
COMPACT (AND ACCURATE) EARLY VISION PROCESSING IN
THE HARMONIC SPACE

First Author Name, Second Author Name
Institute of Problem Solving, XYZ University, My Street, MyTown, MyCountry

f author@ips.xyz.edu, s author@ips.xyz.edu

Third Author Name
Department of Computing, Main University, MySecondTown, MyCountry

t author@xy.mu.edu

Keywords: Phase-based techniques, multidimensional signal processing, filter design, optic flow, stereo vision.

Abstract: The efficacy of anisotropic versus isotropic filtering is anayzed with respect to general phase-based metrics for
early vision attributes. We verified that the spectral information content gathered through oriented frequency
channels is characterized by high compactness and flexibility, since a wide range of visual attributes emerge
from different hierarchical combinations of the same channels. We observed that it is preferable to construct
a multichannel, multiorientation representation, rather than using a more compact representation based on an
isotropic generalization of the analytic signal. The complete harmonic content is then combined in the phase-
orientation space at the final stage, only, to come up with the ultimate perceptual decisions, thus avoiding
an “early condensation” of basic features. The resulting algorithmic solutions reach high performance in
real-world situations at an affordable computational cost.

1 INTRODUCTION

Although the basic ideas underlying early vision
appear deceptively simple and their computational
paradigms are known for a long time, early vision
problems are difficult to quantify and solve. More-
over, in order to have high algorithmic performance
in real-world situations, a large number of channels
should be integrated with high efficiency. From a
computational point of view, the visual signal should
be processed in a “unifying” perspective that will al-
low us to share the maximum number of resources. In
addition, from an implementation point of view, the
resulting algorithms and architectures could fall short
of their expectations when the high demand of com-
putational resources for multichannel spatio-temporal
filtering of high resolution images conflicts with real-
time requirements. Several approaches and solutions
have been proposed in the literature to accelerate the
computation by means of dedicated hardware (e.g.,
see (Diaz et al., 2006; Kehtarnavaz and Gamadia,
2005)). Yet, the large number of products that must be
computed to calculate each single pixel of each single
frame for a couple of stereo images and at each time
step still represents the main bottleneck. This is par-

ticularly true for stereo and motion problems to con-
struct 3D representations of the world, for which es-
tablishing image correspondences in space and space-
time is a prerequisite, but also their most challenging
part.

In this paper, we propose (1) to define a systematic
approach to obtain a “complete” harmonic analysis of
the visual signal and (2) to integrate efficient multi-
channel algorithmic solutions to obtain high perfor-
mance in real-world situations, and at the same time,
an affordable computational load.

2 MULTICHANNEL BANDBASS
REPRESENTATION

An efficient (internal) representation is necessary to
guarantee all potential visual information can be made
available for higher level analysis. At an early level,
feature detection occurs through initial local quanti-
tative measurements of basic image properties (e.g.,
edge, bar, orientation, movement, binocular disparity,
colour) referable to spatial differential structure of the
image luminance and its temporal evolution (cf. lin-



ear cortical cell responses). Later stages in vision can
make use of these initial measurements by combin-
ing them in various ways, to come up with categor-
ical qualitative descriptors, in which information is
used in a non-local way to formulate more global spa-
tial and temporal predictions (e.g., see (Krüger et al.,
2004)).

The receptive fields of the cells in the primary vi-
sual cortex have been interpreted as fuzzy differential
operators (or local jets (Koenderink and van Doorn,
1987)) that provide regularized partial derivatives of
the image luminance in the neighborhood of a given
point x � �

x � y � , along different directions and at sev-
eral levels of resolution, simultaneously. Given the
2D nature of the visual signal, the spatial direction of
the derivative (i.e., the orientation of the correspond-
ing local filter) is an important “parameter”. Within
a local jet, the directionally biased receptive fields
are represented by a set of similar filter profiles that
merely differ in orientation.

Alternatively, considering the space/spatial-
frequency duality (Gabor, 1946; Daugman, 1985),
the local jets can be described through a set of
independent spatial-frequency channels, which are
selectively sensitive to a different limited range of
spatial frequencies. These spatial-frequency channels
are equally apt as the spatial ones. From this per-
spective, it is formally possible to derive, on a local
basis, a complete harmonic representation (phase,
energy/amplitude, and orientation) of any visual
stimulus, by defining the associated analytic signal in
a combined space-frequency domain through filtering
operations with complex-valued band-pass kernels.

Formally, due to the impossibility of a direct def-
inition of the analytic signal in two dimensions, a
2D spatial frequency filtering would require an as-
sociation between spatial frequency and orientation
channels. Basically, this association can be handled
either (1) ‘separately’, for each orientation channel,
by using Hilbert pairs of band-pass filters that dis-
play symmetry and antisymmetry about a steerable
axis of orientation, or (2) ‘as-a-whole’, by introducing
a 2D isotropic generalization of the analytic signal:
the monogenic signal (Felsberg and Sommer, 2001),
which allows us to build isotropic harmonic represen-
tations that are independent of the orientation (i.e.,
omnidirectional). By definition, the monogenic signal
is a 3D phasor in spherical coordinates and provides
a framework to obtain the harmonic representation of
a signal respect to the dominant orientation of the im-
age that becomes part of the representation itself.

In the first case, for each orientation channel θ, an
image I

�
x � is filtered with a complex-valued filter:

f θ
A
�
x � � f θ � x ��� i f θ

H
�
x � (1)

where f θ
H
�
x � is the Hilbert transform of f θ � x � with re-

spect to the axis orthogonal to the filter’s orientation.
This results in a complex-valued analytic image:

Qθ
A
�
x � � I � f θ

A
�
x � � Cθ

�
x ��� iSθ

�
x �	� (2)

where Cθ
�
x � and Sθ

�
x � denote the responses of the

quadrature filter pair. For each spatial location,

the amplitude ρθ
��
 C2

θ � S2
θ and the phase φθ

�
arctan

�
Sθ � Cθ � envelopes measure the harmonic infor-

mation content in a limited range of frequencies and
orientations to which the channel is tuned.

In the second case, the image I
�
x � is filtered with

a spherical quadrature filter (SQF):

fM
�
x � � f

�
x �
� � i � j �
� fR

�
x � (3)

defined by a radial bandpass filter f
�
x � (i.e., rota-

tion invariant even filter) and a vector-valued isotropic
odd filter fR

�
x � � �

fR � 1 � x ��� fR � 2 � x ��� T , obtained by
the Riesz transform of f

�
x � (Felsberg and Sommer,

2001). This results in a monogenic image:

QM
�
x � � I � fM

�
x � � C

�
x ��� � i � j � S � x � (4)� C

�
x ��� iS1

�
x ��� jS2

�
x �

where, using the standard spherical coordinates,

C
�
x � � ρ

�
x � cosϕ

�
x �

S1
�
x � � ρ

�
x � sinϕ

�
x � cosϑ

�
x �

S2
�
x � � ρ

�
x � sinϕ

�
x � sinϑ

�
x ���

The amplitude of the monogenic signal is the vec-

tor norm of fM : ρ ��
 C2 � S2
1 � S2

2, as in the case
of the analytic signal, and, for an intrinsically one-
dimensional signal, ϕ and ϑ are the dominant phase
and the dominant orientation, respectively.

In this work, we want to analyze the efficacy of
the two approaches in obtaining a complete and ef-
ficient representation of the visual signal. To this
end, we consider, respectively, a discrete set of ori-
ented (i.e., anisotropic) Gabor filters and a triplet of
isotropic spherical quadrature filters defined on the
basis of the monogenic signal. Moreover, as a choice
in the middle between the two approaches, we will
also take into consideration the classical steerable fil-
ter approach (Freeman and Adelson, 1991) that allows
a continuous steerability of the filter respect to any
orientation. In this case, the number of basis kernels
to compute the oriented outputs of the filters depends
on the derivative order (n) of a Gaussian function. The
basis filters corresponding to n � 2 or n � 4 turned out
as an acceptable compromise between the representa-
tion efficacy and the computational efficiency.

For all the filters considered, we chose the de-
sign parameters to have a good coverage of the space-
frequency domain and to keep the spatial support (i.e.,



the number of taps) to a minimum, in order to cut
down the computational cost. Therefore, we deter-
mined the smallest filter on the basis of the highest al-
lowable frequency without aliasing, and we adopted
a pyramidal technique (Adelson et al., 1984) as an
economic and efficient way to achieve a multireso-
lution analysis (see also Section 3.2). Accordingly,
we fixed the maximum radial peak frequency (ω0)
by considering the Nyquist condition and a constant
relative bandwidth of one octave (β � 1), that al-
lows us to cover the frequency domain without loss
of information. For Gabor and steerable filters, we
should also consider the minimum number of ori-
ented filters to guarantee a uniform orientation cov-
erage. This number still depends on the filter band-
width and it is related to the desired orientation sen-
sitivity of the filter (e.g., see (Daugman, 1985; Fleet
and Jepson, 1990)); we verified that, under our as-
sumptions, it is necessary to use at least eight orien-
tations. To satisfy the quadrature requirement all the
even symmetric filters have been “corrected” to can-
cel the DC sensitivity. The monogenic signal has been
constructed from a radial bandpass filter obtained by
summing the corrected bank of oriented even Gabor
filters. All the filters have been normalized prior to
their use in order to have constant unitary energy. A
detailed description of the filters used can be found at
http://130.251.51.86/VISAPP07/.

3 PHASE-BASED EARLY VISION
ATTRIBUTES

3.1 Basic principles

During the last two decades, the phase from local
bandpass filtering has gained increasing interest in the
computer vision community and has led to the de-
velopment of a wide number of phase-based feature
detection algorithms in different application domains
(Sanger, 1988; Fleet et al., 1991; Fleet and Jepson,
1990; Fleet and Jepson, 1993; Kovesi, 1999; Gau-
tama and Van Hulle, 2002). Yet, to the best of our
knowledge, a systematic analysis of the basic descrip-
tive properties of the phase has never been done. One
of the key contributions of this paper is to formulate a
single unified representation framework for early vi-
sion grounded on a proper phase-based metrics. We
verified that the resulting representation is character-
ized by high compactness and flexibility, since a wide
range of visual attributes emerge from different hier-
archical combinations of the same channels (i.e., the
same computational resources).

The harmonic representation will be the base for
a systematic phase-based interpretation of early vi-
sion processing, by defining perceptual features on
measures of phase properties. From this perspective,
edge and contour information can come from phase-
congruency, motion information can be derived from
the phase-constancy assumption, while matching op-
erations, such as those used for disparity estimation,
can be reduced to phase-difference measures. In this
way, simple local relational operations capture signal
features, which would be more “complex” and less
stable if directly analysed in the spatio-temporal do-
main.

Contrast direction and orientation. Traditional
gradient-based operators are used to detect sharp
changes in image luminance (such as step edges), and
hence are unable to properly detect and localize other
feature types. As an alternative, phase information
can be used to discriminate different features in a con-
trast independently way (Kovesi, 1999). Abrupt lumi-
nance transitions, as in correspondence of step edges
and line features are, indeed, points where the Fourier
components are maximally in phase. Therefore, both
they are then signaled by peaks in the local energy,
and the phase information (i.e, the ‘phase-variance’)
can be used to discriminate among them (see (Kovesi,
1999)). Phase information is used as disambiguat-
ing feature whose values can be used to interpret the
kind of contrast transition at its maximum (Kovesi,
1999), e.g., a phase of π � 2 corresponds to a dark-
bright edge, whereas a phase of 0 corresponds to a
bright line on dark background (see also (Krüger and
Felsberg, 2003)) .

Binocular disparity. In a first approximation, the
phase-based stereopsis defines the disparity δ

�
x � as

the one-dimensional shift necessary to align, along
the direction of the (horizontal) epipolar lines, the
phase values of bandpass filtered versions of the
stereo image pair IR � x � and IL � x � � IR � x � δ

�
x ���

(Sanger, 1988). Formally,

δ
�
x � ��� φL � x ��� φR � x ��� 2π

ω
�
x � ��� ∆φ

�
x ��� 2π

ω
�
x � (5)

where ω
�
x � is the average instantaneous frequency of

the bandpass signal, at point x, that only under a lin-
ear phase model can be approximated by ω0 (Fleet
et al., 1991). Equivalently, the disparity can be ob-
tained by direct calculation of the principal part of
phase difference, without explicit manipulation of the
left and right phase and thereby without incurring the
‘wrapping’ effects on the resulting disparity map (So-



lari et al., 2001):

� ∆φ � 2π
� � arg

�
QLQ � R � � 2π (6)

where Q � denotes complex conjugate of Q.

Normal Flow. Considering the conservation prop-
erty of local phase measurements (phase constancy),
image velocities can be computed from the tempo-
ral evolution of equi-phase contours φ

�
x � t � � c (Fleet

et al., 1991). Differentiation with respect to t yields:

∇φ � v � φt
� 0 � (7)

where ∇φ � �
φx � φy � is the spatial and φt is the tem-

poral phase gradient. Note that, due to the aperture
problem, only the velocity component along the spa-
tial gradient of phase can be computed (normal flow).
Under a linear phase model, the spatial phase gradi-
ent can be substituted by the radial frequency vector
ω � �

ωx � ωy � . In this way, the component velocity
vc can be estimated directly from the temporal phase
gradient:

vc
� � φt

ω0
� ω�

ω
� � (8)

The temporal phase gradient can be obtained by fit-
ting a linear model to the temporal sequence of spatial
phases (using e.g. five subsequent frames) (Gautama
and Van Hulle, 2002):�

φt � p � � argmin
φt � p ∑

t

� �
φt � t � p ��� φ

�
t ��� 2 � (9)

where p is the intercept.

Motion-in-depth. The perception of motion in the
3D space relates to 2nd-order measures, which can
be gained either by interocular velocity differences or
temporal variations of binocular disparity (Harris and
Watamaniuk, 1995). Recently (Sabatini et al., 2003),
it has been demonstrated that both cues provide the
same information about motion-in-depth, when the
rate of change of retinal disparity is evaluated as a
total temporal derivative of the disparity:

dδ
dt � ∂δ

∂t
� φL

t � φR
t

ω0 � vR � vL � (10)

where vR and vL are the velocities along the epipolar
lines. By exploiting the chain rule in the evaluation
of the temporal derivative of phases, one can obtain
information about motion-in-depth directly from con-
volutions Q of stereo image pairs and by their tempo-
ral derivatives Qt :

∂δ
∂t
��� Im �QL

t Q � L ��
QL
�
2 � Im �QR

t Q � R ��
QR
�
2 � 1

ω0
(11)

thus avoiding explicit calculation and differentiation
of phase, and the attendant problem of phase unwrap-
ping.

3.2 Channel interactions

The harmonic information made available by the dif-
ferent basis channels must be properly integrated
across both multiple scales and multiple orientations
to optimally detect and localise different features at
different levels of resolution in the visual signal.

In general, for what concerns the scale, a mul-
tiresolution analysis can be efficiently implemented
through a coarse-to-fine strategy that helps us to deal
with large features values, which are otherwise un-
measurables by the small filters we have to use in or-
der to achieve real-time performance. Specifically,
a coarse-to-fine Gaussian pyramid (Adelson et al.,
1984) is constructed, where each layer is separate by
an octave scale. Accordingly, the image is increas-
ingly blurred with a Gaussian kernel g

�
x � and sub-

sampled:
Ik
�
x � � �

S
�
g � Ik 	 1 ��� � x �	� (12)

At each pyramid level k the subsampling operator S
reduces to a half the image resolution respect to the
previous level k � 1. The filter response image Qk at
level k is computed by filtering the image Ik with the
fixed kernel f

�
x � :

Qk
�
x � � �

f � Ik � � x �	� (13)

For what concerns the interactions across the ori-
entation channels a first important distinction must be
done according that one uses isotropic or anisotropic
filtering.
Isotropic filtering. The monogenic signal directly pro-
vides a single harmonic content with respect to the
dominant orientation:

ρ
�
x � def� 
 C2

�
x � � � S � x � � 2 � E

�
x �

θ
�
x � def� atan2

�
S2
�
x ��� S1

�
x � � � ϑ

�
x �

φ
�
x � def� sign � S � x ��� nϑ

�
x ��� atan2

�
�
S
�
x � � � C � x ��� � ϕ

�
x ���

with nϑ
�
x � � �

cosϑ
�
x ��� sinϑ

�
x � �	�

Anisotropic filters. Basic feature interpolation mech-
anisms must be introduced. More specifically, if we
name Eq and φq the “oriented” energy and the “ori-
ented” phase extracted by the filter fq steered to the
angle θq

� qπ � K, the harmonic features computed
with this filter orientation are:

ρq
�
x � � 
 C2

q
�
x ��� S2

q
�
x � � Eq

�
x �

θq
�
x � � qπ

K
φq
�
x � � atan2

�
Sq
�
x � � Cq

�
x � � �

Under this circumstance, we require to interpolate the
feature values computed by the filter banks in order



to estimate the filter’s output at the proper signal ori-
entation. The strategies adopted for this interpolation
are very different, and strictly depend on the ‘compu-
tational theory’ (in the Marr’s sense (Marr, 1982)) of
the specific early vision problem considered, as it will
be detailed in the following.

Contrast direction and orientation. According to
(Krüger and Felsberg, 2004) the phase is used to de-
scribe the local structure of i1D signals in an image
(see Figure 1). Therefore, we determine maxima of
the local amplitude orthogonal to the main orienta-
tion with sub–pixel accuracy and compute orientation
and phase information at this sub-pixel position using
bi-linear interpolation in the phase–orientation space.
Sub–pixel accuracy is achieved by computing the cen-
ter of gravity in a window with size depending on
the frequency level. For the bilinear interpolation we
need to take care of the topology of the orientation–
phase space that has the form of a half–torus. The
precision of sub–pixel accuracy calculation as well
as the precision of the phase estimate depending on
the different harmonic representations is discussed in
Section 4.

Binocular disparity. The disparity computation
from Eq. (5) can be extended to two-dimensional fil-
ters at different orientations θq by projection on the
epipolar line in the following way:

δq
�
x � � � φL

q
�
x ��� φR

q
�
x ��� 2π

ω0 cosθq
� (14)

In this way, multiple disparity estimates are obtained
at each location. These estimates can be combined by
taking their median:

δ
�
x � � median

q � V � x � δq
�
x � � (15)

where V
�
x � is the set of orientations where valid com-

ponent disparities have been obtained for pixel x. Va-
lidity can be measured by the filter energy.

A coarse-to-fine control scheme is used to inte-
grate the estimates over the different pyramid levels
(Bergen et al., 1992). A disparity map δk � x � is first
computed at the coarsest level k. To be compatible
with the next level, it must be upsampled, using an
expansion operator X , and multiplied by two:

dk � x � � 2 � X �
δk � x � � � (16)

This map is then used to reduce the disparity at level
k � 1, by warping the phase or filter outputs before
computing the phase difference:

δk � 1
q

�
x � � � φL � x �
� φR

�
x � dk � x � � � 2π

ω0 cosθq
� dk � x ��� (17)

In this way, the remaining disparity is guaranteed to
lie within the filter range. This procedure is repeated
until the finest level is reached.

Optic flow. The reliability of each component ve-
locity can be measured by the mean squared error
(MSE) of the linear fit in Eq. (8) (Gautama and
Van Hulle, 2002). Provided a minimal number of reli-
able component velocities are obtained (threshold on
the MSE), an estimate of the full velocity can be com-
puted for each pixel by integrating the valid compo-
nent velocities (Gautama and Van Hulle, 2002):

v
�
x � � argmin

v � x � ∑
q � O � x �

� �
vc � q � x � � � v

�
x � T vc � q � x ��

vc � q � x � ��� 2 �
(18)

where O
�
x � is the set of orientations where valid com-

ponent velocities have been obtained for pixel x. A
coarse-to-fine control scheme, similar to that of Sec-
tion 3.2 is used to integrate the estimates over the dif-
ferent pyramid levels. Starting from the coarsest level
k, the optic flow field vk � x � is computed, expanded,
and used to warp the phases or filter outputs at level
k � 1. For more details on this procedure we refer to
(Pauwels and Van Hulle, 2006).

Motion-in-depth. Although the motion-in-depth is
a 2nd-order measure, by exploiting the direct determi-
nation of the temporal derivative of the disparity (see
Eq.11), the binocular velocity along the epipolar lines
can be directly calculated for each orientation chan-
nel, and thence the motion-in-depth

VZ
� median

q � WL � x � vL
q
�
x �
� median

q � WR � x � vR
q
�
x � � (19)

where for each monocular sequence, W
�
x � is the set

of orientations for which valid components of veloci-
ties have been obtained for pixel x. As in the previous
cases, a coarse-to-fine strategy is adopted to guarantee
that the horizontal spatial shift between two consecu-
tive frames lie within the filter range.

4 RESULTS

We are interested in computing different image
features with the maximum accuracy and the lower
processor requirements. The utilization of the differ-
ent filtering approaches leads to different computing
load requirements. Focusing on the convolutions op-
erations on which the filters are based, we have an-
alyzed each approach to evaluate their complexity.
Spherical filters require three non-separable convo-
lutions operations, which makes this approach quite



expensive in terms of the required computational re-
sources. The eight oriented Gabor filters requires
eight 2-D non separable convolution but they can be
efficiently computed through a linear combination of
separable kernels as it is indicated in (Nestares et al.,
1998), thus significantly reducing the computational
load. For steerable filters, quadrature oriented outputs
are obtained from the filter bases composed of sepa-
rable kernels. The higher is the Gaussian derivative
order, the higher the number of basis filters. More
specifically, the number of 1-D convolutions is given
by 4n � 6 where n is the differentiation order.

Summarizing, the complexity of computing the
harmonic representation with the different set of fil-
ters is summarized in Table 1.

Table 1:

# filters # taps products sums
Gabor 24 11 264 240
s4 22 11 242 220
s2 14 11 154 140
SQF 3 11 � 11 363 360

The accuracy of the different filters has been evalu-
ated using synthetic images with well-known ground-
truth feature.

Contrast direction and orientation. We have uti-
lized a synthetic image (see Figure 1) where the fea-
ture type changes from a step edge to a line feature
from top to bottom (Kovesi, 1999). By rotating the
image by stepwise angles in � 0 � 2π � , we constructed a
set of test images and measured the contour localiza-
tion accuracy, phase and orientation with the different
approaches, comparing the results with the ground-
truth. In Table 2 the mean errors in localisation, ori-
entation and phase and their standard deviations are
reported. It is worth noting that the features were ex-
tracted with sub-pixel accuracy.

Table 2: Accuracy evaluation for localization, phase and
orientation in the synthetic image of Figure 1. The localiza-
tion error is expressed in pixels, whereas the orientation and
phase errors are in radians.

localization orientation phase
avg std avg std avg std

Gabor 0.067 0.026 0.021 0.007 0.025 0.005
s4 0.072 0.027 0.022 0.008 0.032 0.006
s2 0.076 0.017 0.042 0.011 0.340 0.203
SQF 0.124 0.062 0.026 0.021 0.198 0.092

We can see that Gabor and 4th-order steerable filters
(s4) produce the most accurate results for phase and

(a) (b)

Figure 1: (a) Test image representing a continuum of phases
taking values between � π and π corresponding to a con-
tinuum of oriented grey-level structures as expressed in a
changing “circular” manifold (cf. (Kovesi, 1999)). The
feature type changes progressively from a step edge to a
line feature, while retaining perfect phase congruency. (b)
Phase-based localization of contours obtained with the Ga-
bor filters.

edge localization, with low variance. Second order
steerable filters (s2) and SQFs seem very noisy in
their phase estimation.

Binocular disparity. The tsukuba, sawtooth and
venus stereo-pairs from the Middlebury stereo vision
page (Scharstein and Szeliski, 2002) are used in the
evaluation. Since we are interested in the precision
of the filters we do not use the integer-based mea-
sures proposed there but instead compute the mean
and standard deviation of the absolute disparity error.
So as not to distort the results with outliers, the er-
ror is evaluated only at regions that are textured, non-
occluded and continuous. The results are shown in
Table 3. The best results are obtained with the Gabor
filters. Slightly worse are the results with 4th-order
steerable filters and the 2nd-order filters yield results
about twice as bad as the 4th-order filters. The re-
sults obtained with SQFs are comparable with those
obtained by the 2nd-order steerable filters. Figure 2
contains the left images of the stereo-pairs, the ground
truth depth maps, and the depth maps obtained with
the Gabor filters.

Table 3: Average and standard deviation of the absolute er-
rors in the disparity estimates (in pixels).

tsukuba sawtooth venus
avg std avg std avg std

Gabor 0.32 0.61 0.41 1.26 0.25 0.77
s4 0.36 0.68 0.50 1.86 0.40 1.30
s2 0.47 0.79 1.12 2.50 0.98 2.44
SQF 0.46 0.85 0.93 2.20 0.95 2.40
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Figure 2: Left frame (top row), ground truth disparity (mid-
dle row), and estimated disparity using Gabor filters (bot-
tom row).

Optic flow. We have evaluated the different filters
with respect to optic flow estimation on the diverg-
ing tree and yosemite sequences from (Barron et al.,
1994), using the error measures presented there. The
cloud region was excluded from the yosemite se-
quence. The results are presented in Table 4 and
similar conclusions can be drawn as in the previous
Section. Gabor and 4th-order steerable filters yield
comparable results whereas 2nd-order steerable fil-
ters score about twice as bad. The results obtained by
SQFs are slightly worse, since the resulting optic flow
have larger errors but a higher density. Figure 3 shows
the center images, ground truth optic flow fields, and
optic flow fields computed with the Gabor filters.

Table 4: Average and standard deviation of the optic flow
errors (in pixels) and optic flow density (in percent).

diverging tree yosemite (no cloud)
avg std dens avg std dens

Gabor 2.05 2.28 95.6 2.15 3.12 81.8
s4 2.39 2.62 93.2 2.96 4.46 85.0
s2 4.20 4.58 90.6 6.51 9.23 81.9
SQF 12.9 13.4 95.1 18.7 17.8 99.1

Motion-in-depth. Since binocular test sequences
with the ground truth and a sufficiently high frame
rate are not available, it has not been possible to make
quantitative comparisons. However, considering that

diverging tree yosemite

Figure 3: Center frame (top row), ground truth optic flow
(middle row) and estimated optic flow obtained with Gabor
filters (bottom row). All optic flow fields have been scaled
and subsampled five times.

motion-in-depth is a ‘derived’ quantity, we expected,
that the multichannel anisotropic filtering has the
same advantages over isotropic filtering alike those
observed for stereo and motion processing. Qualita-
tive results obtained in real-world sequences prelimi-
narily confirmed this conclusion.

5 CONCLUSIONS

The first stages of a vision system (early vision)
consists of a set of parallel pathways each analysing
some particular aspects of the visual stimulus, on the
basis of proper local descriptors. Hence, early vi-
sion processing can be reconducted to measuring the
amount of a particular type of local structure with re-
spect to a specific representation space. The choice
for an early selection of features by adopying thresh-
olding procedures, which depend on a specific and
restricted environmental context, limits the possibil-
ity to build on the ground of such representations an
artificial vision system with complex functionalities.



Hence, it is more convenient to base further percep-
tual processes on a more general representation of
the visual signal. The harmonic representation dis-
cussed in this paper is a reasonable representation of
early vision process since it allows for an efficient
and complete representation of (spatially and tempo-
rally) localized structures. It is characterized by: (1)
compactness (i.e., minimal uncertainty of the band-
pass channel); (2) coverage of the frequency domain;
(3) robust correspondence between the harmonic de-
scriptors and the perceptual ‘substances’ in the var-
ious modalities (edge, motion and stereo). Through
a systematic analysis we investigated the advantages
of anisotropic vs isotropic filtering approaches for a
complete harmonic description of the visual signal.
In particular, we observed that it is preferable to con-
struct a multichannel, multiorientation representation,
thus avoiding an “early condensation” of basic fea-
tures. The harmonic content is then combined in
the phase-orientation space at the final stage, only, to
come up with the ultimate perceptual decisions.
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