback, to the subject.

2.5. Feature selection

In order to optimize the set of features, by selecting a sub-
set of them, we use a feature selection procedure called the
Group Method of Data Handling (GMDH) [14], which is
a breadth-first search algorithm working as a wrapper that
minimizes the hold-out error. This algorithm constructs,
for each iteration i, the set Si, of cardinality n, of the best
subsets Cij (where j = 1, . . . , n). This means that Si =
{Ci1, Ci2, . . . , Cin} (in the first step S1 consist of the n best
discriminative features). Each of these subsets Cij consists
of i features from the whole feature space with dimension
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Fig. 5. Accuracy of classification for different subjects as a
function of the number of trials used in testing. Averaged
result and result from [17] are also plotted.

N . The transition from the i-th iteration to the next (i + 1)-
th, causes a new set of n(N − i) groups of features to be
constructed by generating for each of the n subsets Cij , a
collection of subsets consisting of the entire subset of Cij ,
with the addition of one of the (N − i) missing features.
From the subset received in this way, the best n subsets are
chosen by an external criterion, to generate a new set Si+1.
As a stopping criterion, the absence of an increase in per-
formance in subsequent d iterations is used. As a result, we
take the best subset in the latter d iterations.

3. RESULTS AND DISCUSSION

The performance of each subject in mind-typing with our
system is displayed in Fig. 5, where the percentage of cor-
rectly-typed symbols is plotted versus the number of trials
k used for averaging. The average performance of all sub-
jects, as well as the average performance of the bestto our
knowledge on-line mind-typing system described in the lit-
erature [17], are also plotted (this should not be confounded
with the BCI competition, which is about off-line classifi-
cation [18, 19, 20]). It should be mentioned that the mind-
typing system of Thulasidas and co-workers is based on a
support-vector machine (SVM) classifier, where model se-
lection (for kernel parameter and regularization constant) is
done using a grid-search procedure, and does not use feature
selection. The training of the SVM classifier takes substan-
tially longer time than the feature selection and the training
of the linear classifier used in our system. Another con-
sideration is that the on-chip implementation of the SVM
classifier is much more complex than our solution, due to
the presence of nonlinearities (kernel-based functions).

As it is clear from Fig. 5, the performance strongly de-
pends on the subject. From our experiments, we found that:

• the accuracy decreases with increasing subject age,

• the more “emotional” subject is, the more detectable
his/her P300 is.

But we hasten to add that it is impossible to draw any stati-
stically-grounded conclusions from only four subjects. For
this, many more experiments needed to be performed.

4. CONCLUSION

The brain-computer interface (BCI) presented in this arti-
cle allows the subject to type text by detecting P300 po-
tentials in the recorded EEG signals. The system consists
of a linear classifier that uses a limited number of normal-
ized amplitude-based features as input. The simplicity of
the proposed system supports an efficient on-chip imple-
mentation (e.g., on ASIC chip). The developed in Matlab
software can successfully handle data frame losses, which
often occur during wireless transmission.The results of this
study shows that, in the field of BCIs based on event-related
potentials (ERPs), even simple solutions can successfully
compete with the state of the art, given that a feature selec-
tion is performed.
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