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1 Revision notes

According to what reported in the review report, the performance of the regularisation methods
described in D2.1 was assessed in a merely descriptive and qualitative way. On the basis of
this statement and on the experts’ comments during the review, we have revised the deliver-
able D2.1 by including a new Section “Comparative analysis of the results” where we present
(1) a statistical evaluation of our technique with respect to other “generalized” spatial/spatio-
temporal averaging operations, and (2) a comparison with the state-of-the-art. This Section
replaces the Section “Evaluation of recurrent regularization” of the previous version of the de-
liverable. In addition, we have extended the description of our method and we have included a
quantitative characterization of the approximation error of the linear templates obtained by the
recurrente generative model. In the new Section “Discussion” a more general comparison of
our approach with other related scenarios is presented.

2 General introduction

The main objective of this workpackage is to arrive at a reliable low-level information repre-
sentation. In this workpackage we address the study of integrative adaptive schemes, mainly
along three strategies:

1. investigation of recurrent processing schemes to regularize the single-modality estima-
tions

2. low-level cross modality interaction

3. integration of non-visual signals

Deliverable ��� is about recurrent processing for low-level feature regularization. The input to
the computational modules developed in Task 2.1 will be the feature maps calculated by the
FPGA-based front-end vision system. The improvement of the accuracy/density of these maps
is an important step to help high level elaboration, which will occur in WP3 and WP4.

When low level features are noisy an adaptive recurrent filter can be used to perform a spa-
tial regularization. In this deliverable we focus our attention to the regularization of optic flow
because it most suffers of problems of sparsity and unreliability (mainly due to the aperture
problem). Furthermore, when low level feature are calculated with constrained computation
precision (as it is the case in the hardware front-end), the level of noise in the extracted map
increases significantly with respect to the software model (with no precision limitations and
floating point arithmetic). The deliverable is organized as follows: in Section 3 we present the
model (patch-wise linear description of the optic flow and Kalman-based recurrent filtering).
In Section 4 we frame our approach with respect to other techniques in the literature and we
comparatively assess the results on the basis of standard benchmark sequences. General dis-
cussion of the approach is presented in Section 5 and conclusive remarks are summarized in
Section 6.
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3 Summary

Assuming to have a noise optic flow from the front-end vision module, a context-sensitive fil-
ters for regularizing the optic flow is presented. Measured optic flow fields are indeed always
somewhat erroneous and/or ambiguous: First, we cannot compute the actual spatial or tempo-
ral derivatives, but only their estimates, which are corrupted by image noise. Secondly, optic
flow is intrinsically an image-based measurement of the relative motion between the observer
and the environment, but we are interested in estimating the actual motion field. (2) Third,
optic flow estimates calculated with restricted precision suffers from higher levels of noise
(as computation errors). However, real-world motion field patterns contain intrinsic properties
that allow to define model structures as groups of pixels sharing the same motion property.
By checking the presence of such structures in optic flow fields we can make their interpreta-
tion more confident. We propose an optimal recurrent filter capable of evidencing linear mo-
tion structures corresponding to 1st-order spatial derivatives or elementary flow components
(EFCs). The regularization of the optic flow emerges from a noisy flow as a solution of an it-
erative process of spatially interacting nodes that correlates the properties of the visual context
with that of a structural model of the EFC.

The context-sensitive filter behaves as a template model. Yet, its specificity lies in the fact
that the template character is not built by highly specific feed-forward connections, but emerges
by stereotyped recurrent interactions (cf. the process equation). Furthermore, the approach can
be straightforwardly extended to consider adaptive cross-modal templates (e.g, motion and
stereo). By proper specification of the matrix �, the process equation can, indeed, potentially
model any type of cross-modal spatio-temporal relationships (i.e., cross-modal spatio-temporal
context).

The results we obtain are compared with classical post-processing techniques, such as
spatial/spatio-temporal filtering, median, Wiener filtering, working on the same spatial neigh-
borhood. Our approach shows, in general, better performances than classic generalized averag-
ing operation. From a more general perspective, the proposed model is conceptually formalized
as a recurrent solution of a variational problem that combines local and global constraints. Ac-
cordingly, systematic comparison with state-of -the-art techniques based on similar principles
are presented. From the comparison, it emerges that the performances of our technique (in
general worse than the others) highly depends on the robustness of the (phase-based) initial
solution, which (in its current implementation) is dramatically sensitive to noise. It is worth to
note that the approach we followed to obtain the initial solution is dictated by the choice made
for the FPGA implementation. A fairer comparison of the context regularization approach
would require changing the method for obtaining the initial (non regularized) solution, which
is yet beyond the scope of WP2 and of this report.

In conclusion we can state that: (1) if the optic flow available from the hardware module
is sufficiently reliable it is not convenient to implement the Kalman Filter (KF) regulariza-
tion algorithm since almost equivalent results can be obtained by spatial averaging at a less
computational cost; (2) the patch-wise linear description of the optic flow allows us to obtain
a compact representation of the optic flow usable for the extraction of high level visual cues
(SVEs). To conclude on the opportunity of a cascade KF regularization we thus need to wait
for realist optic flow fields from the FPGA, whereas the linear optic flow description available
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by the affine coefficients ��� � � � � �� is a general asset of the approach.
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4 A context-sensitive recurrent filter for optic flow regular-
ization

The regularization of optic flow is a complex problem for which many solutions/approaches
have been proposed. Among them, most of the techniques include the regularization constraint
in the extraction itself of the optic flow [1, 2, 3, 4, 5], whereas the approaches that post-process
the optic flow (as the one here proposed) are very seldom [6]. It is worth noting that the choice
of operating in cascade to a rough extraction of the optic flow is dictated by the expected ne-
cessity of improving the quality of the optic flow provided by the FPGA-based front-end early
vision module where a basic version of a phase-based optic flow algorithm will be implemented
(cf. precision constraints, such as fixed point arithmetics, warping of images vs. warping of
phase maps, . . . ). From this perspective, here we propose an adaptive recurrent spatial (spa-
tiotemporal) filtering based on Kalman Filter (KF) [7] [8] to remove, or, at least, to reduce
the uncertainty associated to a local measure of the optic flow, by making use of contextual
information that capture coherent properties of velocity vectors over large overlapping image
regions (patches). A comparative analysis of our approach with other (classes of) regularization
methods are presented in Section 4.

4.1 Kalman-based adaptive filtering

A schematic diagram of the regularization process of the optic flow, represented as an adaptive
filter, is shown in Fig. 1: ����� is the real image motion field (the unknown stimulus/state)
at time step �, ���� � ������ is the oberved optic flow (the measure), ����� is the estimated
motion field, and ���� is the reference signal (i.e., what we know about �����). The purpose

� � � � � � � � � � 	 
 � � �

�  � � � � � � � �


 � � � � � � � �

� � � � � �

� � � � �
� � � � � �

�  � � �

� � � �

� � 
  � � � � � � � � � � �

� � � � � �  �

� � ! " � # #

Figure 1: Schematic representation of adaptive early vision filters.

of the adaptive system is to filter the input signal ���� (measure) to invert (in some sense)
the measure operator and gain an estimation of the solution of ����� by making use of the
knowledge ����.

The filter evolves in time and it takes some time (convergence time) to “learn” to act as the
inverse operator ���, by embedding information about the unknown stimulus in its structure
(cf. the learning phase of classical neural networks). After convergence, if the reference signal
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is sufficiently representative of the unknown signal the filter could work in an open-loop con-
figuration (without further adaptation) on the basis of what it has already known of the model.
In this condition, new measures are not further used to refine the estimation that will be con-
sidered as an a priori estimate. The closed-loop configuration, on the contrary, guarantees a
continuous adaptation leading to a posteriori state estimates. In the following, we will see that
this distinction between a priori and a posteriori estimates will be more evident in the formu-
lation of the Kalman filter due to its intrinsic recurrent nature by which the a priori estimation
(based on the previous experience) is corrected by actual measure to give rise to the a poste-
riori estimate. Kalman Filter indeed does not need to store the entire history of the process,
because it only needs the previous estimate. Moreover, by using Kalman Filter we have not
only an estimate of the measure (in this case optic flow), but also an associated variance and an
uncertainty map that is propagated at each step. For these reasons Kalman Filter can be used
to regularize noisy optic flow.

Formally, the KF is characterized by two inputs:

the process equation

���� � ���� � � �� ��� � �� � ��� � �� ��� � �� � ���� � �� (1)

and

the measurement equation

���� � ���� ���� � ����� (2)

The matrix ���� � � �� is a known state transition matrix that relates the state ��� � �� at the
previous time step � � � to the state ���� at the current step �. The matrix ���� takes into
the account an optional control input to the state. The matrix ���� is a known measurement
matrix. The process and measurement uncertainty are represented by ����� � ���������	 and
����� � ���������	 The space spanned by the observations ���������� � � � ������� is denoted
by ����.

Assuming � a vector containing the values of a bunch of visual features over a fixed spatial
region, Eq. 1 models the temporal evolution of the relationships among such features, according
to specific rules embedded in the transition matrix �. For example, if we consider just one
feature (e.g., motion velocity), ���� will represent the “model” optic flow values at time step
�, for all the (discrete) locations of the considered spatial regions (the velocity state). If �
has a diagonal structure, the process equation will describe the temporal evolution “model” of
punctual velocities, independently of the spatial neighborhood values (temporal context). On
the other hand, if � shows a non-diagonal structure, the process equation models a temporal
evolution “model” of the state that takes into account also spatial relationships (spatio-temporal
context). More generally, if we build a state vector that collects more multiple features (e.g.,
motion, stereo, etc.), by proper specification of the transition matrix�, the process equation can
potentially model any type of multimodal spatio-temporal relationships (multimodal context).
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4.2 Affine (linear) models of image motion

In order to use Kalman Filter we need to define a process equation that describes the motion
field. We can describe motion flow fields in terms of their linear decompositions, on the basis
of their first-order (linear) properties. From this perpsective, local spatial features around a
given location of flow field, can be of two types: (1) the average flow velocity at that location,
and (2) the structure of the local variation in a neighborhood of that locality. The former relates
to the smoothness constraint or structural uniformity. The latter relates to linearity constraint
or structural gradients [9]. Velocity gradients provide important cues about the 
D layout of
the visual scene. Formally, they can be described as linear deformations by a first-order Taylor
decomposition (for further details see the enclosed paper in the Appendix):

� � �� � ��� (3)

where

� �

�
��� ���
��� ���

�
�

�
�	�
�� �	�
��
�	�
�� �	�
��

�
� (4)

By breaking down the tensor in its dyadic components, the motion field can be locally described
through two-dimensional maps (� � �� �� ��) representing elementary flow components
(EFCs):

� � 	��	� �	��	� � 
��
�	�
��

����
��

� 
��
�	�
��

����
��

� 
��
�	�
��

����
��

� 
��
�	�
��

����
��

(5)

where 	� are pure translations and 
�� represent cardinal deformations, basis of the linear de-
formation space. In Figure 2 elementary flow components are shown. The EFCs can be com-
bined to obtain deformation subspaces representing elementary deformations such as expan-
sion, shear and rotation (see Figures 3, 4 and 5).

It is worthy to note that the components of pure translations could be incorporated in the
corresponding deformation components, thus obtaining generalized deformation components
in which motion boundaries are shifted or totally absent:

��� � �	
� � ��

�
� � ��

��� � �	
� � ��

�
� � ��

��� � �	
� � ��

�
� � ��

��� � �	
� � ��

�
� � ��

(6)

In this way, we have four classes of deformation gradients: one stretching (� ��) and one shear-
ing (���) for each cardinal direction. As it will be clear in the following, this choice gives to
the model maximum flexibility: every gradient deformation within a single class will be built
through the same recurrent network, just by changing its driving inputs on the basis of direct lo-
cal measures on the input optic flow. Figure 6 shows the four classes of deformation gradients.

It is worthy to note that Eqs. (5) and (6) describe, in fact, an affine model:�
	�
	�

�
�

�
��
��

�
�

�
�� ��
�� ��

�
�

�
�
�

�
(7)
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OPPONENT NON-OPPONENT

�� 
��


�� 
��

(a) (b)


�� ��	� 
�� ��	�


�� ��	� 
�� ��	�

(c) (d)

Figure 2: Elementary flow components showing different gradient types. In stretching-type
components (a,c) velocity varies along the direction of motion; in shearing-type components
(b,d) velocity gradient is oriented perpendicularly to the direction of motion. Non-opponent
patterns are obtained from the opponent ones by a linear combination of pure tranlations and
cardinal deformations: 
�� ��	�, where � is a proper positive scalar constant.

where �� are constants and 	� and 	� are the horizontal and the vertical components of the flow1.
The parameter vector ���� ��� � � � � ��� describes a specific configuration of optic flow that locally
provides a good approximation of 3D rigid moving objects. The six parameter affine model is
reasonable to describe the motions of smooth surface in small image regions. The parameters
�� have qualitative interpretations in terms of image motion, for example �� and �� represent
horizontal and vertical translation and we can express divergence (isotropic expansion), curl
(rotation about the viewing direction), and the two components of deformations as combination
of the ��’s:

��	 � �� � ��
���� � �� � ��
���� � �� � ��
���� � �� � ��

(8)

4.3 Regularization by adjustable linear templates

4.3.1 Generative models

The templates that approximate the deformation components can be generated recursively by
using a lattice network:

���� � ���� � � ����� � �� � ���� � �� � ��� � �� � (9)

1�� � �� � ��, �� � ��, �� � ��, �� � �� � ��, �� � ��, �� � ��.
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Figure 3: (a) Two deformation subspaces obtained by the set of cardinal EFCs with different
values of the parameter �. The quadrants of each subspace characterize an elementary defor-
mation, as evidenced in (b) for expansion (� � �), horizontal positive shear (�� � �), oblique
positive shear (��), and counterclockwise rotation (� � �).
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Figure 4: The � � �� deformation subspace.
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Figure 5: The � � �� deformation subspace.
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Figure 6: The generalized deformation components (���, ��� , ���, ���) are obtained by incorpo-
rating the pure translations in the corresponding cardinal deformations.

which describes the temporal evolution, from the previous time step � � � to the current time
step �, of the relationships among motion features over a fixed small spatial region ���� �� �
���� �� according to specific rules embedded in the transition matrix�. The driving input ����,
evaluated at each time step, by computing the average of the optic flow velocity components
at the patch’s borders, can be interpreted as the boundary conditions of the lattice network (see
Fig. 7), whereas ����� represents the process noise.

It is worth noting that the spatial interactions occur separately for each component of the
velocity vectors through 1D nearest neighbor interactions. More precisely, given the difference
equation that describes the nearest neighbor cooperation among the spatial nodes �’s for the
generic velocity component 	: ���	�� � �	 � �		��	 � ��	�� � �	 � �, and solving it
with the boundary conditions 	���	 � � and 	��	 � �, we obtain the velocity profiles that
approximate the linear templates parameterized by the coefficients � and ��:

	��	 �
��


�� ���

�
��� ����
	��� � ��� ����
	��

�
(10)

where � � � � ��� and � � � � ���, and with � depending on the coupling coefficient
�� � ��� of the 1D lattice network. By a proper choice of the coupling coefficients and of
the boundary values � and � the velocity profiles result approximately linear (see Fig. 8, Fig. 9
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� � �

�

� �


 � � �  � � �
� � �  � � � � � 	

Figure 7: Basic lattice interconnection schemes for the generation of the adjustable linear tem-
plates. The lattice networks have a structuring effect constrained by the boundary conditions
that yields to structural equilibrium configurations, characterized by the specific first-order
EFCs. The resulting velocity patterns depend on the directions of the interaction scheme and
on the boundary conditions. ��� and ��� represent the stretching components, whereas ��� and
��� represent the shearing components. The boundary values � and � control the gradient slope
and the constant term.

and Fig. 10). To quantify the approximation error, we calculated, as a function of � and �, the
average relative integral error between the solution of the lattice network (see Eq. 10) and a
straight line that joins the values at the boundaries (� and �). In general, for any combination
of � and �, the larger is the size of the patch, the higher is the approximation error. Though,
it is possible to choose the proper value of � to keep the error below an arbitrary tollerance
value. Fig. 11(a) shows the curves of constant error (� � ����), for different combinations of
� and �. Fig. 11(b), (c) and (d) show the variability of the approximation error by varying
the boundary values � and � for a fixed size of the template (� � 
, � � � and � � ��,
respectively) and for a fixed value of � � ����. The limited increase of the error over a wide
variation of the boundary values in the range of �
� pixel/frame demonstrates the validity of
the approximation of the linear templates by the generative models.
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Figure 8: The generative model outputs that approximate the linear templates. Parameters of
the 1D lattice network: � � ���� and �� � ��� � ������. (Left) The velocity profiles
describe the solution of the lattice network (solid line) and the straight line (dashed line) that
joins the values at the boundaries (� and �). (Middle) The relative error as a function of the spa-
tial support between the solution of the lattice network and the previous straight line. (Right)
The template, that locally approximates a generalized deformation component, generated re-
cursively by using the lattice network with the shown parameters.
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Figure 9: The generative model outputs that approximate the linear templates. Parameters of
the 1D lattice network: � � ���� and �� � ��� � ������.. (Left) The velocity profiles
describe the solution of the lattice network (solid line) and the straight line (dashed line) that
joins the values at the boundaries (� and �). (Middle) The relative error as a function of the spa-
tial support between the solution of the lattice network and the previous straight line. (Right)
The template, that locally approximates a generalized deformation component, generated re-
cursively by using the lattice network with the shown parameters.
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Figure 10: The generative model outputs that approximate the linear templates. Parameters
of the 1D lattice network: � � ���� and �� � ��� � ��
���.. (Left) The velocity profiles
describe the solution of the lattice network (solid line) and the straight line (dashed line) that
joins the values at the boundaries (� and �). (Middle) The relative error as a function of the spa-
tial support between the solution of the lattice network and the previous straight line. (Right)
The template, that locally approximates a generalized deformation component, generated re-
cursively by using the lattice network with the shown parameters.

17



DRIVSCO - Deliverable 2.1 4.3 Regularization by adjustable linear templates

� � � � � � � � �

� � � � � � � � �

� � � � � � � � � � � 	 �

��
��
�
��
��
�
��
��
�

� � � � � � � � � � � �
� � � � � � � � � � � � � � � � �  � � ! � � " � � # �

�

�

 

"

� �

� �

� �

$

$

$

� � � � � � � � � � � � � � � �

� � �

� � �

� � �

�

� �

� �

� �

�
��
��
��
��
%&
��
'
��

� � � � � � � � � % & � � ' � �

� � � �

� � � � �

� � � � � �

(a) (b)

� � � � � � � � � � � � � � � �

� � �

� � �

� � �

�

� �

� �

� �

�
��
��
��
��
%&
��
'
��

� � � � � � � � � % & � � ' � �

� � � � � � � � "

� � � � �

� � � � � � � � � � � � � � � �

� � �

� � �

� � �

�

� �

� �

� �

�
��
��
��
��
%&
��
'
��

� � � � � � � � � % & � � ' � �

� � � � �
� � � �

� � � � �

(c) (d)

Figure 11: Variations of the average relative integral error for different values of the network
parameters. (a) Relationships between the size of the patch � and the diffusive coefficient of
the lattice network � for a constant value of the approximation error (� � ����) and for different
combinations of the boundary values � and �. (b)-(d) Variation of the error for the three pairs
of � and � evidenced with asterisks (a): � � ���� and � � 
, � � �, � � ��, respectively.

4.3.2 Adaptive filtering

The adjustable templates defined in the previous Section can be used as models for a multi-
ple model Kalman filter (KF) to measure the structural properties of the input optic flow. The
output of the KF will be the estimate of the motion field on the basis of the spatial contextual
information described by the generative models of the EFCs. Since the models are continu-
ously adapted to the measures by changing the boundary conditions for every patch, and the
KF interatively integrates the new measures with the knowledge about the motion pattern ob-
tained by the previous measurements, we obtain adaptive estimates of the EFCs. In this way,
we perform an adaptive template matching capable of tracking the coefficients of a linear de-
scription/approximation of the optic flow.

Formally, given a measurement equation:

���� � �������� � ����� (11)
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where ���� is noisy measure, at current time �, of the actual motion field ����, ����� is the
uncertainty of the measure, and � is a modified unitary operator for discarding the image
points where the optic flow is not available or not reliable, the output of the filter will be:

�����V�� � �����V���� �������� (12)

where: �����V���� is the a priori state estimate, �����	�� is the a posteriori state estimate, 	�

represent all the measurements until time steps �, ��� � v��� � �v���V���� is the innovation
and ���� is the Kalman gain. In order to have a statistical measure the discrepancy between
predictions and observations, as an indication of the filter’s consistency, it is frequently used
the Normalized Innovation Squared (NIS) [10]:

���� � � ������������ (13)

defined on the basis of the innovation and on its covariance �. Since the covariance of the
innovation depends on the estimate of the measure noise ��, it is important to have a reliable
estimate of the noise in the measure. Thus, the noise covariance matrices are tuned on the basis
of the differences (in terms of the mean angular error [11]) of the velocity values measured
inside a patch between two consecutive frames. Where the optic flow smoothly changes in
time, the measure noise �� remains low, whereas, where optic flow changes more abruptely,
the noise becomes higher and the estimates have a lower confidence. In the multiple model
KF the NIS value is used to compute, for each model, the likelihood of the measurements, on
which to base the selection among the different models. This choice varies continuously while
the filter is operating. In such a case, we cannot make a fixed a priori choice of the filter’s
parameters, but we have to use a continuously varying model-conditioned combination of the
candidate state and error covariance estimates. It is worth noting that, in our dynamic multiple
model approach, we do not want the probabilities to converge to fixed values, but we want
them to be free to change at each new measurement. In the multiple model approach [10] it is
assumed that the system obeys one of a finite number of models �� with � � �� �� � � � � � (with
� � �, in our case, corresponding to the four classes of deformation gradients). The likelihood
of the measurement � given a model �� at time step � is given by:

������	 � �
 ���
��

�

��
�
�

�
���

�
�
��

��
��� (14)

where �� is the considered model. The probability that the candidate model �� is the correct
one is given by the following equation:

!��
��� �

������	�	

��� ������	
� (15)

with !��
��� � �
�� � � �� �� � � � � � and

�	

��� !��
��� � � at each time step �.

With this approach the probability value approaches � when the optic flow has the same
structure of the model. None of the models gives a high probability value if none of the EFCs
is present in the optic flow. In this way, noisy and unstructured motions are automatically
discarded. The final model-conditioned estimate of the state � is computed as a weighted
combination of the a posteriori states of each candidate filter:

����� �
	�
���

!��
�������

���� (16)
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Figure 12: Multiple-model motion estimation in a road scene taken by a rear-view mirror of
a moving car under an overtaking situations. The model-based decompositions are evidenced
for the same image patch for two different frames at time �� and ��. For each optic flow patch
the motion is estimated from the actual generalized deformation components weigthed by the
corresponding probability values, see Eq.(16).

For the � models considered (see Eqs. (6)):

�� � !��
���� � !��

���� � !��
���� � !��

���� (17)

where !��
, !��

, !��
, !��

are the probabilities related to each model and �	��, �	�� , �	��, �	�� are the
state estimates for each Kalman filter.

Combining Eqs. (6) and (17) we have:
�
�	�
�	�

�
�

�
!��

�� � !��
��

!��
�� � !��

��

�
�

�
!��

�� !��
��

!��
�� !��

��

� �
�
�

�
(18)

from which it is possible to derive the estimated coefficients of the affine model:

��� � !��
�� � !��

��� ��� � !��
��� ��� � !��

��
��� � !��

�� � !��
��� ��� � !��

��� ��� � !��
��

(19)

Figure 12 shows how the multiple model approach is used to estimate the presence of
the different generalized deformation components in the optic flow. First, the deformation
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Figure 13: Evolution in time of the four optic flow models in the same image patch. The white
squarethat localize the image patch is enlarged for the sake of representation. The sequence is
acquired by a car moving on a highway: the independent motion of the motorbike superimposes
to the self-motion of the car. The number on the top of each model indicates the associated
probability.

components are adapted accordingly with the optic flow values in input, then a probability
value is associated to each component and the final estimate is evaluated by the weighted sum
of the single components, see Eq.(16).

Figure 13 shows the evolution in time of the four models related to an optic flow patch in
the same position for different frames. The four models are continuosly adjusted on the basis
of the input optic flow and a probability value is associated to each model. We can observe
through frames the behavior of each model for different motion situations: at frame 2, the patch
containsthe motion of the background, only; from frame 8 to frame 17, motion discontinuities
appear in the models (e.g., kinetic edges) incorrespondence of the passage of the motorbike; at
frame 21, the patch contains the motion of the motorbike, only.

Figure 14 shows the optic flow of a motorway sequence computed from the front-end vision
module and its spatial regularization.

This approach involves a high-dimensional state vector since, for each location, it is neces-
sary to consider a spatial neighborhood (patch). The vector state is composed of the two com-
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(a)

(b)

(c)

Figure 14: (a)A frame from the motorway sequence. (b) Optic flow computed with the algo-
rithm from the front-end vision module. (b) Spatial regularization using Kalman Filter.
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ponents of velocity for each pixel in the considered patch. Considering the high dimensionality
of the state vector it is important to verify the efficacy vs. computational costs trade-off of this
regularization method, especially when the low level features are already sufficiently accurate.

It is worth to say that the proposed method can be used to obtain a reliable condensation of
the optic flow as it will be discussed in Section 5.3.

5 Comparative analysis of the results

5.1 Premise

After the seminal papers of Lucas and Kanade [12] and Horn and Schunck [1] a huge number
of methods have been proposed in the attempt of reducing the error while increasing the density
of the resulting flow-field maps in different and even more realistic conditions (complex natural
scenes, real sensor noise, occlusions, non-rigid motions, etc.). A great impulse to the research
has been given by several comparative studies ([11], [13], [14], [3]) , which led to the develop-
ment and the analysis of systematic “ingredients” for accurate and robust optic flow estimation.
Roughly speaking, optic flow methods can be grouped into two main classes: global and local
techniques. Global techniques [15] [1] [16] impose a smoothness constraint over the whole
image in order to obtain an additional relationship to solve the underconstrained optic flow
equation (gradient equation) in which the relationship among the pixel velocity vector �	�� 	�	,
the local spatial gradient of luminance �"�� "�	 and the temporal partial derivative "
 is stated.
The global approach, though generally leading to acceptable solutions, imposes a correlation
among velocities that does not exist across motion boundaries. Thus, an unlikely flatness of
the outcome velocity field appears on the borders of objects having different motions. Local
techniques do not require for smoothness to hold all over the image, but only within a restricted
neighborhood of each pixel. For example in [17], the gradient equation can be written for each
pixel belonging to a small window (all the pixels in the window are assumed to have the same
velocity [18]). Sometimes, local techniques lead to poor solutions, especially in regions where
luminance is almost uniform, and across object boundaries, where the hypothesis of velocity
constancy no longer holds. To improve the estimate, the velocity field has to be regularized,
since the local constraints imposed are not sufficient to produce an optic flow smooth enough.
Regularization is usually achieved through filtering, with the risk of eliminating important dis-
continuities. Different filtering techniques, both linear [19] and nonlinear [6], have been used
to this purpose. Vector median (VM) filtering is among the most interesting ones, as it permits
to reject noisy vectors without degrading motion edges [6], [20]. Parameters indicating the
confidence of the estimate can be exploited to obtain an improved vector field [21], [22]. In
this Section we will present a systematic comparison between our (recurrent regularization)
approach and the other techniques that belong to a consistent class of methods.

5.2 Approach and methodology

The recurrent regularization method here proposed has been conceived to be applied in cascade
to a module providing a rough optic flow estimation. Therefore, we first compare the regular-
ization obtained by the recurrent filter with the results obtained by (1) spatial averaging, (2)
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spatio-temporal averaging, (3) spatial median, (4) spatio-temporal median, (5) Wiener filtering
and (6) bilinear interpolation. More generally, from a conceptual point of view, we can frame
our technique as a combination of local and global constraints (cf. CLG methods [3]), where
Gabor filters implement the local averaging of the spatial constancy assumption, and the linear
model acts as a global regularization constraint. Yet, it is worth noting that, the linear constraint
is applied independently for each patch, by minimizing respect the affine parameters related to
each patch. As a whole the optic flow is thus regularized by assuming a piecewise linear con-
straint. From an implementation point of view, the regularization is solved iteratively (cf. Horn
and Schunk), and the tentative solution (e.g., provided by the local term) is iteratively refined
on the basis of the spatial contextual information. This meets the intrinsic iterative nature of
the KF. It worth noting that the KF filter approach allows us to update the estimates continu-
ously as new measures are available, which is a key feature of the KF. From this perspective, it
is interesting to analyze the “quality” of the initial (tentative) solution: the better is the initial
optic flow measurement, the more reliable will be the final (regularized) solution.

5.2.1 Error metrics

To rate the quality of the regularization methods it is common to use error measures, which
compare the estimated (and regularized) to the correct flow field. There are severale possibil-
ities in the literature to compute this error: the average angular error (AAE) or the average
squared �� norm error (ASL2E). The first is the most used error measure in the literature,
so we decided to follow this approach to compare our regularization method with the other
approaches.

The average angular error is defined as follows:

��� �
�

����

���
���

���
���

������
���� �	����� �	 � 	��� �		���� �	 � ��

����� �	
� � 	��� �	

� � �	������ �	
� � 	���� �	

� � �	
(20)

where ��� 		 is the correct flow field and ���� 	�	 is the estimated one.
It is worth noting that the AAE has an advantage as well as a disavantage. The advantage

is the fact that errors in pixels are not amplified inherent by large displacement (velocity), the
disavantage is that velocities are not attached importance and if there are image sequences with
different types of translational motion or slightly changing displacements of the same direction,
then neglecting the minor occuring motion or adjusting the speed (e.g. by smoothing) may lead
to a better average angular error.

The majority of the papers in the literature use AAE measure, so we decided to use this
metric instead of others.

5.3 Compression

The patch-based approach allows us to reconstruct the optic flow values within a patch from
the � affine coefficients. So the method can be also considered as a compression tecnique. In
this Section we analyze the compression ratio, by considering the parameters chosen for the
analysis presented in the following Sections. We have taken into account patches of 
 different
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size: � � �, �� � �� and �� � ��, and the overlapping is a third of the dimension (�, � and �,
respectively). In this case the compression ratio is ��
 � �, ��
 � � and ���
 � �, respectively.

In general, the compression ratio we can obtain is given by:

�� �

�� ��
�
	�

(21)

where � is the patch dimension and # is the overlap.
Since the aim of this deliverable is to analyze and compare the regularization issue, we

decide to overlap the patches in order to obtain better results for the regularization instead of
the compression.

5.4 Contextual combination of partially reliable data

In general, the local extraction of optical flow is relatively inaccurate and non-robust. By non-
robust, we mean that the accuracy, in particular parts of the image, is often considerably worse
than the general accuracy attainable over much of the rest of the image. The degradation in
accuracy is due to a number of factors such as larger noise in that region and/or failure of
the underlying image motion model. There are a number of reasons why particular methods
of optic flow produce erroneous or inaccurate results. It is useful to categorize these sources
according to: (1) failure of the image/motion model [failure of the brightness consistency (weak
or strong forms); failure of the motion consistency (weak or strong forms)]; (2) noise (e.g.,
sensor noise, poor approximation of derivatives in a differential based scheme). When local
constraints fail, we can obtain support from neighbor pixels. In particular, (i) when information
about motion is missing (and/or is unstable in time) in some points we need the introduction of a
spatial (spatio-temporal) coherence, and (ii) when constraints do not hold everywhere (yielding
to motion vector outliers) we need methods for combining them robustly. In the following
we compared the results of different post-processing techniques: (1) spatial averaging, (2)
spatio-temporal averaging, (3) median, (4) spatio-temporal median, (5) Wiener filtering and
(6) bilinear interpolation.

For the implementation of these filters we have taken into account both the problem of
the border and the non valid values. We have handled the unreliable values of optic flow (the
reliability measure comes from the front-end) in the same way of the Kalman Filter technique:
if less than half of the values within a patch are under threshold the patch is considered valid
and the filter works on the valid values, otherwise the patch is discarded. Different levels of
Gaussian noise2 have been added to the following sequences:

	 Otte Sequence (or Marble sequence)

	 Yosemite Sequence with clouds

	 Diverging tree

	 Translating tree.

2It is worth noting that, though different noise models can be used, we have decided to use a Gaussian noise
model since it allows a more direct comparison of the results available from the literature.
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The results of the comparison are shown in Tables 1-4. An example of regularized optic flow
is shown in Figure 15.

(a) Yosemite sequence (b) Ground truth

(a) Optic Flow (b) Regularized Optic Flow

Figure 15: (Yosemite sequence) Comparison between ground truth, optic flow computed with
a Gaussian noise added and regularized optic flow with Kalman filter noise $ � ��.

We further comparatively measure the performance of our technique on the noisy optic
flows currently obtained by the mixed software hardware simulations of the FPGA front-end
(updated at May 25 and May 30 2008, respectively). The results are shown in Tables 5 and 6.
We observe that error on the FPGA-based flow estimates is still quite high and currently justifies
a post-processing regularization. The conclusion of the comparison with other techniques are
the same we drawn for the artificial noise analysis described above.

5.5 Combining “local” and “global” constraints

One of today’s most widely used techniques for the computation of the optic flow are dif-
ferential methods. Together with phase-based counterparts such as [23] they belong to the
techniques with the best performance [11] [13]. Generally, differential techniques can be clas-
sified into two broad classes. On one hand there are local methods, which often lead to sparse
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Kalman 	 � 	 AAE ��	� ���� ���
	 �
�
�

STD ����	 ����� �	��� �����

dens ��� �� �	 �	

�� � �� AAE ���
 ���� ��
� �����

STD ���	� ����� ���
� �����

dens ��� ��� �	 ��

�� � �� AAE ��		 	��� 
��� �����

STD ����	 ����� ����� �����

dens �	 �	 �	 �	

Table 1: Results for the Yosemite sequence with clouds. Gaussian noise with varying standard
deviations $� has been added.
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patch �� � � �� � ��

phase-based AAE ��		 ���


STD ����� �����

dens 

 ��

spatial averaging 	� 	 AAE 	�	
 
���

STD ����� �����

dens �� 
�

�� � �� AAE 	��� 	�
�

STD ����� �����

dens �� 
	

�� � �� AAE 	��� 	���

STD ����	 ����	

dens �� 



spatio-temporal averaging 	� 	 AAE 	��� ���	

STD ����	 �����

dens �� 
�

�� � �� AAE ��
� 	���

STD ����� �����

dens �� 
	

�� � �� AAE 	��� ����

STD ����� �����

dens �� 



median 	� 	 AAE 	��� 
���

STD ����� �����

dens �� 
�

�� � �� AAE 	��� 	�	�

STD ����� ���
�

dens �� 
	

�� � �� AAE ���� ��	�

STD ����� �����

dens �� 



spatio-temporal median 	� 	 AAE ���� 	���

STD ����� �����

dens �� 
�

�� � �� AAE ���� ���	

STD ����
 ���
�

dens �� 
	

�� � �� AAE ���� ����

STD ����
 �����

dens �� 



Wiener 	� 	 AAE ���� ����

STD ����� �����

dens 

 ��

�� � �� AAE ��	� ����

STD ����� �����

dens 

 ��

�� � �� AAE ��	
 ����

STD ����� �����

dens 

 ��

interpolation 	� 	 AAE ��	
 ��



STD ���
� ���	�

dens �� 



�� � �� AAE ���� �����

STD �	��	 ���	�

dens �� �


�� � �� AAE ����	 ����	

STD ����� �����

dens ��� ���

Kalman 	� 	 AAE ��	� 
�		

STD ���� �����

dens 
� ��

�� � �� AAE ���� ��
�

STD 
�
� �����

dens 

 ��

�� � �� AAE ���� ���	

STD 
�	� �����

dens 

 ��

Table 2: Results for the Otte sequence. Gaussian noise with varying standard deviations $� has
been added.
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patch �� � � �� � ��

phase-based AAE ���� ����

STD ��	� ���
�

dens ��� ��

spatial averaging 	� 	 AAE ��
� 	���

STD ���� ����

dens ��� ��

�� � �� AAE ��
� ����

STD ��	� ����

dens ��� ��

�� � �� AAE ���	 ��		

STD ���	 ����

dens ��� ��

median 	� 	 AAE ��

 	���

STD ���� ����

dens ��� ��

�� � �� AAE ���� ����

STD ��
	 ��	�

dens ��� ��

�� � �� AAE ���� ���


STD ���� ��	�

dens ��� ��

Wiener 	� 	 AAE ���� 	���

STD ���� 
���

dens ��� ��

�� � �� AAE ���� ����

STD ���� 	���

dens �� ��

�� � �� AAE ��	� 	���

STD ���� ����

dens �� ��

interpolation 	� 	 AAE ��
� 
���

STD ��
� ����

dens ��� ��

�� � �� AAE ���� 
��


STD ���� ����

dens ��� ���

�� � �� AAE ���� ����

STD ���� �����

dens ��� ���

Kalman 	� 	 AAE ���� ��	�

STD ���� 	���

dens ��� ��

�� � �� AAE ��
� ����

STD ���� 	���

dens ��� ��

�� � �� AAE ��
� ���	

STD ��	� ����

dens ��� ���

Table 3: Results for the Diverging tree sequence. Gaussian noise with varying standard devia-
tions $� has been added.
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patch �� � � �� � ��

phase-based AAE ���� ����

STD ���� 	�	�

dens ��� ��

spatial averaging 	� 	 AAE ��	� ����

STD ���� ����

dens ��� ��

�� � �� AAE ���
 ����

STD ���� ����

dens ��� ��

�� � �� AAE ��
� ����

STD ���� ����

dens ��� ��

median 	� 	 AAE ���� ����

STD ���� ��
�

dens ��� ��

�� � �� AAE ���� ���


STD ��		 ����

dens ��� ��

�� � �� AAE ���� ����

STD ���� ���

dens ��� ��

Wiener 	� 	 AAE ��		 ����

STD ��
� ����

dens ��� ��

�� � �� AAE ��	� ���


STD ��
� 	���

dens �� ��

�� � �� AAE ��	� ����

STD ��
� ��	�

dens �� ��

interpolation 	� 	 AAE ��	� ����

STD ���� ����

dens ��� ��

�� � �� AAE ���� ����

STD ���� ��



dens ��� ���

�� � �� AAE ��	� ����

STD ��	� 	���

dens ��� ���

Kalman 	� 	 AAE ���
 ����

STD ��
� ����

dens ��� ��

�� � �� AAE ���� ��	�

STD ���	 ��	�

dens ��� �


�� � �� AAE ���� ����

STD ���� ����

dens ��� ���

Table 4: Results for the Translating tree sequence. Gaussian noise with varying standard devi-
ations $� has been added.

patch 	 � 	

AAE STD dens
FPGA simulation ����� ����� ��

Kalman ����� ����� ��

spatial averaging ���	� ����� ��

median ����� �	��� ��

Wiener �
��� �	��� ��

interpolation �	��� ����� ��

patch �� � ��

AAE STD dens
FPGA simulation ����� ����� ��

Kalman ����� ����� ��

spatial averaging ���	� ����� ��

median ����� ����� ��

Wiener �
��� ����� ��

interpolation �	��� �	��
 ��

patch �� � ��

AAE STD dens
FPGA simulation ����� ����� ��

Kalman ����� ����� ��

spatial averaging ����� ����� ���

median ����� ���
� ���

Wiener �
��
 ����� ��

interpolation ����� �	�
� ���

Table 5: Results for the Yosemite sequence with clouds. The optic flow is obtained by a
multiscale software simulation of FPGA.

patch 	 � 	

AAE STD dens
FPGA simulation ����	 ���
� �


Kalman ����� ����� ����

spatial averaging ���
� �
��� ���

median ����� �
�	� ���

Wiener ����� ����� �


interpolation ���	� ����	 ���

patch �� � ��

AAE STD dens
FPGA simulation ����	 ���
� �


Kalman �
�	� ����� ���

spatial averaging �
�	� �	��� ���

median ����� �	��
 ���

Wiener �
�
� �
��� �


interpolation ����
 �
��� ���

patch �� � ��

AAE STD dens
FPGA simulation ����	 ���
� �


Kalman �
��� ����	 
�

spatial averaging �
��� ����� ���

median �	�
	 ����
 ���

Wiener �
��	 �	��� �


interpolation ����� �
�
� ���

Table 6: Results for the Yosemite sequence with clouds. The optic flow is obtained by a mixed
software hardware simulations of the FPGA: the optic flow part is performed directly using the
FPGA and the multiscale part (expansion, merge procedure and warping) is performed by the
software model.
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flow fields by neglecting the image areas where normal flow cannot be estimated. Using spa-
tial/spatiotemporal constancy assumptions to cope with the aperture problem their flow field is
often computed by optimizing some local energy expression. A typical representative of this
strategy is the Lucas-Kanade technique [12] and the structure tensor approach of Bigün et al.
[24] [25]. On the other hand there are global methods, that lead to 100 % dense flow fields,
but are not that robust under influences of noise. Supplementing the optic flow constraint
with a regularizing smoothness term global energy based functionals are obtained, that have to
be minimized. The classic Horn and Schunck technique [1] and its numerous discontinuity-
preserving variants [26, 27, 28, 29, 30, 31, 2, 32, 33, 34, 35, 36] can be counted to this strategy
type. Recently, Brhun et al. have systematically discussed the role of the different smoothing
strategies and their effects. On that basis, they developed and analyzed in detail a novel “hy-
brid” approach that combines the advantages offered by local and global techniques [3] and
that is formulated as a general variational problem:

���	 �

	


����� ������� �

	


�� !"��#$��#�% ������ (22)

where & is the image domain and the parameter � controls the relative importance of the two
terms.

Since the prototypical approach of Horn and Schunck [1] in 1981, variational methods
are among the best performing and best understood techniques for computing the optic flow.
Such methods determine the desired displacement field as the minimiser of a suitable energy
functional, where deviations from model assumptions are penalised. In general, this energy
functional consists of two terms: a data term that imposes temporal constancy on certain im-
age features (e.g. brightness or its phase), and a smoothness term that regularises the often
non-unique (local) solution of the data term by an additional smoothness constraint. While the
data term represents the assumption that certain (characteristic) image features do not change
over time and thus allow for a retrieval of corresponding objects in subsequent frames, the
smoothness term stands for the assumption that neighbouring points most probably belong to
the same object and thus undergo a similar type of motion. Variational optic flow methods are
global methods. If there is not sufficient local information, the data term is os small that it is
dominated by the regularization term, which fills in information from more informative sur-
rounding locations. Thus, in contrast to local methods, the filling-in effect of global variational
approaches always yields dense flow fields such that no subsequent interpolation steps become
necessary. Everything is automatically accomplished within a single variational framework.
The price to pay for such advantages is the high number of iterations that are usually required
to solve (at each frame!) large linear (or non linear) systems of equations with the desired ac-
curacy. Since only neighboring pixels are coupled in iterative relaxation schemes, it may take
thousand of iterations to propagate information to large distances, and usually multigrid ap-
proaches are adopted to guarantee a much faster convergence (e.g., see [37]. It is worth noting
that the recursive solution of our Kalman-based regularization filter overcomes this problem,
since the filter uses statistical models to properly weight each new measurement relative to past
information, and the algorithm iteratively repeats itself for each new measurement vector, using
values stored from the previous cycle. (Yet, it pays the price of the memory required to store
the whole status vector of the previous step!).
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From this general perspective, the optic flow regularization technique we proposed can be
framed within a combined local/global approach. Indeed, considering that:

1. the phase-based front-end optic flow algorithm implements a “local” data conservation
constraint based on phase constancy, where (spatial) locality is related to the size of the
spatial quadrature pair of Gabor-like bandpass kernels by which the image sequence is
pre-filtered, and

2. the affine optic flow models implement patch-wise linearity constraints (cf the linear
models ����	 defined in Section 3 of this report),

we can interpret, at a conceptual level, our approach as a recursive solution of the following
general variational problem:

���� �	 �
�
�

	


�
%��� &	 � ��� �		� ��� �
�
�

	
�

�� � ����	���� (23)

where ' is the orientation channel associated to the bandpass Gabor filter used in WP1, &�

is the !-th image patch, and � � ���� ��� ��� ��� ��� ��� are the affine coefficients. The iterative
solution of 23 can be interpreted as the update equation of KF (cf. Eq. 12).

In the following we will compare the Kalman-based recurrent regularization with the sev-
eral formulations of combined “local” and “global” methods, by considering the effect of the
single components as well as that of their combinations:

Local vs. local: comparative analysis of the phase-based local solution vs. Lucas and
Kanade by varying: (1) the filter size (and number of scales) and (2) the noise variance.

(Local+global) vs. (local+global): comparative analysis of the Kalman-based regu-
larization of the phase-based local solution respect with (1) Horn and Schunck ( pure
“global”), (2) Combined Local-Global (CLG) methods ([3]), by varying: (1) the scale
(pyramid level) and (2) the noise variance.

Global linear constraints: specific comparative analysis on different methods using
linear parameterization constraints of the optic flow [4] [5].

5.5.1 Lucas and Kanade

The idea behind this technique is the assumption of a constant optic flow field within a certain
neighborhood of size (. In addition the gradient constraint equation is used ("�	� � "�	� �
"
 � �). Embedded in a weighted least square fit, those two assumptions make it possible to
overcome the aperture problem and thus to determine the unknown constants 	� and 	� in each
location ��� �� &	 minimizing the following function:

�����	 �

	


)� � �"�	� � "�	� � "
	
��� (24)

or, equivalently, in a more compact form:

�����	 �

	


�� �)� � *	 ��� �

	


��*� ��� (25)
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where

* �



� "�� "�"� "�"

"�"� "�� "�"

"
"� "
"� "�


�


is the motion tensor, � � �	�� 	�� �	, and )� is a Gaussian convolution kernel, whose standard
deviation ( serves as an integration scale over which the main contribution of the least square
fit is computed. This technique results in non-dense flow fields, maybe one of the major draw-
backs of local flow estimation strategies since many computer vision applications require dense
flow estimates. Therefore subsequent interpolation steps are required. But this method has also
a lot of advantages: (i) no need for an iterative algorithm making the implementation easy and
effective, (ii) fast performance, (iii) robustness under noise. Especially when dealing with very
noisy images Lucas and Kanade’s leads to good results using a sufficiently large value for ( .

The comparisons between the DRIVSCO phase-based optic flow algorithm and Lucas and
Kanade 3are shown in Table 7 for the following standard sequences:

	 Diverging Trees

	 Translating Trees

	 Yosemite sequence with/without clouds

In all situations we also added a Gaussian noise with STDs $� � �� ��� ���. Following the
approach in [38] the noise for each frame within a sequence is created separately and therefore
not identical. The results of the Lucas and Kanade method are obtained from [38]. The results
in this Section have been computed by optimizing the parameters of the phase-based algorithm
in order to obtain the lowest average angular error and the highest density. We used constant
parameters for all the sequences and for each $� except for the number of scales. A proper
choice of the parameters would give lower average angular error especially when there is no
noise added. Since the optic flow from the hardware front end might be noisy and unreliable
we decided to test our approach even in presence of high noise values.

5.5.2 Horn and Schunck

In contrast to the local Lucas and Kanade method, Horn and Schunck’s technique [1] uses a
global strategy that satisfies the demand for a dense flow estimate. Thus, it is our representative
of the class of global differential methods. They embed the gradient constraint into a regular-
ization framework to end up with the desired dense flow field. That leads to a global energy
functional:

�����	 �

	


��*���� �

	


�
	��
� � �
	��

��� �

	


��*���� �

	


��
�
� ��

�
� ��

�
� ��

�
��

(26)
where the �� � ����	 are the linear (affine) coefficients defined in Eq. (7). The energy functional
itself consists of two different terms: the data term, that penalizes deviations from the grey

3Here we used a single scale implementation of the Lucas and Kanade algorithm [38], where the integration
scale � is adapted to the kind sequence.
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Diverging Tree
$� � � $� � �� $� � ��

Lucas/Kanade AAE ��
� ���� ���

STD ���� ���� ����

phase-based AAE ���� ���� �
���
STD ���
 ����� �
�
�

Transating Tree
$� � � $� � �� $� � ��

Lucas/Kanade AAE ���� ���� ����
STD ���� ���� ���


phase-based AAE ���� ���� ����
STD ���� ���� ����

Yosemite with clouds
$� � � $� � �� $� � ��

Lucas/Kanade AAE ���� ����
 �����
STD ����
 ����� �����

phase-based AAE ���� ����� �����
STD ����� ����� �����

Yosemite without clouds
$� � � $� � �� $� � ��

phase-based AAE ���� ���� ����
STD 
��� ���� ����

Table 7: Results for the diverging tree, translating tree and Yosemite sequences.

value constance assumption (gradient constraint) and the smoothness term, where the square of
the flow gradient is used to penalize nonsmooth flow fields. This leads to smooth minimizing
functions �	���� �� &	� 	���� �� &		 guaranteeing at the same time the best compliance possible
with the optic flow constraint. The weighting of the smoothness term can be adjusted by the
weight � � � serving as a regularization parameter: larger values for � result in a stronger
penalization of large flow gradients thus leading to smoother flow fields.

5.5.3 Least Squares and Total Least Squares methods

The methods described in [39] assume some motion consistency within a patch (&�), after
having computed the spatio-temporal derivatives of the image brightness function. Then an
estimate of the motion is obtained with an Ordinary Least Squares technique (WLS) or with
the proposed Total Least Squares method (WTLS).

5.5.4 Combined Local-Global (CLG)

The aim of the Combined Local-Global (CLG) method described in [40] [37] [3] is to combined
the advantages of both local and global approaches for the computation of optic flow. The
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authors combined Lucas and Kanade algorithm (local) with Horn and Schunk method (global):

������	 �

	


��*����� �

	


��
�
� ��

�
� ��

�
� ��

�
�� (27)

More precisely, different types of spatial and spatiotemporal regularisers can be implemented
(see [3]). Indeed, with respect to the fact that the motion of objects often varies only slowly over
time, it seems desirable to impose some amount of temporal or piecewise temporal smoothness
as well. In this context, one may also think of extending the Gaussian smoothing to the tem-
poral domain. Althought in principle introducing spatiotemporal models is not very difficult,
in practice spatiotemporal models have not been used too often so far. An early suggestion
for spatiotemporal anisotropic image-driven regularisers goes back to Nagel [41], followed by
spatiotemporal flow-driven approaches such as [28] [42]. The main reason why such tech-
niques have hardly been studied in the literature is the large amount of memory that is required
to process multiple frames simultaneously. In the meantime, however, the fast development
of standard desktop PCs allows even the computation of whole image sequences of reason-
able size and spatiotemporal methods became increasingly appealing in the last years. For the
sake of completeness, we will consider in the comparison both spatial (2D-CLG) and spatio-
temporal (3D-CLG) implementations, as well as non-linear (i.e., nonquadratic optimization)
and multiresolution implementations of the CLG method. We compare the result obtained with
our approach using the Yosemite sequence, for which the comparative results are available in
the considered papers.

Tables 8 and 9 are organized as follows:

	 In the first column there is the name of the algorithm.

	 In the second column there is a summary of the parameters that have been chosen for the
comparison.

	 The last 
 columns show the average angular error (AAE), the standard deviation (STD)
and the density.

5.5.5 Noise sensitivity

A specific analysis on the effects of input noise on the results of the methods presented in
Section 4.5 is shown in Table 10 and Table 11.

5.6 Model-based regularization

The local constancy assumption over the interaction scale ( adopted by Lucas and Kanade, can
be extended to include a first-order, non constant, term in the flow constraint equation [22].
More generally, for a small image region &�, an affine (linear) transformation is assumed to
well approximate the image motion of a smooth surface (cf. Eq. 4), and the best optic flow
estimation is obtained by minimizing the energy functional:
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parameters AAE STD Dens.

Horn/Schunck (Barron et. al 1994). 
���� - ���
WLS2 $ � ���� ��� ��� � � 
�, no check 
��� ���� ���

$ � ���� ��� ��� � � 
�� +� � ���� 
��
 ���� ����
WLS6 $ � ���� ��� ��� � � 
�, no check ���� ���� ���

WTLS2 $ � ���� ��� ��� � � 
�, no check ���� 
��� ���
$ � ���� ��� ��� � � 
�� +� � ���� ���� ���� ����

WTLS6 $ � ���� ��� ��� � � 
�, no check ���� ���� ���
$ � ���� ��� ��� � � 
�� +� � ���� ���� ���� ���

$ � ���� ��� ��� � � 
�� +� � ����� ���� ��
� ����

2D-CLG linear ���� - ���
3D-CLG linear ���� - ���
2D-CLG non linear ���
 - ���
3D-CLG non linear ���� - ���
2D-CLG non linear multires. ���� - ���
3D-CLG non linear multires. ���� - ���
Kalman �� � ���� ����� ���

��� �� ���� �
��� ���
��� �� 
��� ���
� ��

Table 8: Results for the Yosemite sequence with clouds.

parameters AAE STD Dens.

WLS2 $ � ���� ��� ��� � � 
�, no check ���� ���� ���
WLS6 $ � ���� ��� ��� � � 
�, no check ���� ���� ���

WTLS2 $ � ���� ��� ��� � � 
�, no check ���� ��
� ���
WTLS6 $ � ���� ��� ��� � � 
�, no check ���� ���� ���
2D-CLG linear ���� - ���
3D-CLG linear ��
� - ���
2D-CLG non linear ���� - ���
3D-CLG non linear ���� - ���
2D-CLG non linear multires. ���� - ���
3D-CLG non linear multires. ���� - ���
Kalman �� � ���� ���� ���

��� �� ���� ���� ���
��� �� ���� ���� ���

Table 9: Results for the Yosemite sequence without clouds
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$� � � $� � �� $� � �� $� � ��

2D-CLG AAE ���� ���� ���
 ���
�
STD ���� ���� ��
� ����

3D-CLG AAE ���� ���
 
��� ��
�
STD ��
� ���� 
�
� 
���

Kalman �� � AAE ���� ���� ���� �����
STD ���� ���� ����� �����

Kalman ��� �� AAE ���� ���� ���� �����
STD ���� ��

 ���� ������

Kalman ��� �� AAE ���� 
��� ���� �����
STD ���� ���� ���� �����

Table 10: Results for the Yosemite sequence without clouds. Gaussian noise with varying
standard deviations $� has been added.

$� � � $� � �� $� � �� $� � ��

2D-CLG AAE ���� ���� ����� �����
STD ���� ���� ����� ����


3D-CLG AAE ���� ���� ���� �����
STD ���� ��
� ���� �����

Kalman �� � AAE ���� ���� ����� �����
STD ����� ����� ����� �����

Kalman ��� �� AAE ���� ���� ���� ���
�
STD �
��� ����� �
��� �����

Kalman ��� �� AAE 
��� ��
� ���� �
���
STD ���
� ���
� �
��� �����

Table 11: Results for the Yosemite sequence with clouds. Gaussian noise with varying standard
deviations $� has been added.
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����	 �

	
�

�
" � ���	 � "
	
��� (28)

where � is the affine coefficient vector. This approach constitutes the “skeleton” of a general
class of methods that rely upon a linear parameterization of the optic flow (or image motion)
within a small spatial window. Additional “global” constraints are usually introduced to add a
spatial coherence constraint between the parameters of the neighboring affine patches. For the
comparison, we will refer to the original “Skin-and-bones” method [4] and to a more recent,
over-parameterized, variant [5].

5.6.1 Skin and Bones

In [4] the authors describe a method for estimating optical flow that strikes a balance between
the flexibility of local dense computations and the robustness and accuracy of global paramter-
ized flow models. The approach tiles the image with a fixed set of patches and assumes that the
motion within the regions can be represented by a small number of affine motions that can be
thought of as “layers”. A spatial coherence constraints that favors solution which are “smooth”
is also considered:

����	 �
�
�

	
�

��
" � ��� � "
	��� �

	


������ ���	��	�� (29)

where ���	 is a robust error norm and ���	 describes the neighboring affine motion.

5.6.2 Over-Parameterized Variational optical Flow

The Over-Parameterized Variational model presented in [5] represents optical flow vector at
each pixel by different coefficients of the same motion model in a variational framework. The
authors describe optical flow with a set of basis functions of the flow model (fixed and selected
a priori) and they recover the space and time varying coefficients of the model. They take
into account different models of motion within a patch: affine over-parameterized model, rigid
motion model, pure translation motion model and constant motion model.

In Table 12 only the results for the affine model with 
D smoothness constraints are re-
ported, because the approach is the most similar to Kalman-based regularization.

6 Discussion on related scenarios

Perception can be viewed as an inference process to gather properties of real-world, or distal,
stimuli (e.g., an object in space) given the observations of proximal stimuli (e.g., the object’s
retinal image). The distinction between proximal stimulus and distal stimulus touches on some-
thing fundamental to sensory processes and perception. The proximal stimulus, not the distal
stimulus, actually sets the receptors’ responses in motion. Considering the ill posedness of
such (inverse) problem, one should include (a priori) constraints to reduce the dimension of
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AAE STD

Bones ���� 
���
Skin&Bones ���� ����

Over-Param. var affine 2D ���� ��
�
Over-Param. var constant 3D ���� ����

Over-Param. var rigid motion 3D ���� ����
Over-Param. var affine 3D ���� ����

Over-Param. var translation 3D ���� ����
Kalman �� � ���� ����

Kalman ��� �� ���� ����
Kalman ��� �� ���� ����

Table 12: Results for the Yosemite sequence without clouds.

the allowable solutions, or, in other terms, to reduce the uncertainty on visual measures. These
considerations apply both if one tackles the problem of interpretation (understanding) as a
whole, and if one considers the confidence on single feature measurements. In general, KF
represents a recursive solution to an inverse problem of determing the distal stimulus based on
the proximal stimulus, in case

1. we adopt a stochastic version of the regularization theory involving Bayes’ rule

2. we assume Markovianity

3. we consider linear Gaussian models (linearity and Gaussian normal densities).

	 The first condition can be motivated by the fact that the a priori contraints necessary to
regularize the solution can be described in probabilistic terms. Bayes’ rule allows the
computation of the a posteriory probability !����	 as follows:

!����	 �
!����	!��	

!��	

where !��	 is the a priori probability densities for the distal stimulus and represents a
priori knowledge about the visual scene; !����	 is the likelihood function for �. This
function represents the transformation from the distal to proximal stimulus and includes
information about noise in the proximal stimulus. Finally, !��	 is the probability of ob-
taining the proximal stimulus. The inverse problem of determining the distal stimulus
can be solved by finding �� that maximizes the a posteriori probability, !����	. Such ��
is called a maximum a posteriori (MAP) estimator. Although the Bayesian framework
is more general than the standard regularization, there exist a relationship between the
deterministic and stochastic methods of solving inverse problems. Under some assump-
tions about the probability densities, maximizing the a posteriory probability !����	 is,
indeed, equivalent to minimizing the Tikhonov functional4.

4The regularization method of solving ill-posed inverse problems was formulated by Tikhonov in the early 60s
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	 The second concept, the Markovianity, captures the step-by-step local nature of the in-
teractions in a cooperative system, and makes possible Kalman recursion, by allowing
to express global properties of the state in terms of its local properties. Under these hy-
potheses the conditional probability that the system is in a particular state at any time is
determined by the distribution of states at its immediately preceding time. That is, the
conditional distribution of that states of a system given the present and past distributions
depends only upon the present. Specifically, considering the visual signal as a Random
Field, the Markovianity hypothesis implies that the joint probability distribution of that
random field has associated positive-definite, translational invariant conditional proba-
bilities that are spatially Markovian (Markov Random Fields (MRFs))5.

	 The third assumption represents the necessary conditions to achieve the exact, analytical
solution of the KF.

Relationships with MRFs. MRF theory is a branch of probality theory for analyzing the
spatial or contextual dependencies of physical phenomena. It is used in visual/image process-
ing to model context dependent entities such as image pixels and correlated features probalistic
distributions of interacting labels, i.e., to describe in statistical terms the structure and corre-
lations present in natural images. Formally, MRF theory tells us how to model the a priori
probability of contextual dependent patterns. Contextual constraints may be expressed locally
in terms of conditional probabilities !����� ���	, where � ��� denotes the set of values at the
other sites �� �� �, or globally as the joint probability !��	. Because local information is more
directly observed, it is normal that a global inference is made on local properties. How to make
a global inference using local information becomes a non-trivial task. MRF theory provides a
mathematical foundation for solving this problem, by relating global and local properties of a
cooperative system. Information on the nearest neighborhood is used to calculate conditional
probabilities. In their pioneering work, Geman and Geman [44] expressed the statistical prop-

[43]. In this method, the solution is obtained by finding ��, which minimizes a functional:

� � ����� ���� � ���	����

where � is a regularization parameter. The first norm evaluates how close the distal stimulus is to the proximal
stimulus, and the second norm evaluates how well the a priori constraints are satisfied. If the proximal stimulus
is reliable, � should be small, otherwise � should be large. In Tikhonov’s theory, � is assumed to be a linear
operator, 	� a linear combination of the first 
 derivatives of the distal stimulus �, and the norm are quadratic.

5A system is temporally Markovian if its state at a particular time depends on its state at the immediate
preceding time but not on any of its states at earlier times. Similarly, a system is spatially Markovian if the states of
its constituent elements depend on those of their neighbors, but not on the states of units that are spatially remote.
These local temporal and spatial properties can be described mathematically using the probalistic language of
Markov chains and processes, and Markov Random Fields (MRFs). Formally, by considering a random field
� � ����    � ��� as a family of random variables defined on the set �, in which each random variable � � takes
a value �� in �, � is said to be a MRF on � with respect to a neighborhood system � iff the following two
conditions are satisfied:


��� � ����


����������� � 
�������
�

where ���
� ���� ��� 	 ��� at the site neighboring �.
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erties of the natural images in terms of cooperative interactions among pixel elements. The
images are endowed with an artificial equilibrium dynamics that evolves the lattice system
through a series of configurations to a near-optimal low energy state. Depending on the task
being addressed, the optimal states obtained by MRF image processing methods, are those for
which noise, blur, and other artifacts have been removed (image reconstruction) and/or where
pixels belonging to the same entity have been identified (segregation and segmentation).

Remark 1: MRF methods for image processing usually assume to have the direct accessi-
bility to the “system”, whereas in Kalman filter theory only system’s measures are observable.
More generally we can refer to dynamic (discrete time) state space models [45] [46] [47] (cf.
also Hidden MRF) given by

���� � !����� � ����� � � � ���� � ��	 � �'���

���� � !����� � ����	 � �(��)��#�%�

where ���� contain the observations at time step �, while ����� is an underlying stochastic
process which in some cases may have a physical meaning while in other cases it is merely
included in order to describe the distribution of the observation process properly. Typically,
some prior distribution is placed on ����. An important task when analyzing data by state
space models is estimation of the underlying state process, based on measurements from the
observation process. The interest might be on ���� itself, or merely is a tool for making pre-
diction on ����. In this perspective, the process (state) equation can be a MRF. The presence
of the measurement equation (observations) makes more evident the distinction between the
feed-forward and feed-back components of the filter.

Remark 2: Although it is straightforward to derive, in the case of dynamic state-space mod-
els (MRF models in time series) for linear Gaussian models, the KF, as an efficient and exact
algorithm for computing inference, spatial MRFs should be reformulated to be mathematically
identical to dynamic models and make the KF work.

Remark 3: The process equation, thought as a state space model describes the statistical
properties of the system (visual signal). In this sense, it can be used to model statistical Gestalt
rules (good continuation, common fate, etc.) with typical constraint priors, such as “smooth-
ness”, “continuity”, etc. Yet, optic flow patterns generated by ego- or rigid-body motion, show
specific features that cannot be described only in statistical terms, since the velocity vectors in
different spatial locations are subject to topological and geometric constraints. It is worthy to
note that the process equation adopted in our study, models a structural property of the state
space. In that sense, it is possible to describe specific vector configurations over (large) spatial
regions (i.e., “that radial pattern outflowing from , ” vs “radiality”). Accordingly, the filter be-
haves as a template-matching model. To look for Gestalts on the basis of statistical properties
a different approach should be followed, requiring the definition of a process equation on a
statistical basis.
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7 Conclusions

The recurrent adaptive regularization technique proposed in this deliverable always yields bet-
ter results than those of other non-adaptive averaging operations, for the increasing values of
noise level added on the input visual signal. Yet, if the optic flow available from the hard-
ware front-end is sufficiently reliable, it is not convenient to implement the adaptive technique
since almost equivalent results can be obtained with less computationally expensive techniques.
However, the approach proposed could be useful to provide an high-order description of mo-
tion, focusing for example on kynetic boundaries, rotation and expansions of optic flow. These
high-order descriptors can be used to provide a compact representation of optic flow that allows
us to describe a patch of optic flow by the � coefficients of the affine model, only. Therefore,
the adaptive patch-based method can be used as a regularization method if the representation
maps obtained from the hardware front-end are very noisy. Though, even if not used for regu-
larization purposes, in the framework of DRIVSCO this patch-based optic flow representation
can be seen as high-level features (symbolic level) on which basic semantics can be applied.
This represents a straightforward link to the work in WP3 (feedback loops as signal-to-symbol
loops). This will be explored in the next period.
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ABSTRACT
Parametric models are widely used in motion analysis. Tra-
ditionally, affine or learned models are adopted. Here, we
propose the use of a set of linear models that dynamically
adjust their properties to approximate first-order structures
in noisy optic flow fields. Each model is generated by
the evolution of a recursive network that can be used as
a process equation of a multiple model Kalman Filter. The
presence of a model is checked by computing the consis-
tence between the observations (data) and the predictions
(model). In each image region, for each model, a prob-
ability value can be computed, on which to base motion
analysis. Experimental results on multiple motion detec-
tion problems and facial expressions analysis validate the
approach. The algebraic transformations relating our linear
descriptors with the traditional affine models are discussed.
KEY WORDS
Recursive Filtering, Motion Detection, Kalman Filter, Op-
tic Flow.

1 Introduction

Reliable complex (e.g. multiple or non rigid) motion anal-
ysis is a challenging problem in computer vision, with sev-
eral impacts in different application domains. Indeed, dis-
tinguishing on visual basis, different motion causes may
help the recognition of actions and events [1] [2] [3], such
as gestures [4] [5] and facial expressions [6], the location of
objects whose trajectory could intersect observer’s path, or
to coordinate movements to interact with other moving ob-
jects (separating ego-motion from independent object mo-
tion), as well the reconstruction of the 3-D structure of the
observed scene.

The multiple motion detection problem can be ad-
dressed as a segmentation problem relying on local descrip-
tors of the optic flow. A popular class of local flow descrip-
tors is based on parameterized models of optic flow [7].
Such models, learned from examples [8] [9], or specified
a priori as constant and affine (linear) models, are charac-
terized by a small number of parameters, which provide a
concise description of the optic flow structure that can be
used to recognize motion patterns from image sequences.
In general, linear models can be used both for estimating

optic flow directly from the spatio-temporal image deriva-
tives and for filtering a dense optic flow field. In the recent
years, the former approach greatly affermated [10] since
the recovering of the model coefficients directly from the
spatiotemporal variations of image intensity improves the
accuracy and stability of the motion estimates. These meth-
ods work very well when the model is a good approxima-
tion to the image motion, but they fall short when large
image regions are not well modeled by a single parametric
motion. This could happen because of the complexity of
motion or because of the presence of multiple motions.

In this paper, we propose a method to design ad-
justable linear models for the analysis of complex dense
optic flow fields. The models are specified as discrete
space-time dynamical systems, in the velocity space, that
are characterized by an unforced or “free” response, given
by the structure of network interconnections, and a forced
response related to the contingent local optic flow infor-
mation in input. In this way, given a motion information
represented by an optic flow field extracted by a “classi-
cal” algorithm, we recognize if a group of velocity vectors
relates to a specific motion pattern, on the basis of their spa-
tial relationships in a local neighborhood. More precisely,
the analysis/detection occurs through a spatial recurrent fil-
ter that checks the consistency between the spatial struc-
tural properties of the input flow field pattern and a set of
linear models representing (first-order) elementary compo-
nents of the optic flow [11]. In order to design a filter that
checks this consistency, in an adaptive way, the linear mod-
els can be considered the process equations of a multiple
model Kalman Filter (KF). Motion segments emerge from
the noisy flows as the output of the KF that compares its
prediction to the actual observations of the local properties
of the optic flow.

Many works in the literature make use of the Kalman
Filter for motion estimation. It has been used to estimate
kinematic parameters (rotational and translational veloci-
ties and acceleration) of three-dimensional features [12] or
to track 2D features through a sequence [13]. In [14] affine
motion models are used to perform a region-based tracking
in long image sequences and a standard Kalman Filter gen-
erates recursive estimation of each motion parameter. The
novelty of the approach presented in this paper is in the def-



inition of models, which describe the optic flow and not the
motion in the 3D space.

2 Linear models

Motion flow fields usually consist of large patches of flow-
patterns, which result from a common cause (e.g., from
ego-motion or object motion). These flow-patterns can be
characterized on the basis of their first-order (linear) differ-
ential properties. From this perspective, local spatial fea-
tures around a given location of a flow field can be of two
types [11]: (1) the average flow velocity at that location,
and (2) the structure of local variation in the neighborhood.
The former relates to the smoothness constraint or struc-
tural uniformity, the latter refers to the linearity constraint
or structural gradients. Velocity gradients provide impor-
tant information about the 3-D layout of the visual scene.

Formally, the velocity gradient tensor can be written
as follows:

T =

[

T11 T12

T21 T22

]

=

[

∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

]

. (1)

If we consider a point x = (x, y) in the spatial image
domain, the linear properties of a motion field v(x, y) =
(vx, vy) around the point x0 = (x0, y0) can be character-
ized by a first-order Taylor expansion:

v = v̄ + T̄x = v̄ +

[

T̄11 T̄12

T̄21 T̄22

]

x (2)

where v̄ = v(x0, y0) = (v̄x, v̄y) and T̄ = T|x0
. By

breaking down the tensor in its dyadic components, the mo-
tion field can be locally described through two-dimensional
maps representing elementary flow components (EFCs)
and Eq. (2) can be written as:

v = α
xv̄x+α

yv̄y +d
x
xT̄11+d

x
y T̄12+d

y
xT̄21+d

y
yT̄22 (3)

where α
i are pure translations:
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j are cardinal deformations:

d
x
x :

[

x
y

]

7→

[

x
0

]

, d
x
y :

[

x
y

]

7→

[

y
0

]

d
y
x :

[

x
y

]

7→

[

0
x

]

, d
y
y :

[

x
y

]

7→

[

0
y

]

.

The components of pure translations α
i can be incorpo-

rated in the corresponding deformations components, thus
obtaining generalized deformation components:

v
x
x = a1α

x + a2d
x
x , m1

v
x
y = a3α

x + a4d
x
y , m2

v
y
x = a5α

y + a6d
y
x , m3

v
y
y = a7α

y + a8d
y
y , m4

(4)

In this way, we have four classes of deformation gradients:
one stretching (vi

i) and one shearing (vi
j) for each cardinal

direction. As it will be clear in the following, this choice
gives to the model maximum flexibility: every gradient de-
formation within a single class will be built through the
same recurrent network, just by changing its driving inputs
on the basis of direct local measures on the input optic flow.
Figure 1 shows the four classes of deformation gradients.
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Figure 1. The generalized deformation components (vx
x,

v
x
y , v

y
x, v

y
y) are obtained by incorporating the pure transla-

tions in the corresponding cardinal deformations.

It is worthy to note that Eqs. (3) and (4) describe, in fact,
an affine model:

[

vx

vy

]

=

[

c1

c4

]

+

[

c2 c3

c5 c6

]

·

[

x
y

]

(5)

where ci are constants and vx and vy are the horizontal
and the vertical components of the flow. The parameter
vector [c1, c2, . . . , c6] describes a specific configuration of
optic flow that locally provides a good approximation of
3D rigid moving objects. The six parameter affine model
is reasonable to describe the motions of smooth surface in
small image regions. The affine model is not sufficient
to describe non rigid motion, like the motion of a human
face [6]. However the motion within small patches can be
still approximated by a first-order model. The relationships
between these patches will describe the global motion of
the face. The parameters ci have qualitative interpretations
in terms of image motion, for example c1 and c4 repre-
sent horizontal and vertical translation and we can express
divergence (isotropic expansion), curl (rotation about the
viewing direction), and the two components of shear defor-



mation (squashing, def1, or stretching, def2) as combina-
tion of the ci’s:

div = c2 + c6

curl = c3 − c5

def1 = c3 + c5

def2 = c2 − c6

(6)

3 Kalman filtering

The problem of evidencing the presence of a certain com-
plex pattern in the optic flow is posed as an adaptive fil-
tering problem. The Kalman Filter is an optimal recursive
adaptive filter [15], in the sense that it can iteratively pro-
cess new measures as they arrive, on the basis of the knowl-
edge about the system obtained by previous measurements.
Kalman filtering is an optimal estimator if noise is inde-
pendent, zero-mean and normally distributed. The output
of the filter will be the a posteriori estimate of motion field
improved by the additional (contextual) information pro-
vided by Kalman innovation.

Kalman filtering needs a measurement equation and
a process equation. Formally we can write the following
measurement equation:

v[k] = C[k]v[k] + n1[k] (7)

where v[k] is the optic flow at current time k, an intensity-
based measure of the actual velocity field v[k] and n1[k]
models the uncertainty of the algorithm. The linear opera-
tor C represents a general “early-vision filter” providing a
noisy measure of an observable property of the visual stim-
ulus.

The process equation models the temporal evolution,
from the previous step k − 1 to the current time k, of the
relationships among visual features over a fixed spatial re-
gion, according to specific rules embedded in the transition
matrix Φ:

v[k] = Φ[k, k − 1]v[k − 1] + n2[k − 1] + s[k − 1] (8)

where s[k] is a driving input that can be interpreted as the
boundary conditions of a lattice network (see Figure 2) and
n2[k] represents the process noise. Matrix Φ together with
driving inputs s[k] implements a specific linear deforma-
tion component (see Eq. (4)). More precisely, this ma-
trix models space-invariant nearest neighbor interactions
within a finite region Ω in the image plane.

The driving input s[k] is evaluated at each step, by
computing the average of optic flow velocity components
at the boundary. So, the four models are adapted to
the measures continuously. The spatial interactions oc-
cur separately for each component of the velocity vec-
tors through anisotropic nearest neighbor interconnection

schemes. Specifically, for the x component we have:

vx(i, j)[k] = wx
Nvx(i, j − 1)[k − 1] +

+ wx
Svx(i, j + 1)[k − 1] +

+ wx
W vx(i − 1, j)[k − 1] +

+ wx
Evx(i + 1, j)[k − 1] +

+ wx
T vx(i, j)[k − 1] +

+ nx
2
(i, j)[k − 1] +

+ sx(i, j)

(9)

and the same equation applies for vy . The resulting pattern
depends on the anisotropy of the interaction scheme and on
the boundary conditions. By example, considering, for the
sake of simplicity, a rectangular domain Ω = [−L, L] ×
[−L, L], the EFC m1 can be obtained through:

wx
T = 0.1

wx
N = wx

S = 0 wy
N = wy

S = 0
wx

W = wx
E = 0.45 wy

W = wy
E = 0

sx(i, j) =







λ if i = −L
µ if i = L
0 otherwise

sy(i, j) = 0

where the boundary values λ and µ are related to the co-
efficients c1 and c2, and control the gradient slope and the
constant term. In a similar way we can obtain the other
components (see Figure 2). In this way, all the struc-
tural constraints necessary to model the continuum of lin-
ear deformations are embedded in the lattice interconnec-
tion scheme of the process equation. The resulting lattice
network has a structuring effect constrained by the bound-
ary conditions that yields to structural equilibrium config-
urations, characterized by the specific first-order EFCs that
properly describe the input flow.

To describe the Kalman filtering processing, we de-
fine v̂[k|Vk−1] as the a priori state estimate at step k, given
the knowledge of the process at step k − 1, and v̂[k|Vk] as
the a posteriori state estimate at step k given the measure-
ment at step k. Vk−1 and Vk represent all the measure-
ments until step k − 1 and k respectively, the aim of the
filter is to compute an a posteriori estimate starting from
the a priori estimate and from the weighted difference be-
tween the current and the predicted measurement:

v̂[k|Vk] = v̂[k|Vk−1] + G[k](v[k] − v̂[k|Vk−1]). (10)

The difference term v[k]−v̂[k|Vk−1] is the innovation ν[k],
while the matrix G[k] is the Kalman gain that minimizes
the a posteriori error covariance:

K[k] = E{(v[k] − v̂[k|Vk])(v[k] − v̂[k|Vk])T }. (11)

The covariance matrix K[k] provides us only information
about the properties of convergence of the Kalman Filter
and not whether it converges to the correct values. Hence,
we have to measure the discrepancy between predictions
and observations in statistical terms, as an indication of the
filter’s consistency. A frequently used quantitative measure
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Figure 2. Basic lattice interconnection schemes for the el-
ementary flow components considered. By a proper choice
of the interconnection weights and of the boundary values
λ and µ the velocity profiles result approximately linear.

of consistency is the Normalized Innovation Squared (NIS)
[16]:

NISk = ν
T [k]S−1[k]ν[k] (12)

where S is the covariance of the innovation. In our model
the NIS value is used to compute the likelihood of the mea-
surement.

3.1 Multiple model approach

The structure of the optic flow approximation leads to a
multiple model adaptive estimator: we can use a bank of
parallel Kalman Filters, each with a different model (a dif-
ferent process equation embedding a generalized deforma-
tion component). We need a dynamic multiple model ap-
proach because the choice between the four possible mod-
els varies continuously while the filter is operating. In such
a case, we cannot make a fixed a priori choice of the fil-
ter parameters, but we need to use a continuously vary-
ing model-conditioned combination of the candidate state
and error covariance estimates. It is worthy to note that,
in the dynamic multiple model approach, we do not want
the probabilities to converge to fixed values, but we want
them free to change at each new measurement. In the mul-
tiple model approach [16] [17] it is assumed that the sys-
tem obeys one of a finite number of models. Thus, we must
assume that the correct model m is one among all the pos-
sible models mi with i = 1, 2, . . . , r.

The likelihood of the measurement v given a particu-
lar model mi at time step k is given by:

f(v|mi) = |2πSmi
|−

1

2 e
−

1

2
ν
T

m
i
S
−1

m
i
νm

i (13)

where mi is the considered model. The probability that
the candidate model mi is the correct one is given by the

following equation:

pmi
[k] =

f(v|mi)
∑r

j=1
f(v|mj)

(14)

with pmi
[0] = 1/r, i = 1, 2, . . . , r and

∑r

i=1
pmi

[k] = 1
at each time step k. The final model-conditioned estimate
of the state v is computed as a weighted combination of the
a posteriori states of each candidate filter:

v̂[k] =

r
∑

i=1

pmi
[k]v̂mi

[k]. (15)

For the 4 models considered (see Eqs. (4)):

v̂ = pm1
v̂

x
x + pm2

v̂
x
y + pm3

v̂
y
x + pm4

v̂
y
y (16)

where pm1
, pm2

, pm3
, pm4

are the probabilities related to
each model and v̂x

x , v̂x
y , v̂y

x, v̂y
y are the state estimates for

each Kalman filter.

f r a m e  a t  k 1

f r a m e  a t  k 2

o p t i c  f l o w

o p t i c  f l o w

   m o t i o n
e s t i m a t i o n

+ + + =

   m o t i o n
e s t i m a t i o n

p m 2p m 1 p m 3 p m 4

+ + + =p m 2p m 1 p m 3 p m 4

Figure 3. Multiple-model motion estimation in a road scene
taken by a rear-view mirror of a moving car under an over-
taking situations. The model-based decompositions are ev-
idenced for the same image patch for two different frames
at time k1 and k2. For each optic flow patch the motion
is estimated from the actual generalized deformation com-
ponents weigthed by the corresponding probability values,
see Eq.(15).

Combining Eqs. (4) and (16) we have:

[

v̂x

v̂y

]

=

[

pm1
â1 + pm2

â3

pm3
â5 + pm4

â7

]

+

[

pm1
â2 pm2

â4

pm3
â6 pm4

â8

][

x
y

]

(17)



from which it is possible to derive the estimated coefficients
of the affine model:

ĉ1 = pm1
â1 + pm2

â3, ĉ2 = pm1
â2, ĉ3 = pm2

â4

ĉ4 = pm3
â5 + pm4

â7, ĉ5 = pm3
â6, ĉ6 = pm4

â8

(18)
Figure 3 shows how the multiple model approach is

used to estimate the presence of the different generalized
deformation components in the optic flow. First, the defor-
mation components are adapted accordingly with the optic
flow values in input, then a probability value is associated
to each component and the final estimate is evaluated by
the weighted sum of the single components, see Eq.(15).

4 Results

To assess the performances of the approach, we applied re-
cursive Kalman filtering to optic flows related to both real-
world driving sequences and facial expressions. A “classi-
cal” algorithm [18] has been used to extract the optic flows.

If we analyze a multiple motion sequence we expect
that objects in the background have the same divergence
values, whereas other objects moving in the scene will have
a different divergence. Therefore, by mapping the sum of
c2 and c6, we are able to obtain a good segmentation of
the objects in the scene. Figures 4 and 5 show examples
of multiple motion segmentation using divergence informa-
tion for different real-world traffic scenes.

Figure 6 shows how this approach can be used to anal-
yse different areas of optic flow in a complex motion se-
quence like a facial expression. If we consider the values
of the affine model coefficients we are able to describe the
motions of the different areas of the face. In the figure five
different areas of the face have been chosen and the coeffi-
cients of the affine models have been computed and plotted
as a function of time. The relationships between the tem-
poral behaviour of these values and their spatial positions
could describe quite well the face motion.

5 Conclusions

The problem of evidencing the presence of a certain com-
plex feature in the optic flow is an important step towards
motion segmentation. We have shown that it is possible to
solve this problem on the basis of both direct input and con-
textual information, by recurrent adaptive filtering of the
optic flow. Direct information comes from the input mea-
sures and the context from reference signals, represented
as a set of specific linear models. Kalman-filter based
techniques to switch between models have been known for
some time in the control literature [16]. Here, we propose a
similar approach to permit multiple linear models as multi-
ple competiting hypotheses. Accordingly, the multi-model
Kalman Filter yields the optimal estimates of the weights
of the adjustable linear models. A great potential advan-
tage of the multiple-model approach is that recognition and
feature extraction can be performed jointly, and so the form

frame 2 frame 20 frame 30

Figure 4. Example of multiple motion segmentation. The
camera is moving towards the van that is crossing the street.

frame 50 frame 53 frame 60

Figure 5. Example of multiple motion segmentation. The
camera and the car are moving along the same direction.

of the expected linear component can be used to guide fea-
ture search, potentially making it more efficient and robust.
The use of linear models to analyze image motion has been
previously investigated in [7], where the authors proposed
the use of parameterized motion models to represent com-
plex motions. In that paper, they adopted both linear and
learned basis flow fields to describe the motion of large
portions of the face. Here, by considering small areas of
facial expression, we are able to approximate image flows
with linear models. A systematic comparison between the
two approaches will be tackled in a future work.
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Figure 6. Top: five frames from a facial expression sequence. On the first frame the letters indicate the positions of the analysed
areas. Middle: Optic flows computed from the sequence. Bottom: temporal evolutions of the six affine model coefficients for
the five selected positions (a-e).

a driving-school scenario (DRIVSCO)”.
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