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ABSTRACT

We present a neural-based learning system for object recog-
nition in still gray-scale images. The system comprises sev-
eral hierarchical levels of increasing complexity modeling
the feed-forward path of the ventral stream in the visual cor-
tex. The system learns typical shape patterns of objects as
these appear in images from experience alone without any
prior labeling. Ascending in the hierarchy, spatial informa-
tion about the exact origin of parts of the stimulus is sys-
tematically discarded while the shape-related object identity
information is preserved, resulting in strong compression of
the original image data. On the highest level of the hierar-
chy, the decision on the class of an object is taken by a linear
classifier depending solely on the object’s shape. We train
the system and the classifier on a publicly available natu-
ral image data set to test the learning capability and the in-
fluence of system parameters. The neural system performs
respectably when recognizing objects in novel images.

1. INTRODUCTION

Humans easily learn object appearance through active vi-
sual perception of their typical shape patterns while for com-
puters this task still poses a problem, which cannot be solved
with sufficient robustness and accuracy.

Many object recognition systems have been suggested in the
last 20-30 years and an increasing number of them have fol-
lowed a biologically inspired design. Some of these studies
were mainly concerned with modeling human visual per-
ception, but many exhibit performance comparable or supe-
rior to non-biological state of the art systems [1, 2, 3, 4, 5].

This work presents a neural system, which reflects the pro-
cessing in the ventral stream of human visual cortex. The
system is built upon a hierarchical architecture of interleaved
(S) and (C) layers. Their naming as well as their functional-

ity of these layers is reminiscent of simple and complex/hyper-
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complex cells identified in the visual cortex by Hubel and
Wiesel in the 1960s[6]. S-layers, which are the central func-
tional components of the system, are driven by a stack of
simple cells with the capability to learn patterns present in
the visual input. The organization of these stacks is com-
parable to the columnar structure found throughout areas of
the ventral stream in the visual cortex [6, 7, 8].

A series of models with a similar architecture of interleaved
S- and C- layers has been suggested in the literature. The
first such network called “Neocognitron”, suggested by Ku-
nihiko Fukushima in 1980 [1], consisted of a series of S-
and C-layers with shared weights for a set of local receptive
fields and separate inhibitory and excitatory sub-populations
of cells. It autonomously forms classes for presented char-
acters and correctly classifies slightly distorted and noisy
versions of these characters. In 1989 Yan LeCun et al. [9],
presented a similar network, “LeNet”, for written character
recognition that generated local feature descriptors through
back-propagation. A later version of this network has been
shown to act as an efficient framework for nonlinear dimen-
sionality reduction of image-sets from real-world objects
[2]. The network, however, does not learn autonomously
and requires an error signal on the output to perform the
back-propagation. The latter is not biologically justified. In
2003 Riesenhuber and Poggio [5] presented a framework
for understanding object recognition in the visual cortex
with a similar layout. Their work concentrated mostly on
the biological plausibility of its architecture and the corre-
spondence of model parts with areas of visual cortex. They
introduced Gaussian pattern-tuned units as a model for the
simple cells, and a max-function pooling input from a local
population of S-layer cells to model functionality of com-
plex cells. Learning in their model is constrained to the tun-
ing of simple cells to random snapshots of local input ac-
tivity generated by presentations of objects of interest. The
model, however, was successfully applied to the modeling
of of V4 and IT neuron responses and also as an input stage
to a classifier for object and face recognition [10, 5].



The approach we present here inherits the adaptive nature of
the Neocognitron and some details of the S-layer activation,
and the technique of maximum pooling in the C-layers from
the model of Riesenhuber and Poggio. The novelty lies in
the way that adaptive S-layer units extract essential shape
features from the input.

2. NEURAL MECHANISMS OF OBJECT
RECOGNITION

The neural system is set up along cortical mechanisms of
object recognition, which are thought to be mediated by
neurons of the ventral visual pathway [11]. According to
a widely accepted consensus based on neurophysiological
studies, the ventral pathway begins in V1, where simple
cells with small receptive fields respond preferably to ori-
ented bars [6]; neural signals from V1 are then projected
onto areas V2 and further on to V4, where neurons show an
increase both in receptive field size and the complexity of
their preferred stimuli [12]. At the top of the ventral stream
are neurons of inferotemporal cortex (IT), which consists of
two areas TEO and TE representing form, color and texture
of objects. TE is the last exclusively visual area in the ven-
tral stream for object recognition [7].

Progressing up the ventral hierarchy, there is a gradual shift
in the properties of neurons and their connectivity:

e receptive field size increases, as does the tolerance to
scale and position changes in preferred stimuli;

e receptivity to complex patterns successively increases;

e patterns of cortical projections become successively
less topographic;

Extensive neurophysiological evidence shows that inputs to
area TE retain no obvious retinotopic organization, which
means that single neurons in TE respond to objects any-
where in the visual field, whereas explicit information about
the spatial location of an object is not retained at this highest
level of the ventral stream. In addition, activation of neurons
in TE is largely invariant to shift and scale transformation of
their “preferred stimuli”.

It is undisputed that the capability to recognize objects is
gained through visual experience. Because the onset of vi-
sual stimuli on the retina is a 2-dimensional projection of
an otherwise 3-dimensional world, the function of the ven-
tral stream is to encode those invariant features of objects
that are useful for their recognition across a wide variety
of object appearances. Tuning of IT neurons also depends
on visual experience. Studies have shown that the major-
ity of IT neurons are view-tuned, showing selectivity to ob-
jects in certain orientations [8]. At the same time, these
view-tuned neurons exhibit translation invariance of 4 de-
grees (about twice the stimulus size) and scale invariance
of two octaves [5]. It has been concluded that whereas

view-invariant recognition requires experiencing novel ob-
jects in many views [7], significant position and scale in-
variance seems to be readily present in view-tuned neurons
[5]. Object recognition is possible for rapid visual presenta-
tions [13, 14].

Following this experimental evidence as well as a success-
ful example of modeling the feed-forward architecture [5],
our neural system is restricted to forward processing of in-
coming visual input, following the layered organization of
visual cortex from V1 to IT in a series of interleaved layers
with properties reflecting the typical changes in the prop-
erties of corresponding visual neurons. Learning is simi-
larly performed in a bottom-up manner, driven by experi-
ence alone, without the use of any prior knowledge, follow-
ing above mentioned evidence that this kind of learning is
prevalent in the corresponding neural areas. Final decision
on object recognition in the system is taken by linear clas-
sification, following evidence that the encoding of object
shapes by the neurons in IT allows for object identification
and classification using a simple linear classifier [10].

3. THE LEARNING SYSTEM

3.1. Hierarchical architecture

In a hierarchy of S-/C-layer pairs (Figure 1). The functional
role of the S-cells is to form a sparse representation of the
experienced input activity while C-cells discard informa-
tion irrelevant to the recognition process, such as the exact
spatial location or size of a stimulus, but preserve informa-
tion about the retrieved pattern’s identity. In the hierarchy
each following S-layer receives input from the C-layer of
the preceding pair. Through this stepwise process increas-
ingly complex and potentially large input patterns are en-
coded . The first S-layer (S1) is modeled by a Gabor filter
bank to establish orientation selective cells with properties
similar to cortical simple cells [15].

3.2. Shift invariant C-layers

The C-layers are implemented by pooling over afferent S-
cells from the previous S-layer with the same selectivity but
at slightly different positions. For instance, each complex
cell in (C1) pools outputs over a neighborhood of the corre-
sponding simple cell (S1) with the same preferred orienta-
tion. Thus a stack of C-cells contains the same number of
cells as each of the afferent stacks of S-cells. The pooling is
done via non-linear MAX operation analogous to [5], where
a plausible biological implementation has also been sug-
gested. The MAX-operation picks the strongest input activ-
ity from a set of S1-inputs. Similarly, in every following C-
layer (C2) through (C4) units relay the maximum activities
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Fig. 1. Schematic illustration of the system functionality:
The image of an oblique square is presented and decom-
posed into oriented contours by the Gabor-filter driven S1-
cells. (Cl) and following C-layers MAX-pool over local
regions (inset) to allowing for slight distortions and size
changes and reduce the resolution of the representation.
Cells in the S2-layer are tuned to local collections of Cl
activations, such as the corners of the square. Cells in the
S3-layer are tuned to local collections of such features ef-
fectively “binding” different parts together. The S3-layer fi-
nally contains a unit tuned to the arrangement of the four
corner-cells defining the square. This tuning is, due to
the C-layers, inherently tolerant to small distortions of the
shape. In principle, an arbitrary number of S/C-layers can
be stacked in this way limited only by the reduction in reso-
lution.

of a spatial sub-area of the preceding S-layer. Neighboring
C-cells draw their inputs from non-overlapping neighbor-
hoods, thus effectively performing sub-sampling.

3.3. Pattern selective S-layers

(S2) through (S4) consist of S-cells with Gaussian tuning to
local patterns. Each S-cell possesses a preferred pattern of
local activity p;, the size of which is fixed for each layer, and
a tuning bandwidth o; determining the sharpness of tuning
to the preferred pattern. Only the structure of input pat-
terns is considered and not their actual strength, which is
only used for scaling the cell’s response after the Gaussian
tuning. Each cell’s pattern, p;, is scanned across the whole
spatial domain of the input to yield the response of the cor-
responding S-cell, a;, at each spatial position:

(Ir(z,y)—p;)>
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where I,.(x,y) is a square shaped patch of the input patch
with side-length 2r + 1 centered on (z,y). The norm and
distance are Euclidean. I, denotes a normalized value of I,..

1. Select candidate patches for learning.

2. Compare each candidate to all stored patterns. The
most similar pattern (¢) is selected and an updated
tuning width is computed using equations (2).

IF o) < oy (this pattern is not new) or no pattern is

stored yet

e the existing pattern and associated tuning
bandwidth are updated according to eq. (3).

OTHERWISE:

e the pattern is stored as a novel pattern and the

associated tuning bandwidth is set to o; = 3.

0 is updated according to (4) to control the number
of patterns.

3. Pairwise distances between stored patterns are com-
puted and if two patterns are more similar than o /2,
the pattern with the smaller tuning bandwidth is re-
moved. Significance measures s; are updated and
patterns with s; < sg are removed.

Fig. 2. Learning steps for a layer of pattern selective S-cells

3.4. S-layer learning process

The local patterns p; are generated and updated in a learn-
ing process summarized in figure 2. Candidate patches for
learning are generated by starting with a regular grid with
grid spacing 27, and subsequently shifting to the locus of
strongest activity within a distance 7. Patches with a norm
below the threshold are discarded. Next, the S-cell, i, with
the strongest response, evaluated according to eq. (1), is se-
lected within a distance r, and an updated tuning bandwidth
is calculated as follows:

I(z + Az,y + Ay)|
@
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where aers = a|l.(z,y)| denotes the effective learning
rate which depends on a preset learning rate « and the lo-
cal input intensity, thereby suppressing the learning of weak
background noise patterns. Displacements, Az, y < r, in
(2) denote the offsets at which the winning S-cell, responds
best. If O'Z/- exceeds a threshold, o, a new S-cell is generated
with a copy of the experienced pattern and /2 as an initial
tuning bandwidth. Otherwise the old S-cell’s preferred pat-



tern and the corresponding tuning bandwidth are updated:
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where < denotes updating. To control the number of stored
patterns the threshold oy is updated continuously using:
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where ng is the desired number of S-cells and 7 is a time
constant based on the training set size. Initially, g = 1.

To respond to changes in oy, and to filter out insignificant
patterns two quantities are monitored on a per image basis.
The first is the minimum distance, d;, of the cell’s preferred
pattern to those of other cells, evaluated within a range of
offsets, Az, y < r, to also capture shifted duplicates:
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The second is a running average of the significance s;
expressed as:

sit+1)=e~ (max (ai(z,9)) — a"**(1)) ~ (©)
Initially s; = 1. Cells are discarded if d;; < og or 5; < sg
where s is a fixed significance threshold.
Through this sequence of learning steps S-cells become tuned
to frequently occurring patterns, without reliance on any
form of a priori knowledge and with as little as two iter-
ations over the test set. This is to be compared with the
effort needed for the implementation of similar systems as
Bayesian probabilistic networks [16] or by employing en-
ergy minimization of an objective function to generate the
preferred patterns [17]. Generally, the above scheme is sim-
ilar to the ART family of learning algorithms [18], but sim-
pler and with a more intuitive parametrization. Furthermore
we do not know of an implementation of ART in a hierar-
chical system like this. The complete hierarchy is trained by
repeating these steps for the layers (S2) through (S4) mak-
ing S-cells receptive to input patterns of increasing size and
complexity (see also figure 2).

3.5. Object classification

To infer the class of an object presented to the neural system,
linear classifiers were trained and evaluated on the output of
the C-layers. Training was performed by fitting a multivari-
ate normal distribution to the C-layer outputs for each object
class, using the same images used to train the S-layers. Un-
seen images were then assigned to the class whose learned

Fig. 3. Examples of images used for training and testing:
cars (left), people (top right), and other objects (bottom
right)

distribution yielded the highest posterior. Similar techniques
have previously been used to infer object identity on the out-
put of a population of IT-neurons [10].

4. SYSTEM TRAINING AND RECOGNITION
RESULTS

For the results presented here the Gabor filters in (S1) where
instantiated with spatial frequencies of 0.3 and 0.6pizels*,
four different orientations, and a bandwidth of one octave.
C-layers units pooled over 5x5 pixel regions (non-overlap-
ping) in (C1) and over 3x3 regions in (C2) through (C4).
Receptive field sizes of the S-layers were 5x5 for the layer
(S2) and 3x3 for the layers (S3) and (S4). Each layer (S3)
through (S4) learned twice more preferred patterns than the
previous S-layer, leaving the number of patterns to be learned
by (S2) as a parameter. Learning parameters were globally
setto 7 = 100 frames and o = 0.1.
The pattern selective cells in the layers (S2) through (S4)
were tuned by learning in a bottom up manner: first, (S2)
was tuned on the output of (C1); next, (S3) was tuned on
the output of (C2); and, last, (S4) on the output of (C3). For
tuning each layer, all images from the training set were pre-
sented three times in random order, so that the layer could
converge on a stable state of equilibrium. After the tuning
had been completed, learning was turned off and the train-
ing set was presented once more to train the classifier. Sepa-
rate classifiers were trained on the output of each C-layer to
monitor the increase of object-specific information through
the hierarchy. For this the output from (C1) through (C3)
was sub-sampled (using max-pooling) to match the resolu-
tion of the last layer (C4). Input vectors to the classifier
for each object presentation were the response of a single
C-unit stack at the spatial location with the largest sum of
activities over the stack.

Real world object views (Figure 3) were obtained by ex-
tracting their bounding boxes in images from the publicly



layer Cl C2 C3 C4
cars | 63.3% 68.7% 747 % 90.3 %
people | 46.4% 57.6% 765% 84.7%
other | 489 % 504% 613% 722 %

Table 1. Best recognition rates at each layer of the hierarchy

1 **********
0.9r ; |
) *
s
5 0.8 1
= e
= O = C1 cars
8_0 7_; -=-C1 people
o - C2 cars
= '3 - C2 people
I < C3 cars
0'6% C3 people
p ; “* C4 cars
0.5 f ! ‘ ‘ -+ C4 people
0 0.2 0.4 0.6 0.8 1

false positive rate

Fig. 4. ROC curves for the layers (C1) through (C3).

available “LabelMe”! database. Our target objects for recog-
nition were cars and people. Based on the available label-
ing data, crops of cars, people and clutter, as negative ex-
amples, where extracted from images featuring street sit-
uations. The size of the crops was restricted to the range
from 80x80 pixels to 320x320 pixels corresponding to two
octaves. Smaller crops were discarded whereas larger crops

where scaled down linearly. The system had to take a multiple-

choice decision signaling whether a car or a pedestrian, or
neither of them was present.

Classification performance of separately trained classifiers
operating on the output of subsequent hierarchical C-layers
was evaluated by means of receiver operator characteristics
(ROC) curves, which quantify the trade-off between sensi-
tivity and (1-specificity), shown in Figure 4. Two distinct
sets with 900 image examples each (300 per object class
plus 300 negative examples) were used for training and test-
ing respectively. The capacity of layer (S2) was set to 30
patterns. The ROC curves show steady gain in recogni-
tion performance for an increasingly deep hierarchy with
the strongest increase taking place between (C2) and (C3).
This can be assigned to the fact that (S3) is the first layer
that can encode patterns more complex than simple lines
and corners, which are found to be encoded by (S2). Best
recognition rates are summarized in Table 1. Recognition
rates for cars are highest as these exhibit the least variations
in shape. Recognition rates for pedestrians are still compa-
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Fig. 5. Recognition error as a function of the training set
size (solid line) and the number of learned patterns (dotted
line). The number of training images used to train the clas-
sifier remained constant.

rable with state of the art results for pedestrian recognition
(see [4]) even though we only used a simple linear classifier
and a relatively small training set.

Figure 5 shows the sensitivity of the recognition perfor-
mance on the number of training examples used to train the
S-layers and on the learning capacity of the S-layers. The
quick saturation of system performance at 100 training ex-
amples exhibits the strong ability of the system to general-
ize. The dependence on the network capacity also shows
some saturation, but indicates that the system benefits from
the increasing number of stored patterns.

5. CONCLUSIONS AND FUTURE WORK

We have presented a neural hierarchical system for shift in-
variant object recognition employing unsupervised learning
to generate features to classify object shapes. The architec-
ture is largely inspired by findings on the ventral stream in
visual cortex.

The system is mostly self tuned with only a few remain-
ing parameters, each one having a direct intuitive mean-
ing: storage capacity (ng), temporal memory (7 and ag),
and learning rate (o). Additionally, the number of S/C-layer
pairs is also a system parameter, since it is not strictly fixed.
Our results indicate, that four S/C-pairs are sufficient for the
complexity of the recognition problem. Biologically one
can associate the S1/C1-pair with area V1, S2/C2 with V2,
S3/C3 with V4, and S4/C4 with IT.

Although our neural system feeds on pretty generalized shape
descriptors, it shows respectable recognition performance
of 91 % for cars and 85 % for people despite of their vari-
able shape appearance. The performance is also compara-
ble with classification results on readouts of IT-neurons on



macaque monkeys (see [10], for comparison: our best over-
all classification performance was 82.4%, cf. figure 4), and
state of the art results given in [4]. The latter is remarkable
considering we use a very simple linear classifier.

The presented neural system is inherently general because
it uses unsupervised learning with no a priori information
about the nature of objects it is trained upon. The layered
design of the system allows its further extension by a vir-
tually unlimited amount of additional connections and by
additional processing streams. For instance, incorporation
of feedback projections and lateral interactions could act as
a temporal and spatial stabilization mechanism where an in-
put configuration would activate a recognition of some pre-
viously experienced configuration triggering the enhance-
ment of those features that support it [19, 20], which could
also act as a precursor for attention to a particular shape
configuration, possibly enhancing classification or identi-
fication and figure-ground-separation. Furthermore some
mechanism to automatically determine the necessary depth
and capacity of the system would probably be beneficial.
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