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Abstract. Statistically efficient processing schemes focus the resources
of a signal processing system on the range of statistically probable sig-
nals. Relying on the statistical properties of retinal motion signals during
ego-motion we propose a nonlinear processing scheme for retinal flow. It
maximizes the mutual information between the visual input and its neu-
ral representation and distributes the processing load uniformly over the
neural resources. We derive predictions for the receptive fields of motion
sensitive neurons in the velocity space. The properties of the receptive
fields are tightly connected to their position in the visual field and to their
preferred retinal velocity. The velocity tuning properties show character-
istics of properties of neurons in the middle temporal area of the primate
brain.

Although the processing power of the brain is huge compared with contem-
porary artificial signal processing systems, the range of signals a single neuron
can process is limited. The visual pathways of the brain show adaptations to
the statistics of the natural environment for an efficient processing of the set of
signals that the environment provides. Such adaptations are seen in gestalt laws
[4, 6] and in efficient encoding schemes [2, 9], in which the processing pathway
is more sensitive for signals that occur very frequently than to signals that are
very unlikely to occur. However, in many natural situations the visual input is
dynamic because animals move. We aim here to apply the concept of efficient
encoding to the realm of motion processing to find properties of motion sensi-
tive neurons, that efficiently encode the set of motion signals generated on the
retina by natural behavior in natural environments. Most of the retinal motion
in natural situations is generated by ego-motion of the observer. Therefore, we
concentrate our investigation on retinal motion signals during ego-motion.

1 Statistical properties of natural retinal flow

Our analysis starts from an analysis of the statistics of motion signals generated
by ego-motion. We use a method introduced in [3] to generate a large number
of naturalistic retinal motion fields from range images of natural scenes and
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Fig. 1. Uniforming procedure, B: approximation of the transformation function f2(φ),
C,D and E: approximation of the transformation functions f1(v,−180◦), f1(v,−30◦)
and f1(v, 0◦)

assumed ego-motions. This approach provides the distributions of true motion
signals at each position of the visual field, which then a population of neurons
is meant to encode. We use the Brown Range Image Database, a database of
197 range images of outdoor and indoor scenes recorded with a laser range-
finder with high spatial resolution [5]. These range images provide the depth
map of each scene. The knowledge of the 3D coordinates of each scene point
allows the calculation of the projected retinal motion of that point for any given
combination of translation and rotation of the observer. We consider as the
retina a spherical projection surface with radius 1. The field of view is set to
90◦ horizontally and 58◦ vertically. The retinal flow fields are calculated on the
inside of this section of the sphere on a 250 × 160 grid of motion sensors with
a resolution of 0.36◦ × 0.36◦. The flow vectors obtained for this grid provide
our measurement of the true retinal flow field for a certain ego-motion and
scene. To calculate the flow field from the scene structure we need the motion
parameters of the projection surface. Possible ego-motions for a given scene
are derived from properties of the scene and natural parameters of ego-motion.
First, we determine areas in each scene which are free from obstacles. We then
assumed ego-motion through those areas. Since natural ego-motion involves gaze-
stabilizing eye movements [8] we measure eye movements of observers who view
images of the scene to collect naturalistic gaze points. We also measure gait
dynamics of walking human subjects, particularly their bounce and sway, to
allow a naturalistic modeling of the ego-motion trajecory. From these factors
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(obstacle-free walking direction, gaze point, gait dynamics) we construct a set
of naturalistic ego-motions for each range mage scene. From the scenes and the
ego-motions we constructed 7136 different naturalistic flow fields and obtain for
each position on the retina a distribution of true motion signals (see Figure 1 A,
left panel). These flow fields serve to estimate the statistical properties of retinal
flow.

2 Efficient encoding of natural retinal flow
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Fig. 2. Resulting responsiveness ri(v, φ) of a selection of neurons for certain receptive
field centers mi and width σ = 0.1 at a retinal position of 28 degrees eccentricity

To turn to our aim of finding an efficient encoding scheme we assume a pop-
ulation of neurons that cover a four-dimensional parameter space consisting of
retinal position (azimuth and elevation) and velocity (retinal direction (φi) and
speed (vi)). This population of neurons efficiently encodes the natural distribu-
tion of motion signals when the response probability is the same for all neurons
of the population. In this case, the information about the original distribution
is uniformly distributed over the neuron population. This maximizes the mutual
information between the distribution of motion signals and the distribution of
their representation in the neural population, and performs a nonlinear inde-
pendent component analysis on the original distributions of motion signals. To
construct such a population of neurons we search for the transformation func-
tions that maps the distributions of retinal velocities onto a uniform distribution
and then cover this uniform distribution uniformly with circular receptive fields
(see Figure 1). The actual sensitivity of each neurons for retinal motion signals
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can then be estimated by the back transformation of the uniform distribution
to the original distribution of motion signals. A crucial issue in this procedure
is the noise in the signal since the noise level determines the number of neu-
rons necessary to cover the distribution of motion signals and to discriminate
between neighboring signals. To each measured distribution therefore we add a
set of unspecific motion signals, which is uniform in the distributions of direc-
tions and obey a logarithmic normal distribution for retinal speed (see Figure
1 A, second panel) . To find a mapping from the distributions of retinal ve-
locities to a uniform distribution we use a uniforming procedure referred to as
rank ordering. The procedure starts with the rank ordering of the distribution of
directions, which results in the approximated transformation function for reti-
nal direction f2(φ) (see Figure 1 B). The rank ordered data set is then divided
into 72 stripes of equal width such that each stripe contains the same number
of data points. Regarding each stripe as a one-dimensional data set, the stripes
are rank ordered again to yield a set of approximated transformation functions
f1(v, φ) for retinal speed (see Figure 1 C, D and E). This procedure is an ap-
proximation of finding the transformation function F (v, φ) = (f1(v, φ), f2(φ))
that fulfills ∂f2

∂φ
∂f1
∂v = P (v, φ), where P (v, φ) is the probability density function

of the random variables speed and direction.

3 Tuning curves of efficient retinal flow encoders
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Fig. 3. Resulting responsiveness ri(v, φ) of a selection of neurons for certain recep-
tive field centers mi and width σ = 0.1 for two different positions in visual field, A:
eccentricity 3 degrees, B: eccentricity 15 degrees

The approximation of the transformation functions F (v, φ) by the uniforming
procedure allows to plot the receptive fields in velocity space of neurons which
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are supposed to encode the distribution of motion signals at a certain position
in the field of view. To find the tuning curve of a neuron we have to back-
transform from the uniformed space to retinal motion space. Let (v, φ) be a
retinal motion signal. The mean response ri(v, φ) of the i-th neuron to a retinal
motion signal is given by ri(v, φ) = rmax exp(−(mi − F (v, φ))2/2σ2

i ), where
mi ∈ [0, 1] × [0, 1] is the center of the receptive field, σ is the width of the
receptive field, and F : R2 −→ [0, 1] × [0, 1], F (v, φ) = (f1(v, φ), f2(φ)) is the
transformation function, which governs the tuning curve of the neuron and which
is approximated by the results of the uniforming procedure. The results for a
number of example neurons with different receptive field centers mi are shown in
Figure 2 and Figure 3 . The resulting properties of efficiently encoding neurons
show a wide range of selectivity for the parameters retinal speed and direction.
We find neurons, whose selectivity is largely restricted to a small domain in
the velocity space (Figure 2 C). There are also neurons whose selectivity show a
crescent-shaped structure (Figure 2 B and D). Such structures resemble receptive
field properties of motion processing neurons in the middle temporal (MT) area
of the primate [10]. Other similarities to properties of MT neurons can be seen
in the speed selectivity. Individual neurons can be characterized as low pass
(Figure 2 A ), tuned (Figure 2 C), broad band (Figure 2 B and D), or high pass
(Figure 2 E) consistent with neurophysiological recordings [7]. With respect to
direction tuning, neurons can be sharply tuned, broadly tuned, or not tuned also
similar to neurons in area MT. However, the particular properties of the velocity
receptive fields of efficiently encoding neurons depend strongly on the position
of their receptive field in the visual field (Figure 3). Since the properties of the
distributions of retinal motion signals vary from position to position [3], also the
population of neurons encoding motion at these positions show differences in
their properties. At higher eccentricities, the selectivity for retinal speed shifts
to higher speeds and the distribution of preferred directions becomes narrower.
This is also similar to findings in area MT [1, 7].

We conclude that the application of the principle of efficient encoding to
the processing of retinal motion signals is a valid tool to predict receptive field
structures and tuning curves of neurons in the motion processing pathway of the
brain. Several interesting issues remain for future work. First, the incfluence of
internal noise may be investigated using a Poisson model to describe the response
behavior of the neurons. Second, a Bayesian decoding scheme may be applied
to develop computational models that detect retinal motion in the statistically
likely range. Third, it may be tested experimentally whether humans show a
similar characteristics in motion detection.
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