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D1.1. Specification of the components for the micro-chip 

 
DRIVSCO 

 
 

(Deliverable due to Month 13: March 2007) 
 

Brief outline of the deliverable 
 
Abstract 
 
This deliverable defines all the modules to be integrated into the chip (low level vision 
hardware) and gives the specifications of all these modules. In an attached excel file 
(Appendix D) we provide a tool that can be used to evaluate how changing the 
specifications of the different modules to be implemented on the chip will demand more 
or less temporal memory resources and data transmission bandwidth. 
 
1. The whole system-on-chip 
 
The whole system has different stages: 
 
a. Spatio-temporal filters to obtain a harmonic representation of the visual signal. These 
modules process the rare images and produce responses tuned to the filter banks used. 
Appendix B describes the theoretical framework and the implementation issues related 
to the filter bank construction techniques (Gabor, Stereeable, monogenic transform, etc). 
It is important to define the filter bank that will be used. Appendix A and Appendix C 
address an accuracy vs. computation resources study about different alternatives. The 
size of this filter bank (at different orientations) will have a high impact on the actual 
hardware resources of the low level vision system. 
 
b. Single modality vision modules. The responses of this bank of filters are combined to 
obtain motion, stereo or local spatial primitives (energy, phase and orientation). The 
target specifications of these vision modalities (number of computed scales, spatial and 
temporal resolutions) will have a high impact on the complete system resources 
requirement (this is outlined in Appendix D). 
 
c. Cross-modality interactions. In Appendix E are outlined different interactions that are 
good candidates to be integrated on-chip. Appendix F includes some more concrete 
details about geometry issues related with motion-in-depth. 
  
Appendices: 
 

A. Joint paper: Sabatini et al. "Compact (and Accurate) Early Vision Processing in 
the Harmonic Space". Accepted in the VISAPP'07 conference (2nd Intern. Conf. 
on Computer Vision Theory and Applications), Barcelona 8-11 March 2007. 

B. Filter design techniques. Technical report. 
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C. Filter evaluation: optic flow and disparity. Technical report. 
D. Excel file comparing the impact on memory and bandwidth of different system 

specifications. 
E. Cross-modality examples. Technical report. 
F. Motion-in-depth. Geometrical considerations. Technical report. 

manoonpong
Text Box
3



Table of Contents

Appendix A..............................................................................................................5

Appendix B.............................................................................................................14

Appendix C.............................................................................................................47

Appendix D.............................................................................................................55

Appendix E.............................................................................................................62

Appendix F.............................................................................................................71

manoonpong
Text Box
4



Appendix A
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Abstract: The efficacy of anisotropic versus isotropic filtering is analyzed with respect to general phase-based metrics for
early vision attributes. We verified that the spectral information content gathered through oriented frequency
channels is characterized by high compactness and flexibility, since a wide range of visual attributes emerge
from different hierarchical combinations of the same channels. We observed that it is preferable to construct
a multichannel, multiorientation representation, rather than using a more compact representation based on an
isotropic generalization of the analytic signal. The complete harmonic content is then combined in the phase-
orientation space at the final stage, only, to come up with the ultimate perceptual decisions, thus avoiding
an “early condensation” of basic features. The resulting algorithmic solutions reach high performance in
real-world situations at an affordable computational cost.

1 INTRODUCTION

Although the basic ideas underlying early vision
appear deceptively simple and their computational
paradigms are known for a long time, early vision
problems are difficult to quantify and solve. More-
over, in order to have high algorithmic performance
in real-world situations, a large number of channels
should be integrated with high efficiency. From a
computational point of view, the visual signal should
be processed in a “unifying” perspective that will al-
low us to share the maximum number of resources.
From an implementation point of view, the resulting

algorithms and architectures could fall short of their
expectations when the high demand of computational
resources for multichannel spatio-temporal filtering
of high resolution images conflicts with real-time re-
quirements. Several approaches and solutions have
been proposed in the literature to accelerate the com-
putation by means of dedicated hardware (e.g., see
(Diaz et al., 2006; Kehtarnavaz and Gamadia, 2005)).
Yet, the large number of products that must be com-
puted to calculate each single pixel of each single
frame for a couple of stereo images and at each time
step still represents the main bottleneck. This is par-
ticularly true for stereo and motion problems to con-
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struct 3D representations of the world, for which es-
tablishing image correspondences in space and space-
time is a prerequisite, but also their most challenging
part.

In this paper, we propose (1) to define a systematic
approach to obtain a “complete” harmonic analysis of
the visual signal and (2) to integrate efficient multi-
channel algorithmic solutions to obtain high perfor-
mance in real-world situations, and, at the same time,
an affordable computational load.

2 MULTICHANNEL BANDBASS
REPRESENTATION

An efficient (internal) representation is necessary to
guarantee all potential visual information can be made
available for higher level analysis. At an early level,
feature detection occurs through initial local quanti-
tative measurements of basic image properties (e.g.,
edge, bar, orientation, movement, binocular disparity,
colour) referable to spatial differential structure of the
image luminance and its temporal evolution (cf. lin-
ear cortical cell responses). Later stages in vision can
make use of these initial measurements by combin-
ing them in various ways, to come up with categor-
ical qualitative descriptors, in which information is
used in a non-local way to formulate more global spa-
tial and temporal predictions. The receptive fields of
the cells in the primary visual cortex have been in-
terpreted as fuzzy differential operators (or local jets
(Koenderink and van Doorn, 1987)) that provide reg-
ularized partial derivatives of the image luminance in
the neighborhood of a given point x � �

x � y � , along
different directions and at several levels of resolution,
simultaneously. Given the 2D nature of the visual sig-
nal, the spatial direction of the derivative (i.e., the ori-
entation of the corresponding local filter) is an impor-
tant “parameter”. Within a local jet, the directionally
biased receptive fields are represented by a set of sim-
ilar filter profiles that merely differ in orientation.

Alternatively, considering the space/spatial-
frequency duality (Daugman, 1985), the local jets
can be described through a set of independent spatial-
frequency channels, which are selectively sensitive
to a different limited range of spatial frequencies.
These spatial-frequency channels are equally apt as
the spatial ones. From this perspective, it is formally
possible to derive, on a local basis, a complete
harmonic representation (phase, energy/amplitude,
and orientation) of any visual stimulus, by defining
the associated analytic signal in a combined space-
frequency domain through filtering operations with
complex-valued band-pass kernels. Formally, due to

the impossibility of a direct definition of the analytic
signal in two dimensions, a 2D spatial frequency
filtering would require an association between spatial
frequency and orientation channels. Basically, this
association can be handled either (1) ‘separately’,
for each orientation channel, by using Hilbert pairs
of band-pass filters that display symmetry and
antisymmetry about a steerable axis of orientation,
or (2) ‘as-a-whole’, by introducing a 2D isotropic
generalization of the analytic signal: the monogenic
signal (Felsberg and Sommer, 2001), which allows us
to build isotropic harmonic representations that are
independent of the orientation (i.e., omnidirectional).
By definition, the monogenic signal is a 3D phasor
in spherical coordinates and provides a framework
to obtain the harmonic representation of a signal
respect to the dominant orientation of the image that
becomes part of the representation itself.

In the first case, for each orientation channel θ, an
image I

�
x � is filtered with a complex-valued filter:

f θ
A
�
x � � f θ � x ��� i f θ

H
�
x � (1)

where f θ
H
�
x � is the Hilbert transform of f θ � x � with re-

spect to the axis orthogonal to the filter’s orientation.
This results in a complex-valued analytic image:

Qθ
A
�
x � � I � f θ

A
�
x � � Cθ

�
x ��� iSθ

�
x �	� (2)

where Cθ
�
x � and Sθ

�
x � denote the responses of the

quadrature filter pair. For each spatial location,

the amplitude ρθ
��
 C2

θ � S2
θ and the phase φθ

�
arctan

�
Sθ � Cθ � envelopes measure the harmonic infor-

mation content in a limited range of frequencies and
orientations to which the channel is tuned.

In the second case, the image I
�
x � is filtered with

a spherical quadrature filter (SQF):

fM
�
x � � f

�
x �� � i � j �� fR

�
x � (3)

defined by a rotation invariant even f
�
x � filter)

and a vector-valued isotropic odd filter fR
�
x � ��

fR � 1 � x ��� fR � 2 � x ��� T , obtained by the Riesz transform
of f

�
x � (Felsberg and Sommer, 2001). This results in

a monogenic image:

QM
�
x � � I � fM

�
x � � C

�
x ��� � i � j � S � x � (4)� C

�
x ��� iS1

�
x ��� jS2

�
x �

where, using the standard spherical coordinates,

C
�
x � � ρ

�
x � cosϕ

�
x �

S1
�
x � � ρ

�
x � sinϕ

�
x � cosϑ

�
x �

S2
�
x � � ρ

�
x � sinϕ

�
x � sinϑ

�
x ���

The amplitude of the monogenic signal is the vec-

tor norm of fM : ρ ��
 C2 � S2
1 � S2

2, as in the case
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of the analytic signal, and, for an intrinsically one-
dimensional signal, ϕ and ϑ are the dominant phase
and the dominant orientation, respectively.

In this work, we want to analyze the efficacy of
the two approaches in obtaining a complete and ef-
ficient representation of the visual signal. To this
end, we consider, respectively, a discrete set of ori-
ented (i.e., anisotropic) Gabor filters and a triplet of
isotropic spherical quadrature filters defined on the
basis of the monogenic signal. Moreover, as a choice
in the middle between the two approaches, we will
also take into consideration the classical steerable fil-
ter approach (Freeman and Adelson, 1991) that allows
a continuous steerability of the filter respect to any
orientation. In this case, the number of basis kernels
to compute the oriented outputs of the filters depends
on the derivative order (n) of a Gaussian function. The
basis filters corresponding to n � 2 or n � 4 turned out
as an acceptable compromise between the representa-
tion efficacy and the computational efficiency.

For all the filters considered, we chose the de-
sign parameters to have a good coverage of the space-
frequency domain and to keep the spatial support (i.e.,
the number of taps) to a minimum, in order to cut
down the computational cost. Therefore, we deter-
mined the smallest filter on the basis of the highest al-
lowable frequency without aliasing, and we adopted
a pyramidal technique (Adelson et al., 1984) as an
economic and efficient way to achieve a multireso-
lution analysis (see also Section 3.2). Accordingly,
we fixed the maximum radial peak frequency (ω0)
by considering the Nyquist condition and a constant
relative bandwidth of one octave (β � 1), that al-
lows us to cover the frequency domain without loss
of information. For Gabor and steerable filters, we
should also consider the minimum number of ori-
ented filters to guarantee a uniform orientation cov-
erage. This number still depends on the filter band-
width and it is related to the desired orientation sen-
sitivity of the filter (e.g., see (Daugman, 1985; Fleet
and Jepson, 1990)); we verified that, under our as-
sumptions, it is necessary to use at least eight orien-
tations. To satisfy the quadrature requirement all the
even symmetric filters have been “corrected” to can-
cel the DC sensitivity. The monogenic signal has been
constructed from a radial bandpass filter obtained by
summing the corrected bank of oriented even Gabor
filters. All the filters have been normalized prior to
their use in order to have constant unitary energy. A
detailed description of the filters used can be found at
www.pspc.dibe.unige.it/VISAPP07/.

3 PHASE-BASED EARLY VISION
ATTRIBUTES

3.1 Basic principles

During the last decades, the phase from local band-
pass filtering has gained increasing interest in the
computer vision community and has led to the de-
velopment of a wide number of phase-based feature
detection algorithms in different application domains
(Sanger, 1988; Fleet et al., 1991; Fleet and Jepson,
1990; Fleet and Jepson, 1993; Kovesi, 1999; Gau-
tama and Van Hulle, 2002). Yet, to the best of our
knowledge, a systematic analysis of the basic descrip-
tive properties of the phase has never been done. One
of the key contributions of this paper is the formu-
lation a single unified representation framework for
early vision grounded on a proper phase-based met-
rics. We verified that the resulting representation
is characterized by high compactness and flexibility,
since a wide range of visual attributes emerges from
different hierarchical combinations of the same chan-
nels. The harmonic representation will be the base
for a systematic phase-based interpretation of early
vision processing, by defining perceptual features on
measures of phase properties. From this perspective,
edge and contour information can come from phase-
congruency, motion information can be derived from
the phase-constancy assumption, while matching op-
erations, such as those used for disparity estimation,
can be reduced to phase-difference measures. In this
way, simple local relational operations capture signal
features, which would be more complex and less sta-
ble if directly analysed in the spatio-temporal domain.

Contrast direction and orientation. Traditional
gradient-based operators are used to detect sharp
changes in image luminance (such as step edges), and
hence are unable to properly detect and localize other
feature types. As an alternative, phase information
can be used to discriminate different features in a con-
trast independent way, by searching for patterns of or-
der in the phase component of the Fourier transform
(Owens, 1994). Abrupt luminance transitions, as in
correspondence of step edges and line features are, in-
deed, points where the Fourier components are max-
imally in phase. Therefore, both they are signaled by
peaks in the local energy, and the phase information
can be used to discriminate among different kinds of
contrast transition (Kovesi, 1999), e.g., a phase of π � 2
corresponds to a dark-bright edge, whereas a phase of
0 corresponds to a bright line on dark background (see
also (Krüger and Felsberg, 2003)) .
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Binocular disparity. In a first approximation, the
phase-based stereopsis defines the disparity δ

�
x � as

the one-dimensional shift necessary to align, along
the direction of the (horizontal) epipolar lines, the
phase values of bandpass filtered versions of the
stereo image pair IR � x � and IL � x � � IR � x � δ

�
x ���

(Sanger, 1988). Formally,

δ
�
x � ��� φL � x ��� φR � x ��� 2π

ω
�
x � ��� ∆φ

�
x ��� 2π

ω
�
x � (5)

where ω
�
x � is the average instantaneous frequency of

the bandpass signal, at point x, that, under a linear
phase model, can be approximated by ω0 (Fleet et al.,
1991). Equivalently, the disparity can be directly ob-
tained from the principal part of phase difference,
without explicit manipulation of the left and right
phase and without incurring the ‘wrapping’ effects on
the resulting disparity map (Solari et al., 2001):

� ∆φ � 2π
� � arg

�
QLQ � R ��� 2π (6)

where Q � denotes complex conjugate of Q.

Normal Flow. Considering the conservation prop-
erty of local phase measurements (phase constancy),
image velocities can be computed from the tempo-
ral evolution of equi-phase contours φ

�
x � t � � c (Fleet

et al., 1991). Differentiation with respect to t yields:

∇φ � v � φt
� 0 � (7)

where ∇φ � �
φx � φy � is the spatial and φt is the tem-

poral phase gradient. Note that, due to the aperture
problem, only the velocity component along the spa-
tial gradient of phase can be computed (normal flow).
Under a linear phase model, the spatial phase gradi-
ent can be substituted by the radial frequency vector
ω � �

ωx � ωy � . In this way, the component velocity
vc can be estimated directly from the temporal phase
gradient:

vc
� � φt

ω0
� ω�

ω
� � (8)

The temporal phase gradient can be obtained by fit-
ting a linear model to the temporal sequence of spatial
phases (using e.g. five subsequent frames) (Gautama
and Van Hulle, 2002):�

φt � p � � argmin
φt � p ∑

t

	 �
φt � t � p ��� φ

�
t ��
 2 � (9)

where p is the intercept.

Motion-in-depth. The perception of motion in the
3D space relates to 2nd-order measures, which can
be gained either by interocular velocity differences or
temporal variations of binocular disparity (Harris and

Watamaniuk, 1995). Recently (Sabatini et al., 2003),
it has been proved that both cues provide the same
information about motion-in-depth (MID), when the
rate of change of retinal disparity is evaluated as a
total temporal derivative of the disparity:

dδ
dt � ∂δ

∂t
� φL

t � φR
t

ω0 � vR � vL � (10)

where vR and vL are the velocities along the epipolar
lines. Through the chain rule in the evaluation of the
temporal derivative of phases, we obtain information
about MID directly from convolutions Q of stereo im-
age pairs and by their temporal derivatives Qt , eluding
explicit calculation and differentiation of phase and
the attendant problem of phase unwrapping:

∂δ
∂t
�� Im �QL

t Q � L ��
QL
�
2 � Im �QR

t Q � R ��
QR
�
2 � 1

ω0
� (11)

3.2 Channel interactions

The harmonic information made available by the dif-
ferent basis channels must be properly integrated
across both multiple scales and multiple orientations
to optimally detect and localise different features at
different levels of resolution in the visual signal.
In general, for what concerns the scale, a multires-
olution analysis can be efficiently implemented by
a coarse-to-fine strategy that helps us to deal with
large features values, which are otherwise unmeasur-
ables by the small filters we have to use in order to
achieve real-time performance. Specifically, a coarse-
to-fine Gaussian pyramid (Adelson et al., 1984) is
constructed, where each layer is separate by an octave
scale. Accordingly, the image is increasingly blurred
with a Gaussian kernel g

�
x � and subsampled:

Ik
�
x � � �

S
�
g � Ik � 1 � � � x �	� (12)

At each pyramid level k the subsampling operator S
reduces to a half the image resolution respect to the
previous level k � 1. The filter response image Qk at
level k is computed by filtering the image Ik with the
fixed kernel f

�
x � :

Qk
�
x � � �

f � Ik � � x �	� (13)

For what concerns the interactions across the ori-
entations a key distinction must be done according
that one uses isotropic or anisotropic filtering.
Isotropic filtering. The monogenic signal directly pro-
vides a single harmonic content with respect to the
dominant orientation:

ρ
�
x � def� 
 C2

�
x � � � S � x � � 2 � E

�
x �

θ
�
x � def� atan2

�
S2
�
x � � S1

�
x ��� � ϑ

�
x �

φ
�
x � def� sign � S � x ��� nϑ

�
x ��� atan2

���
S
�
x � � � C � x � � � ϕ

�
x � �

with nϑ
�
x � � �

cosϑ
�
x � � sinϑ

�
x ���	�
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Anisotropic filters. Basic feature interpolation mech-
anisms must be introduced. More specifically, if we
name Eq and φq the “oriented” energy and the “ori-
ented” phase extracted by the filter fq steered to the
angle θq

� qπ � K, the harmonic features computed
with this filter orientation are:

ρq
�
x � � 
 C2

q
�
x � � S2

q
�
x � � Eq

�
x �

θq
�
x � � qπ

K
φq
�
x � � atan2

�
Sq
�
x � � Cq

�
x � � �

Under this circumstance, we require to interpolate the
feature values computed by the filter banks in order
to estimate the filter’s output at the proper signal ori-
entation. The strategies adopted for this interpolation
are very different, and strictly depend on the ‘compu-
tational theory’ (in the Marr’s sense (Marr, 1982)) of
the specific early vision problem considered, as it will
be detailed in the following.

Contrast direction and orientation. According to
(Krüger and Felsberg, 2004) the phase is used to de-
scribe the local structure of i1D signals in an image.
Therefore, we determine maxima of the local am-
plitude orthogonal to the main orientation with sub–
pixel accuracy and compute orientation and phase in-
formation at this sub-pixel position using bi-linear in-
terpolation in the phase–orientation space. Sub–pixel
accuracy is achieved by computing the center of grav-
ity in a window with size depending on the frequency
level. For the bilinear interpolation we need to take
care of the topology of the orientation–phase space
that has the form of a half–torus. The precision of
sub–pixel accuracy calculation as well as the preci-
sion of the phase estimate depending on the different
harmonic representations is discussed in Section 4.

Binocular disparity. The disparity computation
from Eq. (5) can be extended to two-dimensional fil-
ters at different orientations θq by projection on the
epipolar line in the following way:

δq
�
x � � � φL

q
�
x ��� φR

q
�
x ��� 2π

ω0 cosθq
� (14)

In this way, multiple disparity estimates are obtained
at each location. These estimates can be combined by
taking their median:

δ
�
x � � median

q � V � x � δq
�
x � � (15)

where V
�
x � is the set of orientations where valid com-

ponent disparities have been obtained for pixel x. Va-
lidity can be measured by the filter energy.

A coarse-to-fine control scheme is used to inte-
grate the estimates over the different pyramid levels
(Bergen et al., 1992). A disparity map δk � x � is first
computed at the coarsest level k. To be compatible
with the next level, it must be upsampled, using an
expansion operator X , and multiplied by two:

dk � x � � 2 � X 	
δk � x ��
 � (16)

This map is then used to reduce the disparity at level
k � 1, by warping the phase or filter outputs before
computing the phase difference:

δk � 1
q

�
x � � � φL � x �� φR

	
x � dk � x � 
 � 2π

ω0 cosθq
� dk � x ��� (17)

In this way, the remaining disparity is guaranteed to
lie within the filter range. This procedure is repeated
until the finest level is reached.

Optic flow. The reliability of each component ve-
locity can be measured by the mean squared error
(MSE) of the linear fit in Eq. (8) (Gautama and
Van Hulle, 2002). Provided a minimal number of reli-
able component velocities are obtained (threshold on
the MSE), an estimate of the full velocity can be com-
puted for each pixel by integrating the valid compo-
nent velocities (Gautama and Van Hulle, 2002):

v
�
x � � argmin

v � x � ∑
q � O � x �

� �
vc � q � x � � � v

�
x � T vc � q � x ��

vc � q � x � ��� 2 �
(18)

where O
�
x � is the set of orientations where valid com-

ponent velocities have been obtained for pixel x. A
coarse-to-fine control scheme, similar to that of Sec-
tion 3.2 is used to integrate the estimates over the dif-
ferent pyramid levels. Starting from the coarsest level
k, the optic flow field vk � x � is computed, expanded,
and used to warp the phases or filter outputs at level
k � 1. For more details on this procedure we refer to
(Pauwels and Van Hulle, 2006).

Motion-in-depth. Although the motion-in-depth is
a 2nd-order measure, by exploiting the direct determi-
nation of the temporal derivative of the disparity (see
Eq.11), the binocular velocity along the epipolar lines
can be directly calculated for each orientation chan-
nel, and thence the motion-in-depth:

VZ
� median

q � WL � x � vL
q
�
x �� median

q � WR � x � vR
q
�
x � � (19)

where for each monocular sequence, W
�
x � is the set

of orientations for which valid components of veloci-
ties have been obtained for pixel x. As in the previous
cases, a coarse-to-fine strategy is adopted to guarantee
that the horizontal spatial shift between two consecu-
tive frames lie within the filter range.
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4 RESULTS

We are interested in computing different image
features with the maximum accuracy and the lower
processor requirements. The utilization of the differ-
ent filtering approaches leads to different computing
load requirements. Focusing on the convolutions op-
erations on which the filters are based, we have an-
alyzed each approach to evaluate their complexity.
Spherical filters require three non-separable convo-
lutions operations, which make this approach quite
expensive in terms of the required computational re-
sources. The eight oriented Gabor filters requires
eight 2-D non separable convolution but they can be
efficiently computed through a linear combination of
separable kernels as it is indicated in (Nestares et al.,
1998), thus significantly reducing the computational
load. For steerable filters, quadrature oriented outputs
are obtained from the filter bases composed of separa-
ble kernels. The higher is the Gaussian derivative or-
der, the higher is the number of the basis filters. More
specifically, the number of 1-D convolutions is given
by 4n � 6 where n is the differentiation order.

Summarizing, the complexity of computing the
harmonic representation with the different set of fil-
ters is summarized in Table 1.

Table 1: Computational costs of convolution operators.

# filters # taps products sums
Gabor 24 11 264 240
s4 22 11 242 220
s2 14 11 154 140
SQF 3 11 � 11 363 360

The accuracy achieved by the different filters has been
evaluated using synthetic images with well-known
ground-truth feature.

Contrast direction and orientation. We have uti-
lized a synthetic image (see Figure 1) where the fea-
ture type changes from a step edge to a line feature
from top to bottom (Kovesi, 1999). By rotating the
image by stepwise angles in � 0 � 2π � , we constructed a
set of test images and measured the contour localiza-
tion accuracy, phase and orientation with the different
approaches, comparing the results with the ground-
truth. In Table 2 the mean errors in localisation, ori-
entation and phase and their standard deviations are
reported. It is worth noting that the features were
extracted with sub-pixel accuracy. We can see that
Gabor and 4th-order steerable filters (s4) produce the
most accurate results for phase and edge localization,
with low variance. Second order steerable filters (s2)
and SQFs seem very noisy in their phase estimation.

(a) (b)

Figure 1: (a) Test image representing a continuum of phases
taking values in

���
π � π � corresponding to a continuum of

oriented grey-level structures as expressed in a changing
“circular” manifold (cf. (Kovesi, 1999)). The feature type
changes progressively from a step edge to a line feature,
while retaining perfect phase congruency. (b) Phase-based
localization of contours obtained by the Gabor filters.

Table 2: Accuracy evaluation for localization, phase and
orientation in the synthetic image of Figure 1. The localiza-
tion error is expressed in pixels, whereas the orientation and
phase errors are in radians.

localization orientation phase
avg std avg std avg std

Gabor 0.067 0.026 0.021 0.007 0.025 0.005
s4 0.072 0.027 0.022 0.008 0.032 0.006
s2 0.076 0.017 0.042 0.011 0.340 0.203
SQF 0.124 0.062 0.026 0.021 0.198 0.092

Binocular disparity. The tsukuba, sawtooth and
venus stereo-pairs from the Middlebury stereo vision
page (Scharstein and Szeliski, 2002) are used in the
evaluation. Since we are interested in the precision
of the filters we do not use the integer-based mea-
sures proposed there but instead compute the mean
and standard deviation of the absolute disparity er-
ror. To prevent outliers to distort the results, the er-
ror is evaluated only at regions that are textured, non-
occluded and continuous. The best results (see Ta-
ble 3)are obtained with the Gabor filters. Slightly
worse are the results with 4th-order steerable filters
and the 2nd-order filters yield results about twice as
bad as the 4th-order filters. The results obtained with
SQFs are comparable with those obtained by the 2nd-
order steerable filters. Figure 2 contains the left im-
ages of the stereo-pairs, the ground truth depth maps,
and the depth maps obtained with the Gabor filters.

Optic flow. We have evaluated the different filters
with respect to optic flow estimation on the diverg-
ing tree and yosemite sequences from (Barron et al.,
1994), using the error measures presented there. The
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Table 3: Average and standard deviation of the absolute er-
rors in the disparity estimates (in pixels).

tsukuba sawtooth venus
avg std avg std avg std

Gabor 0.32 0.61 0.41 1.26 0.25 0.77
s4 0.36 0.68 0.50 1.86 0.40 1.30
s2 0.47 0.79 1.12 2.50 0.98 2.44
SQF 0.46 0.85 0.93 2.20 0.95 2.40

tsukuba sawtooth venus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Left frame (top row), ground truth disparity (mid-
dle row), and estimated disparity using Gabor filters (bot-
tom row).

cloud region was excluded from the yosemite se-
quence. The results are presented in Table 4 and
similar conclusions can be drawn as in the previous
Section. Gabor and 4th-order steerable filters yield
comparable results whereas 2nd-order steerable fil-
ters score about twice as bad. The results obtained by
SQFs are slightly worse, since the resulting optic flow
have larger errors but a higher density. Figure 3 shows
the center images, ground truth optic flow fields, and
the optic flow fields computed with the Gabor filters.

Table 4: Average and standard deviation of the optic flow
errors (in pixels) and optic flow density (in percent).

diverging tree yosemite (no cloud)
avg std dens avg std dens

Gabor 2.05 2.28 95.6 2.15 3.12 81.8
s4 2.39 2.62 93.2 2.96 4.46 85.0
s2 4.20 4.58 90.6 6.51 9.23 81.9
SQF 12.9 13.4 95.1 18.7 17.8 99.1

diverging tree yosemite

Figure 3: Center frame (top row), ground truth optic flow
(middle row) and estimated optic flow obtained with Gabor
filters (bottom row). All optic flow fields have been scaled
and subsampled five times.

Motion-in-depth. Since binocular test sequences
with the ground truth and a sufficiently high frame
rate are not available, it has not been possible to make
quantitative comparisons. However, considering that
motion-in-depth is a ‘derived’ quantity, we expected,
that the multichannel anisotropic filtering has the
same advantages over isotropic filtering alike those
observed for stereo and motion processing. Qualita-
tive results obtained in real-world sequences prelimi-
narily confirmed this conclusion.

5 CONCLUSIONS

Early vision processing can be reconducted to
measuring the amount of a particular type of lo-
cal structure with respect to a specific representation
space. The choice for an early selection of features
by adopying thresholding procedures, which depend
on a specific and restricted environmental context,
limits the possibility of building, on the ground of
such representations, an artificial vision system with
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complex functionalities. Hence, it is more conve-
nient to base further perceptual processes on a more
general representation of the visual signal. The har-
monic representation discussed in this paper is a rea-
sonable representation of early vision process since
it allows for an efficient and complete representation
of (spatially and temporally) localized structures. It
is characterized by: (1) compactness (i.e., minimal
uncertainty of the band-pass channel); (2) coverage
of the frequency domain; (3) robust correspondence
between the harmonic descriptors and the perceptual
‘substances’ in the various modalities (edge, motion
and stereo). Through a systematic analysis we in-
vestigated the advantages of anisotropic vs isotropic
filtering approaches for a complete harmonic descrip-
tion of the visual signal. We observed that it is prefer-
able to construct a multichannel, multiorientation rep-
resentation, thus avoiding an “early condensation” of
basic features. The harmonic content is then com-
bined in the phase-orientation space at the final stage,
only, to come up with the ultimate perceptual deci-
sions. An analysis of possible advantages of the ag-
gregation of the information in the monogenic im-
age in mid- and high-level perceptual tasks (e.g., im-
age classification) would require further investigation,
and it is deferred to a future work.

ACKNOWLEDGEMENTS

This work results from a cross-collaborative effort
within the EU Project IST-FET-16276-2 “DrivSco”.

REFERENCES

Adelson, E., Anderson, C., Bergen, J., Burt, P., and Ogden,
J. (1984). Pyramid methods in image processing. RCA
Engineer, 29(6):33–41.

Barron, J., Fleet, D., and Beauchemin, S. (1994). Perfor-
mance of optical flow techniques. Int. J. of Comp.
Vision, 12:43–77.

Bergen, J., Anandan, P., Hanna, K., and Hingorani, R.
(1992). Hierarchical model-based motion estimation.
In Proc. ECCV’92, pages 237–252.

Daugman, J. (1985). Uncertainty relation for resolution in
space, spatial frequency, and orientation optimized by
two-dimensional visual cortical filters. J. Opt. Soc.
Amer. A, A/2:1160–1169.

Diaz, J., Ros, E., Pelayo, F., Ortigosa, E., and Mota, S.
(2006). FPGA based real-time optical-flow system.
IEEE Trans. Circuits and Systems for Video Technol-
ogy, 16(2):274–279.

Felsberg, M. and Sommer, G. (2001). The monogenic sig-
nal. IEEE Trans. Signal Processing, 48:3136–3144.

Fleet, D. and Jepson, A. (1993). Stability of phase in-
formation. IEEE Trans. Pattern Anal. Mach. Intell.,
15(12):1253–1268.

Fleet, D., Jepson, A., and Jenkin, M. (1991). Phase-based
disparity measurement. CVGIP: Image Understand-
ing, 53(2):198–210.

Fleet, D. J. and Jepson, A. D. (1990). Computation of com-
ponent image velocity from local phase information.
Int. J. of Comp. Vision, 1:77–104.

Freeman, W. and Adelson, E. (1991). The design and use
of steerable filters. IEEE Trans. Pattern Anal. Mach.
Intell., 13:891–906.

Gautama, T. and Van Hulle, M. (2002). A phase-based ap-
proach to the estimation of the optical flow field us-
ing spatial filtering. IEEE Trans. Neural Networks,
13(5):1127–1136.

Harris, J. and Watamaniuk, S. N. (1995). Speed discrimina-
tion of motion-in-depth using binocular cues. Vision
Research, 35(7):885–896.

Kehtarnavaz, N. and Gamadia, M. (2005). Real-Time Im-
age and Video Processing: From Research to Reality.
Morgan & Claypool Publishers.

Koenderink, J. and van Doorn, A. (1987). Representation
of local geometry in the visual system. Biol. Cybern.,
55:367–375.

Kovesi, P. (1999). Image features from phase congruency.
Videre, MIT Press, 1(3):1–26.
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Appendix B

 Filter design techniques. Technical report.
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1. Overview and general requirements 

 

In the framework of the E.U. project DRIVSCO, we are designing a real-time vision 

system for complex scene understanding.  The system uses a dense phase-based stereo 

and optical flow module developed by Bel (see also [9]). Furthermore, local phase 

information as well as local orientation are used by other partners such as Den and Ita, 

to come up with higher visual descriptors and to compute motion-in-depth 

In general, spatially localized phase measures can be obtained by filtering operations 

with complex-valued band-pass quadrature filters:  

),;(),;(),;( σσσ peakSpeakCpeak uxihuxhuxh +=  (1) 

where upeak is the peak frequency of the filter and σ determines its spatial extension. The 

resulting convolution with the image signal I (complex-valued analytic image) can be 

expressed as shown in equation (2): 

( ) )()()(exp)()(*)( xiSxCxixxhIxQ +=== φρ  (2) 

where )(xρ and )(xφ  denote their amplitude and phase components, and C(x) and S(x) 

are the responses of the quadrature filter pair. 

 Although, in principle, phase-based techniques are robust against typical 

variations in image formation (e.g., brightness, contrast, affine deformations, etc...), the 

estimation of phase is intrinsically noisy and depends critically on the choice of the 

quadrature filters. 
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In this document we summarize the filters types we have considered and include the 

basic designing stages. 

 

We consider three kinds of filters:  

 

1. Isotropic analytic filters (based on the monogenic signal). 

2. Gabor filters. 

3. Steerable filters. 

 

 
Figure  1. Bandpass filters covering different spatial frequencies and orientations (figures adapted from 

[10]. Left image represents the different filters spatial scales based on scaling by 2 of the main filter. The 

x-axe represents the normalized frequency values (f/fNyquist). Right image shows a polar representation of 

these scales across different orientations, using a logarithmic splitting of the frequency domain. Uniform 

coverage of the frequency domain allows properly decomposing the image signal on this domain and 

extracting multivalued local phase and energy information. 

 

There are several conditions to fulfil due to implementation issues (see Figure 1 to 

easily identify parameters meanings): 

1. Nyquist sampling condition: Using pixels as units, the sampled period is 1 pixel, which 

corresponds to 1 pixel-1 sampling frequency. The maximum bandwidth of the filter to 

avoid aliasing is 0.5 pixels-1. Given B the filter bandwidth (defined at the cut-off 

frequency corresponding to half of the base-band amplitude spectrum), the maximum 

peak frequency of the filter can be derived from the following equation: 

5.0<+ Bu peak  (3) 

It is worthy to note that, since all the filters considered in this report are not 

bandlimited, some aliasing will occur regardless of the sampling density. In other 
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words, by setting, by defining, a filter bandwidth we decide how much aliasing we 

tolerate. 

 

2. Multiscale frequency space coverage. The distance between neighboring frequency 

“channels” is determined by the spatial frequency bandwidth. Since we work with 

multiscale representation based on power of two, the minimum B to cover the frequency 

domain without holes is:  

B>=upeak/3 (4) 

 

3. Uniform orientation coverage condition (only for Gabor and Steerable filters). Because 

we should cover the 2-D frequency domain for the different orientations, we need to 

consider a minimum number of oriented filters. This number depends on the filter 

bandwidth and is related to the desired orientation sensitivity of the filter.   

Accordingly, we can estimate the desired bandwidth using equation (5) as in [2]:  

BNu norientatiopeak 22 ∗<=π  (5) 

and define the orientation bandwidth in the frequency domain as in equation (6) (cf. 

[9])1: 

)/(tan 1
peakuBB −=θ  (6) 

Spatial frequency bandwidths are constant in octaves, and orientation bandwidths are 

constant in degrees, but there is freedom to choose the absolute magnitudes of these 

bandwidths (provided that they respect , see condition 1). 

 

4. The extent of the filter should not exceed the number of taps. For Gabor we check if the 

number of taps is larger than four times the spatial standard deviation.  

 

2. Isotropic analytic filters 

 

In general, direct extensions of the analytical-signal / Hilbert transform to two-

dimensional signals is not straightforward, since they do not satisfy the isotropy 

property, which is necessary to obtain invariance with respect to orientation. 
                                                 
1 We are considering 2D spatial filters with a circular support. We should perhaps compare system’s 
performance with anisotropic filter envelopes (sigma_y not equal to sigma_x). (This would not be 
possible for Steerable filters).  
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Alternatively, the Monogenic signal has been introduced as a 2D isotropic analytic 

signal, based on the Riesz transform, which is used instead of the Hilbert transform [1]. 

Such transform is based on the generalization of the 1-D concept of phase for 2-D 

signals. Orientation is used as disambiguation information to extend this concept (see 

Figure).  

The basic idea is to design an odd isotropic filter that is vector-valued rather than scalar-

valued, and the resulting complex-valued monogenic image can be expressed as: 

[ ] [ ] [ ] [ ]TT
SSCM yxSyxSjiyxCyxhIyxhIjiyxhIyxQ ),(),,(,),(),(*),,(*,),(*),( 2121 ⋅+=⋅+=  (7)

The image is convolved with a radial filter and  two 2-D non-separable filters that allow 

the estimation of the phase, and magnitude of the signal for the main orientation (also 

computed).  

 
Figure  2.  Orientation-phase sphere. 

 

From the filters outputs, image features are computed as: 

Local amplitude: 2
2

2
1

2 SSCA ++=       (8.a) 

Local phase:  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
=

C
SS 2

2
2

1arctanφ  (with sign correction, see below) (8.b) 

Local orientation: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2arctan
S
Sθ       (8.c) 
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Because only the information of the main direction is provided, this approach is only 

recommended for 1-D signals as edges or lines.2.1 Filter Implementation  

We have applied this transform to the Difference of Poissons (DOP) functions. The 

resulting equations are: 

 
a. Radial filter: 

( ) ( )
)2exp()2exp()(

22
)(

21

2/32
2

22
2

2/32
1

22
1

susuuH
syx

s
syx

sxh

e

e

ππ
ππ

−−−=

++
−

++
=

 
(9.a) 

 

(9.b) 

 

b. X-Y filters (real and imaginary parts) 

( ) ( )
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22
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(10.a) 

 

(10.b) 

 

c. Systems relations 

 

 1. Filters parameters relation:  

s2=λk•s1, according to [1], pp. 95. We consider k=1, λ=2. s2=2•s1 

 2. Peak frequency:  

( ) ⎟
⎠
⎞⎜

⎝
⎛

−
=

1

2

12

ln
2

1
s

s
ss

u peak π
 (11) 

 3. Poisson bandwidth: 

s
u

uM
uM

c
c

peak

π2
)2ln(2

)(
)(

=⇒=  (12) 

 4. DOP bandwidth: Just for using s2=2•s1, then we obtain:  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−+
−

−−
=

−==+−⇒=

)(211
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)(211
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4
1

)2exp(,02/)(2
)(
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1

1
2
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peak
c

peak

uMuMs
B

usxuMxx
uM

uM

π

π

 (13) 

 5. Spatial window extension [-s2, s2] for windowing. 

 6. DOP energy: ([1], pp. 181) 
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E=8 π s2 (14) 

 

d. Implementation file: function[bp, cbp]=create_DOP(s1,s2,Ecut), note that s1 and s2 

should be integer numbers to avoid interpolation problems. Basically the parameters to 

fix are s1 and s2. We are constrained by the DOP properties that not allow us to tuning 

high frequencies (wide filters compared with the others). 

 

(NOTE: to make fairer the comparison with the Gabor filters, an even Gabor filter with 

radial symmetry should be used. The associated X-Y filters (not available analytically) 

would be computed numerically by FFT.) 
 

 a. Radial filter: 

( ){ }
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(15.a) 

 

(15.b) 

 b. X-Y filters: 
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(16.a) 

(16.b) 

(16.c) 

(16.d) 

where ⊗ is the convolution operator. 

Starting from the spectrum of a radially-symmetric Gabor filter (as defined in Section 4) 

the corresponding  11 tap spatial filters are shown below (it is worthy to note that the 

radially symmetric filter (hc) does not integrate to zero, hence a procedure similar to 

that presented in Section 5.1 should be applied). 
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hc hs1 hs2 
Figure 3. Monogenic signal filters numerically computed from a even Gabor filter with radial symmetry.  
 
The corresponding frequency representation for three scales is represented below:  

 
Figure  4.  Monogenic signal frequency representation for several spatial scales (filters based on an even 
Gabor filter with radial symmetry). 
 
It is worthy to note that, by definition, the band-pass channels associated with the filters 

derived by the monogenic signal are isotropic. Orientation parameterised families of 

filter responses can be obtained through the Radon transform, by projecting the 

spectrum energy onto a line with orientation θ . 

 

If we use non separable filters such as the presented in this document, they requires high 

computational resources. Computing K non separable 2-D convolutions of N taps has a 

complexity: 

Ono-sep(K,N)=K*N2 multiplications + K*( N2-1) additions (17) 

It means that the computing resources for this approach using a 11x11 taps filter 

implementation requires 363 multiplications and 360 additions. It is then the more 

expensive approach and, its implementation only can be justified for the sake of 

accuracy. 

 

3. Steerable filters based on Gaussian derivatives  

Widely used on the literature, [4], [5], [6].  They allow the computation of an oriented 

filter based on basic separable set of convolution kernels that are properly weighted to 
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get the desired oriented kernel. A key factor for its design is the derivative order; its 

properties are quite similar to Gabor for derivative order 4 or larger as demonstrated 

Figure 5. 

  
(a) (b) 
Figure 5. Comparison of Gabor (green), Gaussian derivatives (blue) and cosine (red) functions tuned to 

the same peak frequency. (a) Gaussian derivative of order 2 is close to Gabor filters but the difference is 

not completely negligible. (b) Gaussian derivative of order 4. This time the similarity is larger and the 

filter is very close to the Gabor approach. Note that the number of waves increase according to the 

Gaussian derivative order, corresponding to higher orientation selectivity. 

 

 
Figure 6. Example 4th order filters for upeak=1/4, 8 orientations and using 11 taps are shown below. 

 

For instance, the Second order Gaussian derivatives Gxx, Gxy and Gyy and their Hilbert 

transforms Hxx, Hxy, Hyx and Hyy are represented Figure 7. Their equations are the 

following:  

( ) ( )

( ) ( )

( ) ( )22
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(18.a) 

(18.b) 

(18.c) 

 And for their Hilbert Transform:  
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(19.a) 

(19.b) 

(19.c) 

(19.d) 

  

     
 
Figure  7. Second order Gaussian derivatives separable base set. The three first filters (from left to right) 

are the Gaussian derivatives and their Hilbert transforms are the four filters showed on their right. With 

this set of filters, we can estimate the output at any orientation just combining linearly the base set output. 

This allows building oriented quadrature filters banks as shows in Figure 2.3 but at any possible 

orientation. 

 

The equations for the fourth order can be taken from [6]. The corresponding 

multichannel frequential representation (“rosettelike” or “daisy” diagram) is shown 

below (for three different scales) at figure 8: 

 
Figure  8. Multichannel frequential representation for the Fourth Order Gaussian derivative filters.  

 
It is worthy to say that the orientation bandwidth is larger than that obtained with Gabor 

filters, thus resulting in a broad tuning for local orientation. 
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3.1 Filter implementation 

 
a. The well known equations of a 1-D Gaussian and its derivatives are: 

)()()()()( 0,0
2

0
2

2

xgxPxg
dx
dxgexg nn

n

n

x

σ
σ ===

−

 (20) 

This equation indicates that the n-th derivative of a Gaussian can be written as the 

product of a polynomial (generalized Hermite polynomial) by the original Gaussian. In 

the frequency domain Equation (10) can be expressed as: 

)()2()()( 0
2
)2(

0

22

fGfjfGefG n
n

f

πσ
πσ

==
−

 (21) 

Since our main concern is on the phase-based approaches, we need the quadrature pair 

of these filters. It can be obtained by using it’s the Hilbert transform as described in [6]:  
 

b. Spatial window extension [-2σ, 2σ] for windowing. 

 

c. Variance-bandwidth relation. From [4] we get the asymptotic bandwidth: 

σπ 24
1

→B  (22) 

d. The peak frequency is computed by derivation in the frequency domain as in [5].  

From this we get the value presented at equation (23). 

22
1

σπ
nu peak =  (23) 

e. Design steps: 

 1. Fix upeak=1/4. 

 2. Fix number of taps=11. 

 3. Fix numbers of orientations. 

 4. Fix the derivative order=4. With these parameters we obtain B and  σ. 

 5. Checking the conditions of section 1 to verify that they are satisfied.  
 

f. Implementation file: function[??]=design_Steer_filter(??). 

 Concerning the derivative order, we will study the properties of the 2 and 4 

orders in Sections 2.3 and 2.4. The number of kernels to compute the oriented output of 

the filters k, depend on their derivative order n. We need k’=2n+3 separable 2-D 

kernels or k=4n+6 1-D kernels.  
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The complexity for computing K separable convolutions using a kernel of N taps is 

given by equation (24):  

Osep(K,N)=K*N multiplications + K* N-1 additions (24) 

This represent that the complexities for computing these convolutions depending on the 

derivative order and they are: 

• n=2, k=14, 153 multiplications + 140 additions. 

• n=3, k=18, 198 multiplications + 180 additions. 

• n=4, k=22, 242 multiplications + 220 additions. 

 

4. Gabor filters 

 
Perhaps the most widely filters used in the literature, Gabor filters are defined by 

harmonic functions modulated by a Gaussian envelope. They main property is that they 

minimize the space-frequency uncertainty. An efficient filter implementation could be 

find  in [3]. Please note that oriented Gabor filters are not x-y separable, but they can be 

computed as sums of separable filters as described  in [3]. 

 

The bandwidth used in [3] equals upeak/3 or 1 octave, which is the smallest one to 

properly cover scale space.  

 
Figure  9. Resulting Gabor filters for upeak=1/4 using 11 taps. 

 

In [3], only 4 orientations are supported. We have extended this scheme to 8 

orientations. By exploiting the symmetry, all 8 even and odd filters can be constructed 

on the basis of 24 1D convolutions. The block diagram from Figure 5 of [3] has been 

extended to include the orientations in between the horizontal, vertical and diagonal as 

shown in Figure 10. 
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 Each block corresponds to one 1D convolution, so only 12 convolutions are 

required to compute even and odd responses for these 4 `in-between’ orientations. 
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Figure 10.  Block diagram for extension of 4 orientation (from [3] ) to a total of 8 orientations.  

 

In each block, cos or sin refers to an even or odd gabor respectively. The frequency of 

these elementary Gabor filters equals the peak frequency multiplied by the factor in the 

block. 

 

The corresponding multichannel frequential representation (“rosettelike” or “daisy” 

diagram) is shown below (for three different scales): 
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Figure  11. Multichannel frequential representation for Gabor filters. Note that at difference with 
Gaussian derivatives, this approach present circular symmetry around the peak frequency.  

 

4.1 Filter implementation 

 
a. Basic equation for even and odd filters, with upeak the peak frequency, θ the main 

orientation and σ the Gaussian variance.  
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b. Spatial window extension [-2σ, 2σ] for windowing. 

c. Variance-bandwidth relation. The bandwidth of the Gabor filters is equal to the 

bandwidth of its associate Gaussian. It is:  

σπ2
)2ln(*2

2
)(ˆ
)0(ˆ

=⇒= B
BG

G  (26) 

where Ĝ is the Fourier transform of G 

d. Design steps: 

 1. Fix upeak=1/4. 

 2. Fix number of taps=11. 

 3. Fix numbers of orientations. Conditions 2 and 3 are related, and then we 

should check the conditions of section 1 to verify that they are satisfied.  

 4. Compute Gaussian variance. It is done by given a desired bandwidth or using 

computing the value such as the Gabor and Gaussian derivative have the same 

bandwidth. This relation is: 
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SteerablerGaborSteerableGabor BB σσ 2ln2=⇒=  (26) 

e. Implementation file: function[??]=design_Gabor_filter(??).  

 According to equation 24, the Gabor filter bank, using 24 total filters (odd and 

even) of 11 taps each of them requires 264 multiplications and 240 additions.  
 

5. Filter Implementation issues  

This section discusses some technical details required in the practical implementation of 

the filters.  

5.1. Quadrature constraint  

In general, due to the sampling and windowing operations, a bandpass filter pair is not 

in quadrature as it has non-zero negative frequencies, and a non-zero DC component 

(even filters do not integrate to zero)2. This degrades the system outputs and a DC 

removal procedures must be used. 

In Monogenic filters, it can be eliminated using normalization over the two Poissons to 

make them equal weight after sampling. 

For the Gaussian derivatives and Gabor filters, several approaches are possible:  

1. Convolve the image with a kernel: I-Imean where the mean value is computed on a 

square window of size [-σ, σ]. 

2. Convolve the kernel itself with a kernel (-1 2 1)/4 [7] padding zeros on the filters and 

cut to get the original size. 

3. Numerical optimization. Using the function fmincon of the Matlab optimization 

toolbox. The idea is to get zero DC without degrade the oriented filters. 

a. Using this procedure, the 1D filters are modified by enforcing zero DC on all 2D 

filters in which they take part and minimizing the difference with the theoretical 

2D filters. 

 

 Specific care should be paid to to adjust the coefficients of each filter function so 

that the even and odd symmetry is respected. 

                                                 
2 . In order that the even and odd filters approximate a Hilbert transform pair, the amplitude of their 
spatial frequency response should be negligible for negative frequencies; e.g., the power spectrum should 
fall below several dBs from peak value at 0=f . It is worthy to note that the negative power and the DC 
component are functions of the frequency bandwidth (the DC component reduces as the number of 
oscillation periods increases). 
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5.2. Filters values quantization 

The real-time implementation using customized hardware requires integer data 

representation from [-255.255] (9 bits signed data). We need to evaluate the two 

strategies: scaling and rounding data or integer optimization.  

 For the Gabor filters the same strategy as Nestares has been implemented. 

Nestares removes DC-component by optimizing (Section 5.1 3), multiplying by 256 and 

rounding, in case a DC-component remains in the 1D filters after rounding, a correction 

is made : 

• if DC is one, in the central point of the filter 

• if DC is two, symmetrical at location with largest rounding error 

• other options not yet implemented 

 

5.3. Energy symmetry for odd and even filters 

The sampling and windowing operation could unbalance the energy of the odd and even 

filters. We need to rescale its energy values to have the same energy. 

 

Similar to DC-removal, energy balancing could be included as a constraint in the 

optimisation (Section 5.1 3). However, this can no longer be guaranteed after the integer 

rounding process. 

Two alternative normalisation conditions have been used most frequently in the 

literature: 

(1) maximum condition ( 1)(ˆmax =fG
f

); for 1D Gabor function the corresponding 

normalization constant is 
σπ2

1  

(2) constant energy condition ( ∫
+∞

∞−
=1)()(* dxxGxG ) for 1D Gabor function the 

corresponding normalization constant is 2/1)( −σπ  

 

We would suggest to use the second condition. 
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6. Local Phase and orientation based on a oriented bank of filters. 

The monogenic signal extracts directly this information for the dominant orientation 

using the equations:  
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(28.a) 

(28.b) 

(28.c)

 Gabor and Steerable filters provide a much more rich information because 

information of several orientations are considered, allowing the description of complex 

structures such as textures where several orientations are available. If we consider N 

orientations, we will note Ei and  iφ  to the energy and phase of the filter oriented with 

angle θi=i*π/N. If only the dominant orientation information is required, there are 

several methods for its estimation:  

 

1. Winner- take-all. We will take for each pixel the phase, energy and orientation of 

the filter with maximum energy. 

maxmaxmax ElocalElocallocal EE θθφφ ===  (29) 

2. Weighted-average: (we consider linear case, though the energy can be power to 

different orders). 
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3. Some-winner-take-all: only values over a threshold (typically the mean) are 

considered: 
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4. Tensor-based method [7], [8]. Based on a local tensor that projects the different 

orientations, information can be computed as:  
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Where Ci and Si correspond to the even and odd filters output at orientation i. Three 

different ways can be used for phase computation which are illustrated in equation 33. 

The approaches (33.a) and (33.c) coming from [8] and (33.b) from [7]. In our 

experiment we have used (33.a) because this is the hardware friendly approach. The 

differences between choices, as indicated by [8], are negligible. Furthermore, in the case 

of a one-dimensional signal there will be no difference at all between the methods. We 

will use the first method because is more hardware friendly since it does not suffer from 

features dependencies (we do not require to compute orientation in advance to estimate 

the phase).   

∑∑ ==
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i
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7. Quantitative analysis of the accuracy for feature estimation 
of the presented approaches.  
 
In Sections 2-4 we study the computing complexity of the different filters and conclude 

that Gaussian derivatives with low derivative order are the less computational load 

approach and monogenic signal the most expensive one. Section 5 shows the underlying 

equations and methods that we can use to estimate the local image features from each 

filter type. Now we are going to evaluate the accuracy of the different approaches using 

the equations presented on previous section.  

 Comparing the different approaches is a hard task to do due to the large number 

of variables to consider for filtering design. Furthermore, the parameter choice can 

significantly bias the results, possibly leading to wrong conclusions. Because of that, we 

will focus on a most affordable task; we will use some fixed filter parameters that 

exploit each signal type properties. For instance, Gabor and 4-order Gaussian 

derivatives allow very fine filter tuning capabilities and orientation selectivity. As in 

[3], our designed filter will have a high frequency of f0=0.25 pixels-1 and bandwidth β= 

f0/3=0.083 pixels-1
. Monogenic signals and second order Gaussian derivatives have 

broad bandwidth and therefore, peak frequency should be lower to fulfil equation (2.3). 

We use f0=0.21 pixels-1 and bandwidth β= 0.1 pixels-1 for the Second order Gaussian 

manoonpong
Text Box
31



 

derivative as in [6]. For the Monogenic signal, the design values are S1=1 and S2=2, 

which gives us the higher frequency filter based on this approach. It gives a peak 

frequency of f0=0.11 pixels-1 and mean bandwidth β= 0.14 pixels-1 (bandwidth curve is 

not symmetric and therefore we only provide its mean value). All these values have 

been computed using the equations described on Section 2.2. 

 In order to test the different approaches, we use two different kinds of signals. 

First, a set of synthetic sinusoidal gratings with different orientations and spatial scales 

is used. For this stimulus image features are known and we can numerically test the 

accuracy of the filters. Second, we also have used real images to get some qualitative 

results.  

 From the sinusoidal gratings set, the experimental energy values of the different 

filters responses across the scales is represented on Figure 12 (note that these are the 

experimental results, which consider for example quantization problems or finite spatial 

kernel size). It confirms our numerical bandwidth values and shows that for our design, 

Gabor filters have the narrowest bandwidth and Monogenic signal the widest one.  

 

  
(a) (b) 

  
(c) (d) 

Figure  12. Normalized energy distribution across the spatial frequency scales, experimental results using a 
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sinusoidal gratins test (x-axe use units on pixels-1) for the Monogenic signal (a), Second order Gaussian 

derivatives (b), Fourth order Gaussian derivatives (c) and Gabor filters (d). Filters bandwidth decrease from 

(a) to (d).   

 

 Our goal is to compare the different alternatives accuracy taking into account on 

their hardware implementation feasibility. We have three features to evaluate but we 

will focus on the local orientation estimation accuracy and bandwidth tuning here.  

 Local energy is valuable as reference to discriminate areas with low or high 

contrast and therefore, its numerical value is not important but rather its relative value 

compared with closer areas. This allows to evalutate the localization properties of the 

different filters as addressed in [13].   

 Local orientation is necessary to compute phase and therefore, error or bias on 

its estimation significantly can degrade the phase accuracy and their study is carried out 

in this section and in [13].   

 The phase information is related with the filter shape and therefore numerical 

evaluation is addressed in the framework of task oriented analysis in [11] and [13].   

 Given the previous discussion and using the reports [11] and [13] as 

complementary material, we focus on orientation selectivity to decide between the 

different approaches.  

 In the Figure 13 we measure the mean error vs. sinusoidal grating spatial scale. 

Data outputs are unthresholded and therefore, large errors are not significant if the filter 

energy value is close to zero. For approaches that need of filter responses interpolation, 

the tree methods presented in section 2.3, Winner-take-all, weighted-average and 

Haglund tensor are compared. Several conclusions can be extracted from these figures.  

1. The best interpolation method is the Haglund approach (note that we have 

implemented the interpolation method of equation (33.a) for phase. It produces 

the smaller error on the filter frequency band. 

2. All the filters have high accuracy for orientation estimation, less that 1º of error.  

3. The filters that cover the wider range are the Monogenic signals and the second 

order Gaussian derivatives. This confirms the theoretical analysis in Section 2-4 

relative to its bandwidths. 

4. For the second order Gaussian derivatives, Haglund tensor approach and the 

Freeman Fourier series expansion (see [6]) produce equivalent results.  
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(a.1) (a.2) (a.3) 

 
(b.1) (b.2) (b.3) 

 
(c) (d) (e) 

Figure  13. Mean orientation error measured for each grating spatial frequency. We have used sinusoidal 

gratings as input, oriented to 64 different angles and with spatial scales from 0.5 pixels-1 to 0.0078 pixels-1. 

Note that, for the sake of clarity, we use different y-axe scales but error values are quite different for the 

different approaches.(a) Gabor filters are computed at 8 orientations and three interpolation methods are 

used: (a.1) Winner take all (WTA), (a.2) Weighted average (WA) and (a.3) Haglund approach. (b) The same 

methods are utilized using the Fourth order Gaussian derivatives. (c) Monogenic signal results. (d) Second 

order Gaussian derivatives, orientation computed using the Freeman and Adelson approach [6]. (e) Second 

order Gaussian derivatives, orientation computed using eight oriented filter and the Haglund [8] interpolation 

method. 

 

 We also have measure the different filter behaviours against several noise types 

(multiplicative, Gaussian white noise and salt and pepper). As expected, the error grows 

approximately linear by all the approaches and therefore, robusness to noise will not 

drive and affect significantly the decision between the different filters.   
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 The error presented at each orientation and scale is showed in Figure 14, using 

Haglund interpolation filter approach when required. There are 32 different scales from 

0.5 to 0.0078 pixels-1 that makes difficult to use colors legends to mark each case. 

Therefore, they are only used for qualitative error hints, where large error is presented at 

scales far away from the filter tuning peak frequency.  Smooth error curves descend 

indicating gratings from high to lower spatial frequencies. For the filter tuning 

frequency, error is close to 0 and therefore it is not visible on the graphics. These figures 

also show error curves with flat responses or multiple narrow peaks. It happens when 

we pass from the tuning scale to coarse scales where the filter response confidence is 

quite low (energy is close to 0) but this reponses can be easily filtered using energy 

thresholds. 

  
(a) (b) 

  
(c) (d) 

Figure  14. Error evolution across the different stimulus orientations. We have used sinusoidal gratings 

as input, oriented to 64 different angles and with spatial scales from 0.5 pixels-1 to 0.0078 pixels-1. 

Each spatial frequency filter output is represented on a different colour (there are 32 curves). (a) 

Monogenic signals results, error decreases with the spatial frequency in each plot. For low spatial 

frequencies, the filter provides quite accurate orientation estimations but it gets worse with high 

frequency gratings. (b) Second order Gaussian derivatives. There is a frequency range where the filter 

properly matches the stimulus orientation. For low frequency patterns, the error increases as 

represented on black lines at the bottom of the plot. (c) Fourth order Gaussian derivatives and (d) 

Gabor filters have a small bandwidth. Thus, in this case stimulus with spatial contexts far from the 

filter tuning frequency are prone to high orientation errors. Graphics (b), (c) and (d) use the Haglund 

approach for computing orientations based on a set of 8 oriented quadrature filters. Note that results 
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are unthresholded. Large errors appear in zones of almost zero energy but this feature can easily be 

used as confidence parameter for tuning the filter to the best spatial scale. 

 

 The qualitative results of features computation for images in Figure 15 are 

illustrated on Figures 16, 17 and 18. Three examples are shown: 

1. Synthetic spiral image (Figure 15.a) that covers all the orientation as well as 

different spatial scales. Results presented in Figure 16. 

2. Forward view of a road (Figure 15.b) with a well defined structure that allows 

easy identifications of the image features. Two different image scales are 

shown, the original one and the image reduced by a factor 4 in Figure 17.  

3. Finally, real image of a house is used. We focus on the details of a circular 

skylight (Figure 15.c) and the extracted primitives are computed and shown in 

Figure 18.  

 

 
                (a)                                 (b)                                                 (c) 

Figure  15. Original images used for qualitative evaluation of the different approaches. 
 

 Monogenic signals  

(a.1) (a.2) (a.3) 
Magnitude Orientation Phase

 

Magnitude Orientation Phase

 

Magnitude Orientation Phase

 
 Gabor filters  

(b.1) (b.2) (b.3) 
Magnitude Orientation Phase

 

Magnitude Orientation Phase Magnitude Orientation Phase

 
Four order Gaussian derivatives 

(c.1) (c.2) (c.3) 
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Magnitude Orientation Phase

 

Magnitude Orientation Phase Magnitude Orientation Phase

 
Second order Gaussian derivatives 

(d.1) (d.2) (d.3) 
Magnitude Orientation Phase Magnitude Orientation Phase Magnitude Orientation Phase

 
Figure  16. Orientation estimation for the image in Figure 15.a, using unthresholding results. Row (a) 

represents the results for the Monogenic signals, row (b) results of the Gabor filters, row (c) the fourth order 

Gaussian derivatives and (d) output from the second order Gaussian derivatives. Each column represent one 

scale, column 1 is the fine scale, column 2 represents a image resolution divided by 2 and column 3 represents 

the image with original resolution divided by 4. The results show that high resolution images are properly tuned 

only at the centre for the fourth order Gaussian derivatives and Gabor filters. The tuning region grows for lower 

resolution areas because the peak frequency is better tuned at these scales, as can be seen from the energy 

response images. Note that second order Gaussian derivatives and Monogenic signals, thanks to the wider 

bandwidth, allow the primitives computation at larger areas. An orientation frame is utilized for these images 

encoding with colours the different orientations. Note that we use the direction normal to the line (the filter axe) 

as orientation direction for the colormap. 
 

(a.1) 

 

(a.2) 

 

(b.1) 
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(b.2) 

 

(c.1) 

 

(c.2) 

 

(d.1) 

 

(d.2) 

 
                          Energy                               Orientation                                  Phase 
Figure  17. Image features computed the for road scene in Figure 15.b with a energy confidence threshold 

of 5e-3 times the maximum output. We use the previous filters: (a) Monogenic signals, (b) Gabor filters, (c) 

Fourth order Gaussian derivatives and (d) Second order Gaussian derivatives. For each filter, the image is 

computed at 2 scales, the original one and other resolution divided by four which is represented by the 

subindices x.1 and x.2 where x stand for a, b, c or d.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
                          Energy                               Orientation                                  Phase 
Figure  18. Image features computed for the circular skylight of Figure 15.c. We use the same filters: (a) 

Monogenic signals, (b) Gabor filters, (c) Fourth order Gaussian derivatives and (d) Second order Gaussian 

derivatives. We can appreciate that the phase information blur from (a) with the higher value to (b) and (c) 

with the lower value. A trade-off between these alternatives is represented by the (d) case based on the 

second order Gaussian derivatives.  

 

7. Conclusions 
 

From the previous analysis we conclude that all the filters responses have high accuracy 

for spatial scales close to their peak frequency. First, note that the bandwidth of the 

different approaches has a critical effect on feature computation at each scale. 
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Multiscale approaches can benefit from narrow tuning filter as in [11] but, for general 

applications with only one scale, this is a significant drawback. On [11], a multiscale 

algorithm for optical flow and stereo computation highlight the Gabor filter as the filter 

approach which produces the higher accuracy maps compared with the other 

alternatives. From section 6, a monoscale approach benefits from a wider bandwidth.  

 Several interpolation methods have been presented for these filters with the 

Haglund approach showing the best performance. Furthermore, as significantly different 

to the Monogenic signal, these filters provide multivalue responses at each orientation 

that open the utilization of these results for texture segmentation, intrinsic dimension 

analysis or other 2-D image structure as corners or junctions. 

 

 

There is not an unique best approach. Thought in [11] Gabor is the best approach, in 

[14] Monogenic Signal provides better results. From the hardware implementation point 

of view, second order Gaussian derivatives could be the best option because:  

1. They require the minimum number of resources. Only seven 2-D separable 

convolutions are required. 

2. They are a good trade-off between spatial resolution and spatial scales range. Fine 

resolution is extracted compared to Monogenic signals although is coarser than 

Gabor or higher order Gaussian derivatives. 

3. Their orientation accuracy is quite high (less than one degree of error) and therefore 

it fulfils the requirements of most applications.  

4. Arbitrary orientations can be computed from the basic set of filters just changing the 

filters interpolation coefficients because they are Steerable filters.  

5. It provide a good score in [14].  

 

There are also some important conclusions related with the different filters for optical 

flow and stereo computation. According to [15], the main conclusions are: 

 Gabor filters could be the best choice. Indeed, (a) isotropic filters lack of x-y 

separability, and (b) steerable filters have a broader orientation tuning. A more 

complete comparison (respect to their “final” performances) is still under study. 

 Tensor-based methods are the best choice to extract local 

amplitude+phase+orientation, but the single phase-value “averaged over 

orientations” cannot be efficiently used for the estimation of disparity and 
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motion (it is better to avoid an early merge of information coming from 

orientation channels and to keep the phase information iφ  separate till the final 

decision). 

 

Appendix I. Some hardware resources consumption 

estimations 

 
The current situation is that the real-time system is now ready based on the Second 

order Gaussian derivatives approach. Thought maybe this is not the more accurate filter 

base, his implementation share most of the logic with the other approaches and give us 

an estimation of the required resources for the different options.  

 The platform used is the stand-alone one and therefore is not ready to be used as 

coprocessing system jet. Nevertheless, this is our next stage in order to make accessible 

this system to the entire DRIVSCO group.  

  
Figure A.1. Image features processing core. Coarse pipeline stages are represented at the top and 

superpipelined scalar units at the bottom. The number of parallel datapaths increase based on the 

algorithm structure. The whole system has more than 59 pipelined stages (without counting other 

interfacing hardware controllers such as memory or video input/output interfaces). This allows computing 
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the three image features at one estimation per clock cycle. The number of substages for each coarse-

pipeline stage is indicated in brackets in the upper part of the figure. 

 
 The main stages of the system are schematically represented in Figure A.1, 

further details can are presented at [14]. The filter interpolation methods use the 

Haglund approach with phase estimation obtained by equation (33.a).  

 An estimation of the system resources for the different stages is included in table 

A.1 and the fully working system resources are presented in table A.2. The differences 

coming from the hardware controller (VGA for visualization, video input, memory 

management units, etc…). 

 Note that the convolution stage, S0, requires about 12% of the whole system 

resources using Second Order Gaussian Derivatives. For example a Gabor filter based 

approach multiply by 24/14=1.7 the resources consumption and therefore their 

utilization must be strongly supported by a high numerical accuracy improvement 

compared to the presented filters  (this represent to use the 21% of the whole system 

resources).  

 

Table A.1.. Partial system resources required on a Virtex II XC2V6000-4 for the coarse 

pipeline stages described for this circuit. (EMBS stands for embedded memory blocks). 

The differences between the sum of partial subsystems and the whole core are explained 

in the text. 

 Circuit stage Slices / 
(%) 

EMBS / 
(%) 

Embedded 
multipliers / (% ) 

fclk 
(MHz) 

S0 
Gaussian base 
convolutions 

4,170 
(12) 8 (5) 50 (34) 85 

S1 
Oriented quadrature 
filters 1,057 (3) 0 0 69 

S2 
Features Energy, Phase 
and Orientation 
computation 

2,963 (8) 0 6 (4) 89 

 Whole processing core 7627 (22) 8 (5) 65 (45) 58.8 

 
Table A.2. Complete system resources required for the local image features computing 

circuit.  The circuits have been implemented on the RC300 prototyping board 

[CEL06d]. The only computing element is the Xilinx FPGA Virtex II XC2V6000-4. 

The system includes the image features processing unit, memory management unit, 

camera Frame-grabber, VGA signal output generation and user configuration interface. 
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(Mpps: mega-pixels per second at the maximum system processing clock frequency, 

EMBS: embedded memory blocks). 

Slices / (%) EMBS / (%) Embedded 
multipliers / (% ) Mpps Image 

Resolution Fps 

9135 (27%) 8 (5%) 65 (45%) 56.5 1000x1000 56.5 

 
 
 The figure A.2 shows the comparison between software and hardware results. 

Note that hardware quality is quite high and that the differences mainly appear due to 

the threshold limit (his values are quantized in the hardware system which modifies the 

saliency map). 

 

(a) 

 

(b) 

Magnitude Orientation Phase

 

(c) 

Magnitude Orientation Phase

 

(d) 

Magnitude Orientation Phase
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Figure A.2. Images features computation with several data representations and bit-widths. (a) Real 

image of Jupiter captured in the Cassini-Huygens space mission. (b) Image primitives computed using 

software with double precision floating point representation. (c) Image primitives computed using 

fixed point data representation with bit-widths choices of configuration B in Table 5.1. (d) Image 

primitives computed using fixed point data representation with bit-widths choices of configuration A 

in Table 5.1. This time we use an energy threshold that rejects pixels with energy bellow the maximum 

energy • 10-5. This allows seeing small differences between floating point and fixed point approaches. 

The threshold rejects more pixels for fixed point that for floating point. This can easily be justified 

because of the energy quantization effect. Despite that, the results are quite similar and the differences 

only reject unreliable data estimations. Although not all of them are rejected because we consider a 

very low restrictive threshold. 

 
 Next figures A.3 and A.4 finally show two qualitative examples of the hardware 
system to evaluate system accuracy.  
 

 

Figure A.3. System results for the known image of Lena (left image). The three right pictures present the 

computed features for this image. Note that although restricted fixed-point arithmetic is used, the quality 

of the features is quite high as can be seen looking on small details such as presented on hat’s plumes.  
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Magnitude Orientation Phase

 
 
Figure A.4. System results for a real image. First row, left side, represent a photograph of a close face 

with a tower in the left side. The tower is blurred due to the fog and therefore has low contrast. Four 

images to the right represent the quadrature filters energy output at 4 defined orientations (0, π/4, π/2 

and 3π/4). The second row represents the computed features for that image. Note that at the energy 

image, the tower is almost invisible but not for the orientation and phase images. This illustrates that 

the structure based features have not got contrast dependency, and therefore the tower appears clearly 

visible. 
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Appendix C

 Filter evaluation: optic flow and disparity. Technical report.
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Filter Evaluation: Optic Flow and Disparity

Karl Pauwels and Marc M. Van Hulle

14th December 2006

1 Filter Specification

A wide variety of filters have been tested and the precise specifications are encoded in
the filter name, which has the following form:

{1}t{2}(B)(o){3}f{4}{5}

The parameters (between brackets) are:

{1} the filter type, either G for a Gabor or S for a steerable filter

{2} the tap size of the filter

{3} B: the filter bandwidth for Gabor filters. For steerable filters this is not specified
since a fixed relation exists with the derivative order. Instead, the derivative order
is specified with o

{4} the peak frequency (f0) of the filter

{5} additional settings related to the design procedure. The possibilities are:

– I: the filter has been rounded to integer values

– D: no DC correction has been performed

– E: no no energy balancing has been performed

and combinations thereof.

Energy balancing has been included as an additional constraint in the optimization,
namely by enforcing that the sum of squares of the even filter equals that of the odd.
Note that this is no longer enforced after rounding to integer values.

Our main design choice is to use 11 taps and a peak frequency f0 = 1/4, but for compar-
ison, some other combinations have also been included. The additional filters have been
taken from Feeman and Adelson [1991] and are a 13 taps fourth order steerable filter with
f0 = 0.23 and a 9 taps second order steerable filter with f0 = 0.21. Gabor filters have
been included that match the frequency and bandwidth of these filters:

1
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• Gt11B0.0833f0.25: 1 octave bandwidth (Nestares et al. [1998])

• Gt11B0.0884f0.25 matches St11o4f0.25

• Gt11B0.0711f0.21 matches St9o2f0.21

• Gt11B0.0750f0.23 matches St13o4f0.23

2 Optic Flow

The optic flow algorithm is a coarse-to-fine implementation of the phase-based algorithm
by Gautama and Van Hulle [2002]. The algorithm starts at the lowest resolution and optic
flow is computed only after compensating (warping) for the lower resolution estimates. To
avoid overly smooth flow fields, only estimates that are reliable at the highest resolution
are retained. In this evaluation, the same settings are used at every scale, an adaptive
threshold has not yet been implemented.

The different filters are evaluated using the (realistic) synthetic sequences from Barron
et al. [1994] for which ground truth optic flow is available. The three sequences used are
translating tree, diverging tree and yosemite. The center frame of each sequence and an
example flow field are shown in the top and middle row of Fig. 1.

Table 2 contains the optic flow errors (average and standard deviation of angular error)
and density (percentage reliable flow vectors), evaluated using the performance measures
suggested by [Barron et al., 1994], for the different filters. In this evaluation, thres lin

= 0.05 and nc min = 4. A border region of five pixels has been excluded from the
evaluation. For yosemite, the cloud region has also been left out of the evaluation.

The same evaluation has been performed using Gt11B0.0833f0.25 but for different values
of thres lin. The results are shown in Table 2. It is clear from this table that the
reliability measure behaves well. If the linearity threshold is lowered, the average and
standard deviation of the errors decrease, as does the optic flow density.

3 Disparity

The coarse-to-fine disparity algorithm uses the same filter outputs as the optic flow al-
gorithm. For each orientation θ, the phase difference ∆φθ between left and right filter
outputs is computed using the technique of Solari et al. [2001]. This phase difference
relates to the ‘component’ disparity (projected on the orientation orthogonal to the filter
orientation) in the following way:

δθ(x) cos θ =
∆φθ(x)

2πf0

, (1)

where f0 is the peak frequency. Since different estimates are available at each pixel, the
median is used to robustly merge these into a single disparity value.

δ(x) = median
θ∈V (x)

δθ(x) , (2)

2

manoonpong
Rectangle

manoonpong
Text Box
49



translating tree diverging tree yosemite

Figure 1: Center frame and corresponding ground truth flow fields and estimated flow
fields obtained with Gt11B0.0833f0.25 using 4 scales, thres lin = 0.05 and nc min =
4. All flow fields have been scaled and subsampled 5 times.
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Table 1: Optic flow errors obtained with thres lin = 0.05 and nc min = 4
translating tree diverging tree yosemite (no cloud)

avg std dens avg std dens avg std dens
one scale
Gt11B0.0833f0.25 10.50 15.70 20.60 6.61 4.57 84.14 7.71 8.56 48.11
Gt11B0.0833f0.25DE 44.03 25.27 20.64 15.17 12.61 79.91 21.74 23.79 55.58
Gt11B0.0833f0.25E 10.57 15.85 20.52 6.63 4.56 84.10 7.73 8.55 48.07
Gt11B0.0833f0.25I 10.44 15.49 20.43 6.63 4.59 83.97 7.72 8.61 48.06
Gt11B0.0833f0.25IE 10.44 15.46 20.57 6.61 4.52 84.17 7.74 8.58 48.10
Gt11B0.0884f0.25 12.04 16.35 16.59 7.36 5.23 82.50 8.60 9.15 47.34
Gt11B0.0711f0.21 8.25 6.31 36.84 7.81 6.19 89.06 8.26 8.76 55.38
Gt11B0.0750f0.23 8.29 7.91 31.78 7.23 5.47 88.09 7.99 8.70 53.09
St11o4f0.25 24.75 23.86 6.81 10.33 8.23 69.65 13.42 14.07 43.18
St11o4f0.25DE 27.31 24.14 6.71 11.18 9.14 70.19 13.49 14.08 43.09
St11o4f0.25E 24.63 23.58 6.81 10.34 8.20 69.59 13.43 14.08 43.14
St11o4f0.25IDE 24.81 23.74 6.71 10.36 8.23 69.49 13.41 14.05 43.06
St13o4f0.23 20.23 18.58 12.68 10.31 8.25 77.35 13.52 14.39 47.96
St9o2f0.21 43.70 17.27 14.72 18.33 11.45 66.94 19.90 16.22 44.10
St9o4f0.25 25.94 24.31 6.45 10.44 8.29 68.32 13.46 14.07 42.83
four scales
Gt11B0.0833f0.25 0.61 0.73 97.72 2.05 2.28 95.60 2.15 3.12 81.81
Gt11B0.0833f0.25DE 1.71 3.21 99.09 3.57 4.20 97.99 9.47 14.06 90.71
Gt11B0.0833f0.25E 0.62 0.73 97.74 2.05 2.25 95.60 2.14 3.10 81.90
Gt11B0.0833f0.25I 0.62 0.72 97.72 2.05 2.27 95.55 2.14 3.09 81.82
Gt11B0.0833f0.25IE 0.62 0.73 97.75 2.04 2.30 95.57 2.14 3.08 81.87
Gt11B0.0884f0.25 0.65 0.71 97.77 2.04 2.14 95.20 2.19 2.96 83.02
Gt11B0.0711f0.21 0.62 0.90 98.41 2.35 2.61 97.43 2.19 2.89 88.69
Gt11B0.0750f0.23 0.62 0.84 98.22 2.19 2.28 96.90 2.14 2.91 86.79
St11o4f0.25 0.97 1.27 96.60 2.39 2.62 93.21 2.96 4.46 85.04
St11o4f0.25DE 1.03 1.54 97.08 2.58 2.85 94.54 3.05 4.44 85.28
St11o4f0.25E 0.98 1.36 96.58 2.40 2.59 93.20 2.98 4.46 85.09
St11o4f0.25IDE 0.97 1.29 96.56 2.39 2.56 93.17 2.98 4.47 85.06
St13o4f0.23 0.93 1.46 97.32 2.52 3.00 95.09 2.92 4.38 88.77
St9o2f0.21 3.75 5.00 93.91 3.97 4.48 94.07 5.86 8.54 86.62
St9o4f0.25 0.98 1.28 96.69 2.38 2.43 93.02 3.00 4.42 85.10
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Table 2: Optic flow errors obtained with Gt11B0.0833f0.25 for different settings of
thres lin

thres lin translating tree diverging tree yosemite (no cloud)
avg std dens avg std dens avg std dens

one scale
0.01 8.63 15.67 1.12 6.37 3.85 43.39 6.04 4.39 23.93
0.05 10.50 15.70 20.60 6.61 4.57 84.14 7.71 8.56 48.11
0.10 11.30 16.35 44.61 6.71 4.70 94.88 9.54 12.33 58.73
four scales
0.01 0.50 0.45 87.19 1.71 1.65 69.67 1.77 2.06 44.07
0.05 0.61 0.73 97.72 2.05 2.28 95.60 2.15 3.12 81.81
0.10 0.68 0.91 99.05 2.17 2.46 98.88 2.52 4.33 90.60

where V (x) is the set of valid component disparities. The current implementation includes
an energy-based validity measure thres e.

The control scheme is similar to that of the optic flow algorithm; starting at the low-
est resolution and computing disparity only after compensating (warping) for the lower
resolution estimates.

We use the tsukuba, sawtooth and venus stereo-pairs from Scharstein and Szeliski [2002]
to evaluate the different filters. Since we are interested in the precision of the filters we
do not use the integer-based measures used there but instead compute the mean and
standard deviation of the absolute disparity error. In order not to distort the results with
large errors, the error is evaluated only at the regions that are textured, non-occluded
and continuous.

Figure 2 contains the left frame, ground truth and an example estimated disparity (using
Gt11B0.0833f0.25) for these stereo-pairs. Note that the disparity in these pairs is quite
large (up to 20 pixels).

Table 3 contains the results for all filters. Since we did not employ the validity measure,
the density is close to 100% on all occasions.

4 Conclusions

• Gabor filters outperform steerable filters on all occasions

• concerning optic flow, the difference between Gabor and steerable is larger in the
single scale setting, this is most likely due to the multiple corrections that occur in
the multiscale setting

• removal of the DC component significantly improves the results

• rounding to integer values and energy balancing have little effect on the results

• for the Gabor filters, of the bandwidths tested, one octave (the same as in Nestares
et al. [1998]) results in the best results

5
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tsukuba sawtooth venus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Left frame (top row), ground truth disparity (middle row), and estimated
disparity using Gt11B0.0833f0.25 with thres e = 0. (bottom row).
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Table 3: energy threshold = 0
tsukuba sawtooth venus

avg std dens avg std dens avg std dens
Gt11B0.0833f0.25 0.32 0.61 100.00 0.41 1.26 99.64 0.25 0.77 99.65
Gt11B0.0833f0.25DE 0.35 0.65 100.00 0.67 1.42 99.59 0.55 1.17 99.79
Gt11B0.0833f0.25E 0.32 0.61 100.00 0.41 1.26 99.66 0.26 0.77 99.65
Gt11B0.0833f0.25I 0.32 0.61 100.00 0.41 1.26 99.67 0.26 0.79 99.65
Gt11B0.0833f0.25IE 0.32 0.61 100.00 0.41 1.25 99.64 0.26 0.79 99.65
Gt11B0.0711f0.21 0.33 0.69 100.00 0.42 1.33 99.47 0.30 1.08 99.53
Gt11B0.0750f0.23 0.32 0.65 100.00 0.42 1.52 99.40 0.30 1.10 99.58
Gt11B0.0884f0.25 0.32 0.60 100.00 0.40 1.23 99.62 0.26 0.83 99.66
St11o4f0.25 0.36 0.68 100.00 0.50 1.86 99.44 0.40 1.30 99.65
St11o4f0.25DE 0.36 0.69 100.00 0.46 1.57 99.56 0.40 1.28 99.63
St11o4f0.25E 0.36 0.68 100.00 0.50 1.88 99.48 0.41 1.34 99.64
St11o4f0.25IDE 0.36 0.68 100.00 0.47 1.67 99.49 0.41 1.35 99.64
St13o4f0.23 0.36 0.71 100.00 0.56 2.45 99.27 0.45 1.62 99.48
St9o2f0.21 0.44 0.79 100.00 0.88 1.99 99.37 0.89 2.34 99.19
St9o4f0.25 0.36 0.68 100.00 0.44 1.42 99.58 0.40 1.30 99.64
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Appendix D

 Excel file comparing the impact on memory and bandwidth of different 
system specifications.
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DRIVSCO SYSTEM REQUIREMENTS

System specifications Downloading band-width (PC--> FPGA) System configuration bandwith requirements Standard interfaces banwidths peak

Stereo views (left and right images) 2 input images + primitives + oriented filters PCIe (1 lane) 256 MB/s
Horizontal resolution 1024 629,1456 Mb/s Basic PCI 133 MB/s

Vertical resolution 1024 78,6432 MB/s 12571,24 Mb/s Ethernet 1 Gbits 128 MB/s
Input data bit-width 8 1571,405 MB/s Firewire 50 MB/s

Frame-rate 25 USB 2.0 60 MB/s
input images + primitives + stereo + optical flow

Number of pyramic levels 5 Uploading bandwidth (FPGA-->PC)
Number of orientations 8 3458,458 Mb/s

Bandwidth for oriented filters 432,3072 MB/s

Oriented filters and magnitud bit-width 9 10056,5 Mb/s

Orientation bit-width 9 1257,062 MB/s

Phase bit-width 9 Internal memory storage requirements
Optical flow bit-width 24  Bandwidth for primitives (magnitud, orientation and phase)

Stereo bit-width 12 Input images pyramid 
1885,594 Mb/s
235,6992 MB/s 7,992188 MB

Bandwidth for stereo and motion Oriented filters pyramid 
Extra parameters

943,7184 Mb/s 47,95313 MB
Pyramid size 1396736 117,9648 MB/s

An 4096 Primitives: magnitud, orientation and phase (x temporal filter size )
Multiscale factor 1,3320313 (We consider that only left image optical flow is computed)

FPGA buffers 2 23,97656 MB
Temporal filter size for optical flow 5

Stereo + optical flow outputs 
High level vision signal loops 1

(input like image warping or  local thresholds) 9 MB

TOTAL INTERNAL MEMORY REQUIREMENTS 

88,92188 MB
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DRIVSCO SYSTEM REQUIREMENTS

System specifications Downloading band-width (PC--> FPGA) System configuration bandwith requirements Standard interfaces banwidths peak

Stereo views (left and right images) 2 input images + primitives + oriented filters PCIe (1 lane) 256 MB/s
Horizontal resolution 800 288 Mb/s Basic PCI 133 MB/s

Vertical resolution 600 36 MB/s 5133 Mb/s Ethernet 1 Gbits 128 MB/s
Input data bit-width 8 641,625 MB/s Firewire 50 MB/s

Frame-rate 25 USB 2.0 60 MB/s
input images + primitives + stereo + optical flow

Number of pyramic levels 4 Uploading bandwidth (FPGA-->PC)
Number of orientations 8 1485 Mb/s

Bandwidth for oriented filters 185,625 MB/s

Oriented filters and magnitud bit-width 8 4080 Mb/s

Orientation bit-width 8 510 MB/s

Phase bit-width 8 Internal memory storage requirements
Optical flow bit-width 24  Bandwidth for primitives (magnitud, orientation and phase)

Stereo bit-width 12 Input images pyramid 
765 Mb/s

95,625 MB/s 3,647804 MB

Bandwidth for stereo and motion Oriented filters pyramid 
Extra parameters

432 Mb/s 19,45496 MB
Pyramid size 637500 54 MB/s

An 7500 Primitives: magnitud, orientation and phase (x temporal filter size )
Multiscale factor 1,328125 (We consider that only left image optical flow is computed)

FPGA buffers 2 9,727478 MB
Temporal filter size for optical flow 5

Stereo + optical flow outputs 
High level vision signal loops 1

(input like image warping or  local thresholds) 4,119873 MB

TOTAL INTERNAL MEMORY REQUIREMENTS 

36,95011 MB
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System specifications Downloading band-width (PC--> FPGA) System configuration bandwith requirements Standard interfaces banwidths peak

Stereo views (left and right images) 2 input images + primitives + oriented filters PCIe (1 lane) 256 MB/s
Horizontal resolution 512 157,2864 Mb/s Basic PCI 133 MB/s

Vertical resolution 512 19,6608 MB/s 2803,302 Mb/s Ethernet 1 Gbits 128 MB/s
Input data bit-width 8 350,4128 MB/s Firewire 50 MB/s

Frame-rate 25 USB 2.0 60 MB/s
input images + primitives + stereo + optical flow

Number of pyramic levels 4 Uploading bandwidth (FPGA-->PC)
Number of orientations 8 771,6864 Mb/s

Bandwidth for oriented filters 96,4608 MB/s

Oriented filters and magnitud bit-width 8 2228,224 Mb/s

Orientation bit-width 8 278,528 MB/s

Phase bit-width 8 Internal memory storage requirements
Optical flow bit-width 20  Bandwidth for primitives (magnitud, orientation and phase)

Stereo bit-width 10 Input images pyramid 
417,792 Mb/s
52,224 MB/s 1,992188 MB

Bandwidth for stereo and motion Oriented filters pyramid 
Extra parameters

196,608 Mb/s 10,625 MB
Pyramid size 348160 24,576 MB/s

An 4096 Primitives: magnitud, orientation and phase (x temporal filter size )
Multiscale factor 1,328125 (We consider that only left image optical flow is computed)

FPGA buffers 2 5,3125 MB
Temporal filter size for optical flow 5

Stereo + optical flow outputs 
High level vision signal loops 1

(input like image warping or  local thresholds) 1,875 MB

TOTAL INTERNAL MEMORY REQUIREMENTS 

19,80469 MB
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MEMORY REQUERIMENTS (MB)

Optical flow Stereo Features WHOLE SYSTEM
VHA 6 3 23,98 88,92
HA 2,75 1,37 9,72 36,95
MA 1,25 0,625 5,31 19,8

BANDWIDTH REQUERIMENTS (MHz)

Optical flow Stereo Features WHOLE SYSTEM
VHA 78,6 39,3 235,1 432,3
HA 36 18 95,6 185,6
MA 16,4 8,2 52,2 96,4

IMPORTANT NOTES: (PLEASE, TAKE THIS UNDER CONSIDERATION!)
  - Optical flow is computed only for the left image
  - We consider eight filters orientations
  - Input images resolution are: 

1 Mpixels for VHA
800x600 pixels for HA
512x512 pixels for MA

  - Frame-rate: 25 f 800x600 pixels for HA
  - Features include512x512 pixels for MA
  - Total Memory resources consumption includes internal processing memory storage as well as memory to allowing double buffer computation
  - Bandwidth requeriments include data transmission from PC to the FPGA
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Early vision communication bandwith
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Early vision memory requirements
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Appendix E

 Cross-modality examples. Technical report.
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Crossmodal interactions 
 

Eduardo Ros (9 of February 2007) 
With material of different partners (BCCN, KUL, UGE, SDU) 

 
Abstract: The crossmodal interactions are well defined mechanisms that allow efficient 
combination of single modality cues (motion, stereo, colour, etc) to obtain information 
based on two or more of these types of cues. In this short report we give some examples 
of such crossmodal interactions that are investigated in the framework of DRIVSCO. 
 
1. Introduction 
 
In an early vision system we can still distinguish different stages: pre-processing (band-
pass spatial filtering), single modality extraction (motion, stereo, etc) and cross-modal 
interactions (motion-in-depth, 3D segmentation, etc). The scheme of this structure is 
illustrated in Fig. 1. 
 

 
Fig. 1. Here we illustrate the different stages of the early vision system. The 
information obtained by the cameras is band-pass filtered leading to a harmonic 
representation where the outputs of the different spatial filters can be combined to 
extract different single modalities. These single modality cues can be merged 
towards cross-modality information.  
 
This short report enumerates and briefly describes examples of these crossmodal 
interactions that are under investigation in the framework of DRIVSCO: 
 

• Motion-in-depth. This is obtained combining disparity and motion cues.  
• Clustering in 3D. Combining disparity and grey levels (or colours) we can 

cluster cues of the scene in the 3 dimensional space. 
• Independent-Moving-Objects (IMOs). This can be obtained also combining 

motion and stereo or extracted directly from motion outliers. 

Appendix E (D1.1)
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• Phase for colour interpretation. Combining phase and colour helps to distinguish 
between lines and steps. 

 
 
The next sections give illustrative examples of these kinds of crosmodal interactions. 
 
2. Motion-in-depth 
 
Considering jointly the binocular spatiotemporal constraints posed by moving objects in 
3-D space, the disparity assigned to a point as a function of time is related to the 
trajectories in the right and left monocular images of the corresponding point in the 3-D 
scene. Therefore, dynamic stereopsis, implies the knowledge of the position of objects 
in the scene as a function of time. In general, the solutions to these problems rely upon a 
global analysis of the optic flow or on token matching techniques, which combine 
stereo correspondence and visual tracking. On the basis of the modelling work 
conducted by [Sabatini and Solari, 2004; Sabatini et al., 2002] UGE have demonstrated 
that dense motion-in-depth estimation can be obtained, without tracking, from binocular 
local measurements, provided that such measures are characterized by high significance 
and robustness. An analysis of the geometrical constraints influencing the reliability of 
motion-in-depth estimates has been conducted.  
Motion-in-depth information can be directly extracted by using efficiently the harmonic 
representation (combining the outputs of spatial filters) or merging the motion and 
disparity cues. If we choose this second option we can calculate the temporal 
differentiation of the disparity or we can subtract right and left flows. These two options 
are being studied by UGE, investigating the design of local operators capable of 
providing a “full” description of 3D motion event (e.g., a spatially extended object 
moving in 3D), by projecting it into a subspace of elemental features (motion, disparity 
and orientation). Such description relies upon space and time phase information 
gathered from a band-pass spatio-temporal transformation of the binocular visual signal. 
Coherent stereo-motion correspondence constraints will be directly embedded in the 
structure of such visual operators, rather than being considered at a higher semantic 
level of data fusion. 
Fig. 2 illustrates the proposed motion-in-depth information extraction scheme and the 
results obtained in a controlled lab sequence. 
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(a) 

 

(b) 
Fig. 2. Motion-in-depth extraction.(a) The basic architecture: information about interocular 
velocity difference is obtained directly by combining spatial convolutions of stereo image 
pairs and their temporal derivatives (calculated by linear interpolation of the temporal 
sequence). (b) Motion-in-depth extracted from a real “lab” sequence”. Two toy cars are 
moving in opposite directions respect to the observer. The hue levels in the MID maps 
encode the motion-in-depth of the two cars: the yellowish region represents the car moving 
towards the observer, whereas the bluish region represents the car moving away. The 
background (dark blue) represents points discarded according to the confidence measure. 
  
3. Clustering in 3D for surface segmentation 
 
The identification and segmentation of surfaces or objects requires combined 
information from different visual attributes, such as binoculuar disparity, optic flow, 
texture, shape, and similarity. BCCN is investigating how to extract surfaces from 
stereo image pairs using superparamagnetic clustering [Opara and Wörgötter, 1998]. 
The method of superparamagnetic clustering represents image pixels by a Potts model 
of spins which interact such that neighbouring spins corresponding to similar pixels 
tend to align, given an appropriate similarity measure. Then, image segments are 
identified as clusters of aligned spins. We have extended this method to 3D images, i.e., 
stereo pairs and image sequences, by allowing spins belonging to different frames to 
interact. 
Here, we use this method to segment stereo image pairs. The technique uses both 
information about gray-value pixel similarity and disparity information obtained from 
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sparse and/or dense stereo algorithms. The disparities of the pixels are needed to 
localize the neighbours of pixels in other frames. By this mechanism, correspondences 
between frames can be established and stereo clusters can be conformed. Usually, 
sufficiently accurate disparity values are not available for all pixels. At these points, 
clustering is merely driven by spin interaction within a single frame. In this way, 
homogenous image regions for which no disparity information is given can be filled in 
using disparity information from the bounding edges. 
BCCN is studying this technique for a real stereo images, which shows a paper box 
from two different viewing positions, i.e., left and right (Fig. 3.a). The disparity map 
was computed using a dense stereo algorithm provided by KUL. We only consider 
those disparity values for which the corresponding amplitude value exceeds a certain 
threshold. The resulting amplitude map is given in (Fig. 3.b). In the clustering 
algorithm, spins are only allowed to interact with spins in the other image if their 
amplitude is equal to one, otherwise only interactions within a single frame are allowed. 
This has the advantage that (i) reliable disparity information can be used to establish 
correspondences between the stereo images, and (ii) homogeneous image regions for 
which the amplitude is zero can be filled in using 2D interactions. The resulting spin 
states of the box stereo pair are given in Fig. 3.c. The 3D surfaces could be extracted 
despite incomplete stereo information (Fig. 3.b). The salt and pepper noise visible in the 
segmented images is largely caused by erroneous disparity estimates, which lead to 
wrong correspondences. This effect is particularly strong at the edges. BCCN is also 
investigating how to incorporate highly accurate but sparse disparity information from 
primitives to improve image segmentation at the edges. 
 

 
(a) 

 
(b) 
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(c) 

Fig. 3. Clustering in 3D for surface segmentation. a) Stereo image of an open box. b) 
Disparity and confidence measure of each estimation. c) Segmented surfaces. 
 
4. Independent Moving Objects (IMOs) 
 
Independent moving objects represent very interesting entities in wide variety of 
applications (for instance automobile applications). The group of KUL is investigating 
how to use learning to directly learn efficient cues fusion (crossmodality interactions) 
for IMOs detection. 
 

(a) 
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(b) 

  
(c) 

Fig. 4. Detecting IMOs by learning cues fusion. Learning crossmodality interactions. 
a) Neural network used for learning cues fusion. b) Different candidate cues. 
c) An example of IMO detection based on cues fusion. 
 
5. Phase for colour interpretation 
Phase analysis helps to distinguish between lines and steps and therefore helps in the 
colour interpretation of different areas of the scene. A phase change of π represents a 
step (which can have different colours in the two sides) while a π/2 change may 
represent a line and therefore it may be a feature onto the top of background uniform 
colour.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Phase analysis for colour interpretation. A) Original figure, b) primitives 
extraction, c) Illustration of the symbolic representation of a primitive for a 1D 
interpretation, for a bright-to-dark step-edge (phase (φ ≠0)) edge primitive, d) 
Illustration of the symbolic representation of a primitive for a 1D a bright line on dark 
background (phase (φ≠π/2)), line primitive. 1) represents the orientation of the 
primitive, 2) the phase, 3) the colour and 4) the optic flow. 
 
An important aspect of the condensation achieved by the primitives is that all main 
parameters can be derived from one property of the basic filter operations called. 
This value expresses the minimal distance between two edges for them to be 
represented by two distinct primitives. Below this distance, one single line primitive 
will be extracted.  
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In Fig. 5 shows a narrow triangle for which two edges get closer until the vertex. 
Vertical sections of the local amplitude close to the vertex features only one maximum, 
whereas it splits into two distinct maxima further on, where the triangle is broader.  
The line-edge bifurcation distance for a given scale is the minimal distance between 
two edges for them to produces two distinct maxima. 
 
In order to represent accurately the colour structure of the edge, the colour information 
held by a primitive is composite. Also, we have seen that, depending on the phase, the 
primitive may express a step-edge or a line-like structure. 
Consequently, the colour information is defined relatively to the phase. 
 

If 
4

3
4

πφπ
<≤ , indicating an edge between two surfaces, then the colour information is 

sampled on the left and right sides of the central line (see Fig. 5.c). 
 
Otherwise, the phase indicates a line, and the colour is sampled on the left and right 
sides, but also additionally the middle, to represent the colour of the line itself (see Fig. 
5). 
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Binocular Perception of Motion-in-depth from a
Geometric Point of View

Fabio Solari, Giulia Gastaldi and Silvio Sabatini

February 14, 2007

Abstract

The perception of motion-in-depth relates to 2nd-order measures, which can be
gained either by interocular velocity differences or temporal variations of binocu-
lar disparity. We can analyze, exploiting the projective geometry, the stereo vision
system to obtain a range of possible values (pixel/frame) of the computed motion-
in-depth (MID) for different scenarios. Thus, we can infer the required accuracy of
the extracted velocity and disparity maps to obtain reliable MID maps.

1 Introduction to dynamic stereopsis

In many real-world visual application domains it is important to extract dynamic
3-D visual information from 2-D images impinging the cameras. One of this kind
of problems concerns the perception of MID, i.e. the capability of discriminating
between forward and backward movements of objects from an observer, having im-
portant implications for autonomous robot navigation and surveillance in dynamic
environments. In general, the solutions to these problems rely upon a global analysis
of the optic flow or on token matching techniques which combine stereo correspon-
dence and visual tracking. Alternatively, in the light of behaviour-based perception
systems, a more direct estimation of MID can be gained through the local analysis
of the spatiotemporal properties of stereo image signals.

To better introduce the topic, let us briefly consider the correspondence problem
in the stereo image pairs acquired by a binocular vision system. In a first approxi-
mation, the positions of corresponding points are related by a 1-D horizontal shift,
the binocular disparity δ(x). Formally, the left and right observed intensities from
the two eyes, respectively IL(x) and IR(x), result related as IL(x) = IR[x + δ(x)].
Several researchers [Sanger, 1988] [Jenkin and Jenkin, 1988] proposed phase-based
techniques in which disparity is estimated in terms of phase differences in the spectral
components of the stereo image pair. Spatially-localized phase measures can be ob-
tained by filtering operations with complex-valued quadrature pair bandpass kernels
(e.g. Gabor filters [Gabor, 1946] [Daugman, 1985]), approximating a local Fourier
analysis on the stereo images.
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When the stereopsis problem is extended to include time-varying images, one
has to deal with the problem of tracking the monocular point descriptions or the
3-D descriptions which they represent through time. Therefore, in general, dynamic
stereopsis is the integration of two problems: static stereopsis and temporal corre-
spondence [Jenkin and Tsotsos, 1986]. Considering jointly the binocular spatiotem-
poral constraints posed by moving objects in the 3-D space, the resulting dynamic
disparity is defined as δ(x, t) = δ[x(t), t], where x(t) is the trajectory of a point in
the image plane. The disparity assigned to a point as a function of time is related
to the trajectories xR(t) and xL(t) in the right and left monocular images of the
corresponding point in the 3-D scene. Perspective projections of a motion in depth
leads to different motion fields on the two cameras, that is a temporal variation of the
disparity of a point moving with the flow observed by the left and right views. The
rate of change of such disparity provides information about the direction of MID and
an estimate of its velocity. The following approximated expressions can be derived
[Sabatini et al., 2003]:

dδ

dt
� ∂δ

∂t
=

φL
t − φR

t

k0
� vR − vL (1)

It is worthy to note that the approximations depend on the robustness of phase infor-
mation, and the error made is the same as the one which affects the measurement of
phase components around singularities [Fleet et al., 1991] [Fleet and Jepson, 1990].
Hence, on a local basis, valuable predictions about MID can be made, without track-
ing, through phase-based operators which need not to know the direction of motion
on the image plane x(t).

2 Projective Geometry for Motion-in-depth

We briefly summarize the general relation between 3D world coordinates (X, Y, Z)
and image coordinates (xL, yL) and (xR, yR). The model of the optical setup of the
stereo system is shown in Fig. 1. Using a perspective projection model, a point X in
the world coordinates is mapped onto image plane points xL and xR on the left and
right cameras, respectively. For identical left and right focal lengths f0, the image
coordinates are:

xL = f0
(X + b/2)cos(αL) + Z sin(αL)

(X + b/2)sin(αL)cos(βL) − Y sin(βL) − Z cos(αL)cos(βL)

yL = f0
(X + b/2)sin(αL)sin(βL) + Y cos(βL) − Zcos(αL)sin(βL)
(X + b/2)sin(αL)cos(βL) − Y sin(βL) − Z cos(αL)cos(βL)

(2)

xR = f0
(X − b/2)cos(αR) + Z sin(αR)

(X − b/2)sin(αR)cos(βR) − Y sin(βR) − Z cos(αR)cos(βR)

yR = f0
(X − b/2)sin(αR)sin(βR) + Y cos(βR) − Zcos(αR)sin(βR)
(X − b/2)sin(αR)cos(βR) − Y sin(βR) − Z cos(αR)cos(βR)

(3)
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We can define the horizontal disparity dx = xR − xL and the vertical disparity
dy = yR−yL, that establish the relations between a world point X and its associated
disparity vector d.

� � � �
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� �

� �

� �
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� �

� �

�

�

�

� �

� �
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�

� � � �
�

� �

� �

Figure 1: Optical setup of a stereo system. Left and right cameras: (XL, Y L, ZL) and
(XR, Y R, ZR). Left and right image planes: (xL, yL) and (xR, yR). Left and right focal
lengths: OLoL = ORoR, named f0 in the text. Optical axes OLF and ORF are adjusted to
fixation point F . The baseline b is denoted by OLOR, the slant angles by αL and αR and
the tilt angles by βL and βR. The camera optics are modelled as a perspective projection.

3 Discussion

We have analyzed two different scenarios to obtain a range of possible values (pixel/frame)
of the computed MID and the geometrical constraints for its reliability. In particular,
we considered an outdoor scenario, related to a car moving on a road, and an indoor
scenario, related to a laboratory setup. The parameters of the binocular camera
setup are: (i) for the outdoor scenario: baseline=0.55 m; focal length=25 mm; pixel
pitch=6.5 µm; and (ii) for the indoor scenario: baseline=0.08 m; focal length=8 mm;
pixel pitch=11 µum.

For the sake of simplicity, in the following we restrict the analysis to the plane
(X, Z), that is Y = 0, with the tilt angles βL = βR = 0 and the slant angles αL = αR.

Exploiting the equations 2 and 3, we can infer the areas in the horizontal plane
(X, Z), where the MID is reliable, by imposing constraints on the values of the stereo
and motion visual features. In particular, we impose the following constraints: MID
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values > 1 pixel/frame; optic flow values < 30 pixels/frame; disparity values < 50
pixels. These constraints mean that we should be able to match image point pairs
50 pixel apart and to perform a reliable optic flow difference in a range of [-30,+30]
pixels/frame with an uncertainty of 0.25 pixel/frame.

In the outdoor scenario Fig. 2 and Fig. 3, there is a large area of reliable MID in
front of the car only for high speed and for vergent cameras.

Similar conclusions can be gathered for the indoor scenario, see Fig. 4 and Fig. 5.
An example of outdoor scenario is shown in Fig. 6a: in this case motion-in-depth

is not detected because the binocular sequence is acquired by cameras with parallel
optical axes (cf. the first row of panels of the Fig. 2). An example of reliable MID
detection is shown in Fig. 6b: in this case, the indoor scene is observed by vergent
cameras (cf. the third row of panels of the Fig. 4).
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Figure 2: Each panel represents the top view of a road: the car position is at top-left, the
car moves along the road (Z axis) and the red lines mark the boundary of the camera field
of view. The cameras with parallel optical axes are considered in the first row of panels, in
the second row the fixation point is at 25 m and in the third row at 15 m. The car speed
is 90 km/h. The gray areas in each panel denote the zones where the feature constraints
are not met. The green areas denote the resulting reliable detection regions of the MID.
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Figure 3: Same as Fig. 2, but with a car speed of 10 km/h.
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Figure 4: Each panel represents the top view of laboratory setup: the camera position
is at center, the motion is along the Z axis and the red lines mark the boundary of the
camera field of view. The cameras with parallel optical axes are considered in the first
row of panels, in the second row the fixation point is at 2 m and in the third row at 1 m.
The speed is 0.9 m/s. The gray areas in each panel denote the zones where the feature
constraints are not met. The green areas denote the resulting reliable detection regions of
the MID.
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Figure 5: Same as Fig. 4, but with a speed of 0.2 m/s.
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Figure 6: Two examples of motion in depth maps obtained from an outdoor scenario
acquired with parallel axes (a) and from an indoor scenario acquired with vergent cameras.
The hue codes the motion-in-depth information: warm colors represent motion towards
the observer, whereas cold colors code motion away from observer. The motion of the
overtaking motorcycle in (a) cannot be distinguished by the egomotion. In (b) two toy
cars are moving in opposite directions respect to the observer. The background dark blue
represents points discarded according to the confidence measure. The few still present
error points do not impair the interpretation of the MID map.
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