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Abstract: Algorithmic 3D reconstruction methods like stereopsis or structure from motion fail to extract depth at ho-
mogeneous image structures where the human visual system succeeds and is able to estimate depth. In this
paper, using chromatic 3D range data, we analyze in which way depth in homogeneous structures is related to
the depth at the bounding edges. For this, we first extract the local 3D structure of regularly sampled points,
and then, analyze the coplanarity relation between these local 3D structures. We can statistically show that the
likelihood to find a certain depth at a homogeneous image patch depends on the distance between the image
patch and its edges. Furthermore, we find that this prediction is higher when there is a second edge which
is proximate to and coplanar with the first edge. These results allow deriving statistically based prediction
models for depth extrapolation into homogeneous image structures. We present initial results of a model that
predicts depth based on these statistics.

1 INTRODUCTION

Depth estimation relies on the extraction of 3D struc-
ture from 2D images which is realized by a set of
inverse problems including structure from motion,
stereo vision, shape from shading, linear perspective,
texture gradients and occlusion (Bruce et al., 2003).
In methods which make use of multiple views (i.e.,
stereo and structure from motion), correspondences
between different 2D views of the scene are required.
In contrast, monocular or pictorial cues such as shape
from shading, utilization of texture gradients or linear
perspective use statistical and geometrical relations in
one image to make statements about the underlying
3D structure.

Many surfaces have only weak texture or no tex-
ture at all, and as a consequence, the correspondence
problem is very hard or not at all resolvable for these
surfaces. Nevertheless, humans are able to recon-
struct 3D information for these surfaces, too. This
gives rise to the assumption that in the human visual
system, an interpolation process is realized that start-
ing with the local analysis of edges, corners and tex-
tures, computes depth also in areas where correspon-

dences cannot easily be found.
In figure 1, the relation between the depth of ho-

mogeneous image structures and edges is shown. In
figure 1(a), we see that the depth of homogeneous im-
age structures is directly related to the depth of the
bounding edges; however, this relation does not al-
ways exist as shown in figure 1(b,c) where the depth
is cued in shading.

With the notion that the human visual system is
adapted to the statistics of the environment (Brunswik
and Kamiya, 1953; Knill and Richards, 1996; Krüger,
1998; Kr̈uger and Ẅorgötter, 2004; Olshausen and
Field, 1996; Rao et al., 2002; Purves and Lotto, 2002)
and its successful applications to grouping, object
recognition and stereo (Elder and Goldberg, 2002; El-
der et al., 2003; Pugeault et al., 2004; Zhu, 1999), the
analysis, and the usage of natural image statistics has
become an important focus of vision research. More-
over, with the advances in technology, it has been also
possible to analyze the underlying 3D world using 3D
range scanners (Howe and Purves, 2004; Huang et al.,
2000; Potetz and Lee, 2003; Yang and Purves, 2003).

In this paper, by making use of chromatic range
data (see figure 3 for examples), we investigate



whether the depth at homogeneous image structures
are related to or predictable by the depth of the edges
that bound them. This investigation is important be-
cause (1) it contributes to a better understanding of the
intrinsic parameters of the 3D world, and (2) it sug-
gests an indirect method to estimate the depth for ho-
mogeneous image structures; that is, using the depth
estimations about the edges to predict the depth of ho-
mogeneous image structures instead of using the 2D
image information itself as shown in figure 1(a).

There have been only a few studies that have in-
vestigated the 3D world from range data (Howe and
Purves, 2004; Huang et al., 2000; Kalkan et al., 2006;
Potetz and Lee, 2003; Yang and Purves, 2003). In
(Yang and Purves, 2003), the distribution of rough-
ness, size, distance, 3D orientation, curvature and
independent components of surfaces was analyzed.
Their major conclusions were: (1) local 3D patches
tend to be saddle-like, and (2) natural scene geome-
try is quite regular and less complex than luminance
images. In (Huang et al., 2000), the distribution of
3D points was analyzed using co-occurrence statis-
tics and 2D and 3D joint distributions of Haar filter
reactions. They showed that range images are much
simpler to analyze than optical images and that a 3D
scene is composed of piecewise smooth regions. In
(Potetz and Lee, 2003), the correlation between light
intensities of the image data and the corresponding
range data as well as surface convexity were investi-
gated. They could justify the event that brighter ob-
jects are closer to the viewer, which is used in shape
from shading algorithms for estimating depth. In
(Howe and Purves, 2002; Howe and Purves, 2004),
range image statistics were analyzed for explanation
of several visual illusions.

In (Kalkan et al., 2006), a higher-order repre-
sentation of the 2D local image patches and the
3D local patches were considered; they represented
2D images in terms of homogeneous, edge-like
and corner-like structures whereas 3D range data in
terms of continuities, gap discontinuities and orien-
tation discontinuities (see section 2). With these
representations, they could compute the probability
P(3D Structure| 2D Structure) which among other
things justifies and quantifies the assumption that if
two image points do not have contrast difference in-
between, then they are likely to be coplanar. This as-
sumption is called ’no news is good news’ and widely
used in 3D reconstruction studies (see,e.g., (Grimson,
1983)).

All the studies discussed above are first-order, an-
alyzing the relation between the image data and the
range data. In this work, however, we are interested
in higher order relations between local 3D features. In

(a) (b) (c)

Figure 1: Illustration of the relation between the depth of
homogeneous image structures and the bounding edges. (a)
In the case of cube, the relation is eminent. However, in the
case of round surfaces, (b) the depth of homogeneous image
structures may not be related to the depth of the bounding
edges. (c) In the case of a cylinder, we see both cases of the
relation as illustrated in (a) and (b).

this sense, our work is a natural extension of (Kalkan
et al., 2006).

The outline of the paper is as follows: In section 2,
different types of local 3D structures are introduced.
In section 3, the methodology underlying our statis-
tical analysis is presented. The results are presented
and discussed in section 4. Finally, in section 5, the
paper is concluded.

2 LOCAL 3D STRUCTURE TYPES

For our work, we have made use of the classification
introduced in (Kalkan et al., 2006) where it is intu-
itively argued that the local 3D structure of a point
can be:
• Surface Continuity: The underlying 3D structure

can be described by one surface whose normal
does not change or changes smoothly.

• Regular Gap discontinuity: The underlying 3D
structure can be described by a small set of sur-
faces with a significant depth difference. An ex-
ample of gap discontinuity is shown in figure 2(d).

• Irregular Gap discontinuity: The underlying 3D
structure shows high depth variation and cannot
be described by two or three surfaces. An example
of an irregular gap discontinuity is shown in figure
2(e).

• Orientation Discontinuity: The underlying 3D
structure can be described by two surfaces with
significantly different 3D orientations that meet at
the point whose 3D structure is being questioned.
In this type of discontinuity, no gap but a change
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Figure 2: Illustration of the types of 3D discontinuities. (a)
2D image. (b) Continuity. (c) Orientation discontinuity.
(d) Gap discontinuity. (e) Irregular gap discontinuity. (f)
3D discontinuity of each pixel is shown in different colors.
Blue: continuous surfaces, light blue: orientation discon-
tinuities, orange: gap discontinuities and brown: irregu-
lar gap discontinuities. Dark blue indicates points without
range data.

in 3D orientation between the meeting surfaces
occurs. An example for this type of discontinu-
ity is shown in figure 2(c).

3D discontinuities are detected in studies which
involve range data processing, using different meth-
ods and using different names like two-dimensional
discontinuous edge, jump edge or depth discontinu-
ity for gap discontinuity; and, two-dimensional corner
edge, crease edge or surface discontinuity for orienta-
tion discontinuity (Bolle and Vemuri, 1991; Hoover
et al., 1996; Shirai, 1987).

For our analysis, we have adopted the measures
defined in (Kalkan et al., 2006). In this work, a gap
discontinuity is measured by simple edge detection in
XYZ coordinate values. An orientation discontinuity

Figure 3: A subset of the 20 3D data sets used in the
analysis. The points without corresponding range data are
marked in blue. The gray image shows the range data of
the top-left scene. The resolution range of the whole data
set is [512-2048]x[390-2290] with an average resolution of
1140x1001.

is measured by exploiting the fact that two meeting
surfaces with different orientations produce two clus-
ters in the histogram distribution of the 3D orientation
of the points. An irregular discontinuity is measured
by exploiting the fact that the histogram distribution
of the 3D orientation of the points should be flat.

Discontinuity types of each pixel for a scene is
shown in figure 2(f) where the local 3D structure type
of each point is shown in different colors.

3 METHODS

In our analysis, we used chromatic range data of
outdoor scenes which were obtained from Riegl UK
Ltd. (http://www.riegl.co.uk/). There were 20
scenes in total; due to space limitations, only two of
them are shown in figure 3. The range of an object
which does not reflect the laser beam back to the scan-
ner or which is out of the range of the scanner cannot
be measured. These points are marked with blue in
figure 3 and are not processed in our analysis. The
resolution range of the data set is [512-2048]x[390-
2290] with an average resolution of 1140x1001.



3.1 Representation

Using the 2D image and the associated 3D range data,
a representation of the scene is created in terms of lo-
cal compository 2D and 3D features denoted byπ.
For homogeneous and edge-like structures, different
representations are needed due to different underlying
structures (in the rest of the paper, a homogeneous im-
age structure that corresponds to a 3D continuity will
be called amono.). For this reason, we have two dif-
ferent definitions ofπ denoted respectively byπE (for
edge-like structures) andπM (for monos) and formu-
lated as:

πM = (X3D,X2D,c,p), (1)

πE = (X3D,X2D,φ2D,c1,c2,p1,p2), (2)

whereX3D andX2D denote 3D and 2D positions of
the 3D entity;φ2D is 2D orientation of the 3D entity;
c1 andc2 are the 2D color representation of the sur-
faces of the 3D entity;c represents the color ofπM;
p1 and p2 are the planes that represent the surfaces
that meet at the 3D entity; andp represents the plane
of πM (see figure 4). Note thatπM does not have any
2D orientation information (because it is undefined
for homogeneous structures), andπE has two color
and plane representations to the ’left’ and ’right’ of
the edge.

The process of creating the representation of a
scene is illustrated in figure 4.

In our analysis, the entities are regularly sampled
from the 2D information. The sampling size is 10 pix-
els. See (Kr̈uger et al., 2003; Kr̈uger and Ẅorgötter,
2005) for details.

Extraction of the planar representation requires
knowledge about the type of local 3D structure of the
3D entity (see figure 4). Namely, if the 3D entity is
a continuous surface, then only one plane needs to be
extracted; if the 3D entity is an orientation discontinu-
ity, then there will be two planes for extraction; if the
3D entity is a gap discontinuity, then there will also
be two planes for extraction.

In the case of a continuous surface, a single plane
is fitted to the set of 3D points in the 3D entity in
question. For orientation discontinuous 3D structures,
extraction of the planar representation is not straight-
forward. For these structures, our approach was to fit
unit-planes1 to the 3D points of the 3D entity and find
the two clusters in these planes using k-means cluster-
ing of the 3D orientations of the small planes. Then,
one plane is fitted for each of the two clusters, pro-
ducing the two-fold planar representation of the 3D
entity.

1By unit-planes, we mean planes that are fitted to the 3D
points that are 1-pixel apart in the 2D image.

2D image Range image Discont. image

Local 2D Representation Local 3D Representation
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Figure 4: Illustration of the representation of a 3D entity.
From the 2D and 3D information, local 2D and 3D repre-
sentation is extracted.
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Figure 5: The parameters involved in second order 3D
statistics.

Color representation is extracted in a similar way.
If the image patch is a homogeneous structure, then
the average color of the pixels in the patch is taken to
be the color representation. If the image patch is edge-
like, then it has two colors separated by the line which
goes through the center of the image patch and which
has the 2D orientation of the image patch. In this case,
the averages of the colors of the different sides of the
edge define the color representation in terms ofc1 and
c2. If the image patch is corner-like, the color repre-
sentation becomes undefined.

3.2 Collecting the Data Set

In our analysis, we form pairs out ofπEs that are close
enough, and for each pair, we check whether monos
in the scene are coplanar to the elements of the pair
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Figure 6: The ellipse in second order 3D statistics.

Figure 7: Illustration of a pair ofπE and the set of monos
associated to them. Top-left shows the 2D image. Top-right
shows the 3D representation of the scene in our 3D visual-
ization software. At the bottom, a part of the 3D represen-
tation is displayed in detail where the edges are shown in
blue; the monos coplanar with the edges are shown in green,
and non-coplanar monos are shown in red. The entities are
drawn in rectangles because of the high computational com-
plexity of drawing circles.

or not. As there are plenty of monos in the scene, we
only consider a subset of monos for each pair ofπE

that we suspect to be relevant to the analysis because
otherwise, the analysis becomes computationally in-
tractable. The situation is illustrated in figure 5. In
this figure, twoπE and three regions are shown; how-
ever, only one of these regions (i.e., region A) is likely
to have coplanar monos (e.g., see figure 1(a)).

Let P denote the set of pairs of proximateπEs
whose normals intersect.P can be defined as:

P =
{
(πE

1 ,πE
2 ) | ∀πE

1 ,πE
2 , πE

1 ∈ Ω(πE
2 ), I(⊥ (πE

1 ),⊥ (πE
2 ))

}
, (3)

whereΩ(πE) is the N-pixel-2D-neighborhood ofπE;
⊥ (πE) is the 2D line orthogonal to the 2D orientation

of πE, i.e., the normal ofπE; and,I(l1, l2) is true if the
lines l1 andl2 intersect. We have taken N to be 100.

Next, we have to determine which monos in re-
gion A should be analyzed for the relation; that is,
what is the shape of region A? Empirically, it turns
out that an ellipse (1) is the computationally cheapest
shape and (2) fits to different configurations ofπ1 and
π2 under different orientations and distances. Neither
a rectangle nor a circle satisfy these two properties.
Figure 6 demonstrates the ellipse for the example pair
of edges in figure 5. The center of the ellipse is at the
intersection of the normals of the edges which we call
as the intersection point (IP) in the rest of the paper.

For each pair of edges inP , we decide on which
region to analyze the relation of depth by intersect-
ing the normals of the edges. Then, we associate the
monos inside the ellipse that are defined by the pair of
edges.

Note that aπE has two planes that represent the
underlying 3D structure. WhenπEs become asso-
ciated to monos, only one plane that faces the el-
lipse becomes relevant. LetπsE denote the semi-
representation ofπE which can be defined as:

πsE = (X3D,X2D,c,p). (4)

Note thatπsE is equivalent to the definition ofπM in
equation 2.

Let T denote the data set which storesP and the
associated monos which can be formulated as:

T =
{
(πsE

1 ,πsE
2 ,πM) | (πE

1 ,πE
2 ) ∈ P ,πM ∈ SM ,

πM ∈ E(πE
1 ,πE

2 )
}
, (5)

whereSM is the set of allπM, andE(πE
1 ,πE

2 ) repre-
sents the ellipse associated toπE

1 andπE
2

2.
A pair of πEs and the set of monos associated to

them are illustrated in figure 7. The edges are shown
in blue, and the coplanar and non-coplanar monos are
shown in green and red, respectively.

2The parameters of an ellipse are composed of two fo-
cus pointsf1, f2 and the minor axisb. In our analysis, the
more distant 3D edge determines the foci of the ellipse (and,
hence, the major axis), and the other 3D edge determines the
minor axis.

Let us denote the position of two 3D edgesπE
1 ,πE

2 by
(X2D)1 and(X2D)2 respectively. The vectors between the
3D edges and IP (let us calll1 andl2) can be defined as:

l1 = ((X2D)1− IP),
l2 = ((X2D)2− IP). (6)

Having definedl1 andl2, the ellipseE(πE
1 ,πE

2 ) is as follows:

E(πE
1 ,πE

2 ) =

{
f1 = (X2D)1, f2 = (X2D)′1,b = |l2| if |l1| > |l2|,
f1 = (X2D)2, f2 = (X2D)′2,b = |l1| otherwise.

(7)

where(X2D)′ is the symmetry ofX2D around the intersec-
tion point and on the line defined byX2D andIP (as shown
in figure 6).



3.3 Definition of Coplanarity

Let πs denote either a semi-edgeπsE or a monoπM.
Two πs are coplanar iff they are on the same plane.
When it comes to measuring coplanarity, two criteria
need to be applied:

cop(πs
1,π

s
2) = α(pπs

1, pπs
2) < Tp AND

d(pπs
1, πs

2)/d(πs
1, πs

2) < Td, (8)

wherepπs
is the plane associated toπs; α(p1,p2) is

the angle between the orientations ofp1 andp2; and,
d(., .) is the Euclidean distance between two entities.

In our analysis, we have empirically chosenTp
andTd as 20 and 0.5, respectively.

4 RESULTS AND DISCUSSIONS

The data set consists of pairs ofπE
1 , πE

2 and the associ-
ated monos. Using this set, we compute the likelihood
that a mono is coplanar withπE

1 and/orπE
2 against a

distance measure.
Figure 8 shows the results of our analysis. In fig-

ure 8(a), the likelihood of the coplanarity of a mono
against the distance toπE

1 or πE
2 is shown. This like-

lihood can be denoted formally asP(cop(πM,πE
1 ∧

πE
2 ) | dN(πM,πE)) wherecop(πM,πE

1 ∧πE
2 ) is defined

ascop(πE
1 ,πE

2 ) ∧ cop(πM,πE), andπE is eitherπE
1 or

πE
2 . The normalized distance measure3 dN(πM,πE) is

defined as:

dN(πM,πE) =
d(πM,πE)

2
√

d(πE
1 , IP)2 +d(πE

2 , IP)2
, (9)

whereπE is eitherπE
1 or πE

2 , and IP is the intersec-
tion point of πE

1 andπE
2 . We see in figure 8(a) that

the likelihood decreases when a mono is more distant
from an edge. However, when the distance measure
gets closer to 1, the likelihood increases. This is be-
cause when the mono gets away from eitherπE

1 or πE
2 ,

it becomes closer to the otherπE.
In figure 8(b), we see the unconstrained case of

figure 8(a); i.e., the case where there is no infor-
mation about the coplanarity ofπE

1 andπE
2 , namely,

P(cop(πM,πE) | dN(πM,πE)) whereπE is eitherπE
1

or πE
2 . We see that the likelihood distribution is is

weaker than the case whereπE
1 andπE

2 are coplanar.
The comparison with figure 8(a) shows that the exis-
tence of another edge in the neighborhood increases
the likelihood of finding coplanar structures.

3In the following plots, the distance means the Eu-
clidean distance in the image domain.

In figure 8(c), the likelihood of the coplanarity of a
mono against the distance toIP (i.e., P(cop(πM,πE

1 ∧
πE

2 ) | dNU(πM, IP),dNV(πM, IP))) is shown. We see in
the figure that the likelihood shows a flat distribution
against the distance to IP.

In figure 8(d), the likelihood of the coplanarity
of a mono against the distance toπE

1 and πE
2 (i.e.,

P(cop(πM,πE
1 ∧ πE

2 ) | dN(πM,πE
1 ),dN(πM,πE

2 ))) is
shown. We see that whenπM is close toπE

1 or πE
2 ,

it is more likely to be coplanar withπE
1 andπE

2 than
when it is equidistant to both edges. The reason is
when πM moves away from an equidistant point, it
becomes closer to the other edge and in that case, as
shown in figure 8(a), the likelihood increases.

The results, especially figure 8(a) and (b) confirm
the importance of the relation illustrated in figure 1(a).

In figure 9, first results of an unpublished ongoing
work on a depth prediction model based on the pre-
sented statistical framework are presented. 9(c) shows
the results of feature-based stereo while in 9(d), depth
predictions are shown in our 3D display software

5 CONCLUSION

In this paper, using 3D range data with real-world
color information, we have analyzed whether the
depth of a mono is predictable from the depth of
the edges that bound the homogeneous image patch.
We have analyzed the predictability of the depth of a
mono given a single edge and a pair of coplanar edges.

We have shown that a mono is more likely to be
coplanar with an edge when it is closer to the edge and
when there is another coplanar edge in the neighbor-
hood. We have shown that the existence of a coplanar
edge in the neighborhood is a strong event and to our
knowledge, is not recognized by the literature.

The results suggest that the depth estimation at
homogeneous image structures can be achieved indi-
rectly from the available information at the edges. We
believe that this is a new approach to 3D reconstruc-
tion.

In this paper, we are only interested in second-
order long-range relations between local features. For
round objects like shown in figure 1(b,c), the depth
information is given by the shading whose statistical
properties can only be captured by different relations.

In our current work, we are developing a model
that exploits the statistics presented in this paper to
predict the depth of homogeneous image patches from
the depth of edges. First results of this ongoing work
are also presented in the paper.
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Figure 8: Likelihood distribution of coplanarity of monos. In each sub-figure, left-plot shows the likelihood distribution
whereas right-plot shows the frequency distribution. (a) The likelihood of the coplanarity of a mono withπE

1 andπE
2 against

the distance toπE
1 or πE

2 (̇b) The likelihood of the coplanarity of a mono withπE
1 or πE

2 against the distance toπE
1 or πE

2 (̇c) The
likelihood of the coplanarity of a mono against the distance toIP. (d) The likelihood of the coplanarity of a mono against the
distance toπE

1 andπE
2 .
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Krüger, N. and Ẅorgötter, F. (2005). Multi-modal primi-
tives as functional models of hyper-columns and their
use for contextual integration.Proc. 1st Int. Sym-
posium on Brain, Vision and Artificial Intelligence,
Naples, Italy, Lecture Notes in Computer Science,
Springer, LNCS 3704, pages 157–166.

Olshausen, B. and Field, D. (1996). Natural image statistics
and efficient coding.Network, 7:333–339.

Potetz, B. and Lee, T. S. (2003). Statistical correlations be-
tween two-dimensional images and three-dimensional
structures in natural scenes.Journal of the Optical
Society of America, 20(7):1292–1303.

Pugeault, N., Kr̈uger, N., and Ẅorgötter, F. (2004). A non-
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