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ABSTRACT

We perform a detailed comparison of two feature extraction
methods that are based on mutual information maximization
between the data points projected in the developed subspace
and their class labels. For the simulations, we use synthetic
as well as publicly available real-world data sets.

1. INTRODUCTION

Dimensionality reduction is a widespread preprocessing step
in high-dimensional data analysis, visualization and model-
ing. One of the simplest ways to reduce dimensionality is
by Feature Selection(FS): one selects only those input di-
mensions that contain the relevant information for solving
the particular problem.Feature Extraction(FE) is a more
general method in which one tries to develop a transforma-
tion of the input space onto the low-dimensional subspace
that preserves most of the relevant information. We will fur-
ther focus on linear FE methods which means that they can
be represented by a linear transformationW : R

D → R
d,

D > d. Feature Extraction methods can be supervised or
unsupervised, depending on whether or not class labels are
used. Among the unsupervised methods, Principal Compo-
nent Analysis (PCA) [1], Independent Component Analysis
(ICA) [2], and Multidimensional Scaling (MDS) [3] are the
most popular ones. Supervised FE methods (and also FS
methods) either use information about the current classifica-
tion performance, calledwrappers, or use some other, indi-
rect measure, calledfilters. One expects that, in the case of
a classification problem, supervised methods will perform
better than unsupervised ones.

Recently, a method has been introduced by Torkkola [4]
that has attracted a lot of attention. Consider the data set
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{xi, ci}, i = 1, . . . , N with xi ∈ R
D the data points, andci

the class labels taken from the discrete setC = {cp}, p =
1, . . . , Nc. The objective is to find a linear transformation
W ∈ R

D×d for which the mutual information (MI) of the
transformed data pointsY = {yi} = {WTxi} and the
corresponding labelsC = {ci} is maximized. The objective
is different from ICA’s where MI between the transformed
data components is minimized. Also, the presence of the
labelsC makes the objective different. Torkkola derived an
expression for MI based on Renyi’s quadratic entropy [5],
instead of Shannon’s entropy, and a plug-in density estimate
based on Parzen windowing.

Prior to Torkkola, Bollacker and Ghosh [6] proposed an
incremental approach to MI maximization that was derived
by rewriting the original MI objective function as a sum
of MI terms between the one-dimensional projections and
the corresponding class labels. A polytope algorithm was
used for the optimization and histograms for estimating the
probabilities. Very recently, a method based on the same
reformulation of the MI objective function was introduced
by Leiva-Murillo and Artés-Rodrı́guez (2006) [7]. How-
ever, they used gradient descent as an optimization strat-
egy, and expressed the one-dimensional MI terms as one-
dimensional negentropies, which were then estimated using
Hyvärinen’s robust estimator [8].

The purpose of this paper is to perform an in-depth com-
parison of the two MI based FE methods. The paper is
structured as follows. Section 2 briefly describes the FE
method based on quadratic MI maximization, as proposed
by Torkkola. In Section 3 we also briefly describe the ap-
proach proposed by Leiva-Murillo and Artés-Rodrı́guez. In
Section 4, we describe a number of measures for FE com-
parison, and in Section 5 we explain our comparison meth-
odology. The results of the comparison are given in Sec-
tion 6, followed by a Discussion in Section 7.

2. TORKKOLA’S METHOD

Given two random variablesX1 andX2 with joint proba-
bility density p(x1, x2) and marginal probability densities



p1(x1) andp2(x2), the mutual information (MI) can be ex-
pressed as:

I(X1, X2) = K(p(x1, x2), p1(x1)p2(x2)), (1)

with K(·, ·) the Kullback-Leibler divergence.
In order to estimate MI, Torkkola and Campbell [4] use

the quadratic measuresKC orKT originally introduced by
Principe and co-workers [5]:

KC(f, g) = log

∫

f2(x)dx
∫

g2(x)dx
(∫

f(x)g(x)dx
)2 (2)

KT (f, g) =

∫

(f(x) − g(x))
2
dx. (3)

For continuous-valuedY and discrete-valuedC, using (1),
(2) and (3), one can derive two types of MI estimates:

IC(Y,C) = log
V(cy)2Vc2y2

(Vcy)2
, (4)

IT (Y,C) = V(cy)2 + Vc2y2 − 2Vcy, (5)

where:

V(cy)2 =
∑

c∈C

∫

y

p2(y, c)dy,

Vc2y2 =
∑

c∈C

∫

y

p2(c)p2(y)dy,

Vcy =
∑

c∈C

∫

y

p(y, c)p(c)p(y)dy. (6)

The class probability can be evaluated asp(cp) = Jp/N ,
whereJp is the number of samples in classcp. The density
of the projected datap(y) and the joint densityp(y, c) are
estimated with the Parzen window approach [9]:

p(y) =
1

N

N
∑

i=1

G(y − yi, σ
2I)

p(y, cp) =
1

N

Jp
∑

i=1

G(y − ypj , σ
2I), (7)

with G(x,Σ) the Gaussian kernel with centerx and co-
variance matrixΣ, and yjp the j-th sample in classcp.
In order to reduce the number of parameters to optimize,
Torkkola proposes a parametrization of the desired matrix
W in terms of Givens rotations inRD. As a result, there
are onlyd(D − d) parameters (rotation angles) to optimize
instead ofD2. Obviously, the maximal number of parame-
ters to estimate occurs ford nearD/2. The computational
complexity of the method is claimed to beO(N2).

3. ARTÉS-RODRÍGUEZ METHOD

In the Artés-Rodrı́guez method, an objective function (glo-
balMI) in terms of the sum ofindividualMI’s is considered:

IAR(Y,C) =

d
∑

i=1

I(yi, c) =

d
∑

i=1

I(wT
i x, c), (8)

with yi = wT
i x the data projected onto directionwi, and

wi ∈ R
D thei-th column of the desired orthonormal matrix

W.
Assuming the original data is whitened, each individual

MI can be estimated as:

I(yi, c) =

Nc
∑

p=1

p(cp) (J(yi|cp) − log σ(yi|cp)) − J(yi),

(9)
with yi|cp the projection of thep-th class’ data points onto
thewi direction,J(·) the negentropy, andσ(·) the standard
deviation. Hyvärinen’s robust estimator [8] for the negen-
tropy is used:

J(z) ≈ k1

(

E
{

z exp(−z2/2)
})2

+k2

(

E
{

exp(−z2/2)
}

−
√

1/2
)2

, (10)

with k1 = 36/(8
√

3 − 9) andk2 = 24/(16
√

3 − 27). In a
top-downscheme, one should sequentially (thus, one-by-
one) obtain the projection directionswi thereby preserv-
ing the two constraints:‖wi‖ = 1 andwT

i wj = 0 for
1 ≤ j < i. The second constraint means that each projec-
tion direction must be searched in the subspace orthogonal
to the projection directions already obtained, and this causes
the search for each new projection direction to be carried
out in a subspace of decreasing dimension. The sequence
of individual MI’s obtained in this way is also decreasing:
I(yi, c) > I(yj , c) for i < j. The bottom-downscheme
involves a sequential removing of the directions with mini-
mum individual MI’s between the variables and classes.

4. MEASURES FOR COMPARISON

In order to compare the two FE methods, we use four differ-
ent MI estimators: the two mentioned above,IC andIAR,
the binned estimatorIB , and the one proposed by Kraskov
and co-workers [10], namely, theI(2) estimator (rectangular
version).

The most straightforward, and most widely used method
to estimate the MI between two variablesX andY is the
histogram-based approach. The support of each variable
is partitioned into bins of finite size. Denoting bynx(i)
(ny(j)) the number of points falling ini-th bin ofX (j-th



bin of Y ), andn(i, j) the number of points in their intersec-
tion, we can estimate MI:

IB(X,Y ) = logN +
1

N

∑

i,j

n(i, j) log
n(i, j)

nx(i)ny(j)
. (11)

Unfortunately this estimator is biased, even in the case of
adaptive partitioning. Another disadvantage of the binned
estimator is the high memory requirements in the high-di-
mensional case.

Kraskov MI estimatorI(2) is based on entropy estima-
tion usingk-nearest neighbour statistics. LetX andY are
normed spaces with norms‖ · ‖X and‖ · ‖Y respectively.
Consider new spaceZ = X × Y with norm‖ · ‖Z which
for everyz ∈ Z, z = (x,y) is defined as

‖z‖Z = max{‖x‖X , ‖y‖Y }.

For fixed naturalk let us denote byǫ(i)/2 the distance from
zi to itsk-th neighbour, and byǫx(i)/2 andǫy(i)/2 the dis-
tances between the same points projected into theX andY
subspaces. Denoting by

nx(i) = # {xj : ‖xi − xj‖X ≤ ǫx(i)/2} ,
ny(i) = # {yj : ‖yi − yj‖Y ≤ ǫy(i)/2}

MI can be estimated by

I(2)(X,Y ) = ψ(k)− 1

k
−〈ψ(nx) + ψ(ny)〉+ψ(N), (12)

here〈. . . 〉 = N−1
∑N

i=1 E {. . . (i)} is averaging operation
both over alli = 1, . . . , N and over all realizations of the
random samples andψ(x) is digamma function:

ψ(x) =
1

Γ(x)

dΓ(x)

dx
. (13)

It satisfies the recursionψ(x+1) = ψ(x)+1/x andψ(1) =
−C whereC = 0.5772156 . . . is the Euler-Mascheroni
constant. For largex, ψ(x) ≈ log x− 1/2x.

5. COMPARISON METHODOLOGY

In order to have a fair comparison, we use the original source
code of the Artés-Rodrı́guez algorithm (courtesy of Leiva-
Murillo and Artés-Rodrı́guez) and the publicly availableim-
plementation of Torkkola’s approachMeRMaId-SIG by
Kenneth E. Hild II [11]. For the Artés-Rodrı́guez algorithm,
we choose the top-down scheme. We consider both syn-
thetic and real world data sets. The synthetic data set con-
sists of a variable number of equal-sized, normally distribu-
ted clusters (modes) inRD. The clusters centers are Gaus-
sianly distributed with variance equal to3. All data sets
are centered and whitened before applying the respective

Data set name Dimension
(D)

Number
of samples
(N )

Number
of classes
(Nc)

Iris 4 150 3
Pima 8 500 2
Glass 9 214 7
Pipeline flow 12 1000 3
Wine 13 178 3

Table 1. Information about used real data sets

FE methods. We considerNc = 3, . . . , 10 clusters, and use
1000 data sets withd = 1, . . . , D− 1 subspace dimensions.
The MI estimators’ means and standard deviations for the
1000 data sets are then plotted as a function of the subspace
dimensionalitiesd. For the real-world data sets, we com-
pute the MI estimates for each possible subspace dimension
d. The Pipeline Flow data set was taken from Aston Univer-
sity1. The rest of the real-world data sets were taken from
the UCI Machine Learning Repository2. If the data dimen-
sionality was more than9, we did not evaluateIB (binned
estimator) due to memory limitations.

The algorithms are implemented using quite different,
yet simple optimization techniques: the Artés-Rodrı́guez al-
gorithm employs a simple adaptation of the learning rate
during evaluation, while theMeRMaId-SIG uses a pure
gradient ascent with constant learning rate and fixed number
of iterations. Due to this, a fair comparison of the run times
is not straightforward. Therefore, we determine the num-
ber of float-point operations (flops) needed for one gradient
evaluation of each algorithm. It is a more relevant measure
than the average computing time because it does not depend
on the optimization techniques used by these algorithms.

The flops were obtained using theflops function (in
Matlab 5.3) on data sets withN ∈ {1000, 2000, 3000, 4000}
andD ∈ {4, 8, 12, 16}.

6. RESULTS

For the synthetic data sets we show only the case ofD = 6,
N = 1000 andNc = 5 (Figs. 1–4). The results for the
real-world data sets are shown in Figs. 5–8 and in Table 2.

The speed comparison results are shown in Table 3. The
caseD = 8 for Torkkola’s method is shown in Fig. 9 in
more detail. We do not show the plots for the Artés-Rod-
rı́guez approach because each gradient evaluation needs the
same number of flops for alld = 1, . . . , D − 1.

For data sets with fixed numbers of samplesN , fixed
dimensionsD and different numbers of clustersNc, gradi-
ent evaluation in both methods needs almost the same num-
bers of floating point operations (the deviation in flops for

1http://www.ncrg.aston.ac.uk/GTM/3PhaseData.html
2http://www.ics.uci.edu/˜mlearn
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Fig. 1. Mean ofIB vs. d
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Fig. 2. Mean ofI(2) vs. d
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Fig. 3. Mean ofIAR vs. d
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Fig. 4. Mean ofIC vs. d
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Fig. 5. IC versusd for Iris Plants Database
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Fig. 6. IB versusd for Pima Indians Diabetes Database
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Fig. 7. IAR versusd for Glass Identification Database
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Fig. 8. IC versusd for Pipeline Flow data



Data set Approach 〈IB〉 〈IC〉 〈IAR〉 〈I(2)〉
Iris AR 1.0391 1.1541 5.0251 0.9944

Torrkola 1.0181 1.0565 4.0409 0.9561
Pima AR 0.3428 0.2089 0.8528 0.1628

Torrkola 0.3461 0.2026 0.4140 0.1678
Glass AR 0.7078 0.4212 6.8401 0.5952

Torrkola 0.7430 0.4409 3.8368 0.4764
Pipeline AR 1.0814 1.4331 20.461 1.0668

Torrkola 1.0749 1.4889 5.9973 1.0605
Wine AR 1.0668 1.5019 8.3007 0.8798

Torrkola 0.9009 1.2422 3.0588 0.7194

Table 2. Averages of the estimated MI for all real data sets
considered andd = 1, . . . , D − 1; 〈IB〉. Note that the esti-
mates were computed only ford < 9) (see text).

D N Torkkola Artés-Rodrı́guez
4 1000 0.165 0.253 . . .0.390

2000 0.329 0.505 . . .0.778
3000 0.493 0.757 . . .1.166
4000 0.657 1.009 . . .1.554

8 1000 0.438 1.976 . . .5.121
2000 0.874 3.900 . . .9.977
3000 1.310 5.824 . . .14.833
4000 1.746 7.748 . . .19.689

12 1000 0.841 6.977 . . .27.540
2000 1.677 13.517 . . .50.544
3000 2.513 20.057 . . .73.548
4000 3.349 26.597 . . .96.552

16 1000 1.372 17.556 . . .104.446
2000 2.736 33.192 . . .175.022
3000 4.100 48.828 . . .245.598
4000 5.464 64.464 . . .316.174

Table 3. Comparison of floating point operations (in
Mflops) needed for one gradient evaluation.

constantN , D andNc ∈ {5, 10, 20} was less than1%).
This is the reason why we present here the comparison only
for Nc = 5 and differentN andD values. The CPU time
should grow with increasingNc, however, it stays almost
constant. We explain this by the highly optimized manner
Matlab treats matrix computations: for fixedN , the more
classes we have, the more portions of the data (with smaller
sizes) are processed in a vectorized manner.

7. DISCUSSION

The results show that, for most data sets, the Artés-Rodrı́-
guez approach yields better results. From our point of view,
one of the reasons of the better performance of the Artés-
Rodrı́guez algorithm is the fact thatIAR is more smoother
and has less local optima than the other measures, includ-
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Fig. 9. Plots of the floating point operations required for
Torkkola’s gradient evaluation forD = 8 and differentN .
It should not come as a surprise that the shape of plots re-
flect the quadratic nature of the number of parameters to
optimize (see text).
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Fig. 10. Plots ofIB , IAR, IC andI(2) (which is doubled
for the sake of exposition) as a function of the angle of the
direction on which the data points are projected, given a
two-dimensional data set consisting of3 equal sized Gaus-
sian clusters. For each plot the direction of the maxima is
indicated with a line segment. It can be clearly seen that
IAR is more smoother than the other measures, with almost
coinciding maxima.



ing theIC metric used in Torkkola’s, with almost coincid-
ing maxima. This is illustrated in Fig. 10. One should also
remind that in the Artés-Rodrı́guez approach, for all com-
putations of the gradient, one-dimensional projections are
used, whereas Torkkola’s approach gradient evaluations are
based on data of dimensionalityd(D − d). This could be
beneficial as well.

Another issue is data preprocessing. In Torkkola’s only
PCA is used as data preprocessing, whereas Artés-Rodrı́-
guez employs a more sophisticated technique: successively
PCA and SIR (Sliced Inverse Regression) are used, which
already yields a quite good MI result.

One should also mention that due to the better optimiza-
tion technique the Artés-Rodrı́guez algorithm is much faster
thanMeRMaId-SIG.

In summary, the Artés-Rodrı́guez approach is not only
robust but also fast and reliable, and promises a successful
future.
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