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1 Premise

As described in Deliverable D2.1, a Kalman-based filter implementing spatial-context
rules can be used to describe an optic flow field in terms of first-order elementary flow
components. On the basis of these first-order flow descriptors, the research activities
of WP2 have been directed towards the functional characterization of such descriptors
for their direct use in motion interpretation and scene understanding. In particular, we
are interested in extracting the following structured visual events (SVEs): (1) heading
direction, (2) time-to-contact, and (3) information about the orientation of surfaces in the
scene. Here, as requested by the reviewers, we present a specific analysis of the problem
of the time-to-contact estimation and a quantitative evaluation of our results with both
synthetic and natural sequences. From a general perspective, a thorough analysis of the
“as-a-whole” performances of these area-based descriptors for extracting SVEs for high-
level scene interpretation will be the goal of a complete revision of the Deliverable D2.2,
that will result in an additional deliverable (D2.2a) to be submitted by the end of August
and it will be discussed at the review meeting in mid September 2008. Due to the lack of
standard benchmark in the literature, a quantitative comparative analysis of our results
is not possible. Though, the results can be compared qualitatively with those obtained
under similar conditions. We plan to make available to the Computer Vision community
the benchmark sequences used in our analysis for comparing the results.

2 Introduction

In a broad sense, the time-to-collision (TTC) corresponds to the map of the temporal
distance between the observer and any point in the scene. This implies the solution of a
complex problem that concerns the determination of the heading direction of the viewer,
the reconstruction of the surface orientation of the scene, as well as the segmentation
of IMOs that further complicates the solution of the problem and the consequent selec-
tion/decision process of braking/steering actions. From a more restrictive perspective,
we can limit on recovering only that information that is relevant for a vehicle to avoid
an obstacle obstructing its path. According to this “purposive vision” paradigm, TTC is
just a single scalar value that can be directly recovered from the structural properties of
the optic flow field around the heading direction (and used to maneuver a vehicle in pres-
ence of obstacles). However, still in this case, a complete knowledge of the geometry and
the relative motion of objects in the scene is necessary to disambiguate TTC measures
in real-world situations, unless introducing further simplification assumptions.

In this report, we assume that the optical axis of the camera is always approximately
aligned with the heading direction of the car, and we limit the visual analysis around
the center of the image. In this way, meaningful time-to-collision estimates are extracted
from planar image flow approximations [1]. The role of additional assumptions on the
external environment are discussed.

The idea of employing T'T'C from first-order derivatives of the optical flows goes back
to the early 90s [2, 3, 4]. In general, such methods share the drawback of being sensitive to
errors in the estimates of optical flow, since the latter are always corrupted by noise that



is amplified by the process of differentiation. As an alternative, families of simple fixed
flow divergence templates have been proposed in an attempt to overcome the problems
associated with the computation of image velocity derivatives. Along this line, Meyer
proposes a technique for applying the theoretical analysis of [5] in realistic situations.
He assumes that the image motion field can be segmented into regions whose motion
can be accurately described by affine models. The coefficients of these models along
with their temporal derivatives are estimated by a multiresolution scheme and temporal
continuity of motion using a Kalman Filter. The time-to-contact is then recovered using
the estimated coefficients. Although the computation of dense optic flow fields and their
derivatives is avoided this method is sensitive to luminance variations across scales of the
image patches.

In this work, we propose an alternative to the method of Meyer, which works on
the image velocity field, while avoiding an explicit differentiation of the optic flow: the
affine coefficients are obtained from the Kalman-based adaptive templates defined in
Deliverable D2.1, working on the optic flow obtained by the front-end modules defined
in WP1.

3 Time-to-contact from first-order optic flow de-
scriptors

A relative motion between an observer and an object induces a corresponding image
motion field, which is divergent in nature when the object moves towards the camera.
From this divergent image flow it is possible to derive an estimate of the time-to-contact
(also known as the time-to-collision or time-to-impact) with the object in the field of view
of the moving observer, which is defined as the amount of time that remains before the
object in question collides with the observer, provided that they continue to maintain the
same relative translational velocity [6]. For a system with a camera pointing at the same
direction of heading, the time-to-contact can be computed from the ratio between the
distance of the image point of the object from the focus of expansion and the magnitude of
radial flow [7]. More generally, computing the time-to-contact is a complex problem that
implies, in principles, solving in advance the structure from motion problem and especially
separating the translational and rotational components of relative rigid motion. Though,
as we will show in the following, it has been observed that under proper simplification
assumptions, at least bounding values of the T'TC can be directly related to the first-order
differential invariants of the image flow by simple algebraic relationships.

3.1 Basic principles

The motion of an observer in a static environment can be described at each instant
t as a rigid-body motion, by means of two vectors (i.e., kinetic characteristics): the
translational velocity T = (T, Ty, T7)!, and the angular velocity Q = (Qx, Qy, Qz)t If
one considers a pinhole camera model with the optical center in the origin of a viewer-
centered coordinate frame (see Fig. 1) and the optical axis oriented along the Z axis, the



Figure 1: Viewer-centered coordinate frame.

perspective projection p = (z,y) of a point P = (X, Y, Z)" of a visible surface in the 3-D
space is defined as

X
Y
y—ff

where, without loss of generality, the focal length of the optical system f can be set to 1.
The image motion field p = (&, 9)" = (u,v)" is expressible as a function of image position
p and surface depth Z = Z(z,y) (i.e., the depth of the object projecting in (z,y) at
current time):
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For a sufficiently small field of view (i.e., within any small image region) [8]), an affine
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is often sufficient to locally provide a good approximation of 3D rigid moving objects
and information about the 3D layout of the scene. The parameters ¢; have qualita-
tive interpretations in terms of the spatial variations of the associated velocity field
v(z,y) = [u(z,y),v(z,y)]. Formally, the parameters ¢; and ¢g represent the horizontal
(@p) and vertical (7p) translational velocities in the image patch, respectively; whereas
the parameters cy, co, c3, and ¢4 represent the values of the coefficients of the velocity
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It is worth noting that this corresponds to a planar approximation of the viewed
surface patch around P
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Z~Ly+ ZxX +24yY = Zy+ Zyx + Zyy (5)
where (Z,, Z,) is the local surface orientation in the image plane. (Under the assumption
of (i) a small field of view and (ii) a small depth range of the object compared to the
viewing distance (i.e., AZ/Z << 1), the transformation in shape between times ¢ and
t + dt (for small dt) can be approximated by a linear (affine) transformation [1].

Accordingly, we can derive the relationships between the linear affine coefficients and
the geometric and kinematic information about the scene:

C1 :Tz/Zo—f‘Tsz/Zg
C3 = —QZ +Tny/Z§
cs = —Tx/Z — Qy

Co = QZ —i—TXZy/Zg
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(6)

Equivalently, from the Cauchy-Stokes decomposition theorem:

divo = ¢ +c¢y
curlv = ¢ —c3
(defv)cos20 = ¢ — ¢y
(defv)sin20 = co+c3

that represent an isotropic expansion specifying a change in scale, a 2D rigid rotation
specifying a change in orientation, and the components of a pure shear along the axis of
expansion described by the orientation €, respectively.

Defining A = (Tx/Zy, Ty /Zy) as the viewer translation, F = (Z,,2,)/Zy = VZ/Z,
as the surface orientation (represented by the depth gradient, scaled by depth), and Q



to be a unit vector along the view direction, from Eqs.(6), we can obtain direct rela-
tionships between the affine coefficients and behaviorally-relevant quantities for motion
interpretation and scene understanding:

2T -
divoe = ¢ +e¢ = ZQ—l—F-A
curlv = ¢ —c3=-20-Q+|F-A] (7)

defv

[(c1 = 1) + (2 + ¢3)"]'/* = [F||A].

where 6 bisects A and F:
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It is worth noting that the magnitude of the depth gradient is the tangent of the slant (o)
of the surface and its direction corresponds to the tilt (7) of the surface tangent plane.

|F| =tano 9)
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From these equations 7 and under proper conditions it is possible to recover important
information about the 3D shape of the scene without the knowledge of the motion param-
eters. For example, in presence of a pure translation along the ray towards the surface
patch (|A| = 0) the divergence can give important information about the time to contact
te:
Z
= — 11
g (1)
Even without this assumption it is possible to recover useful information from the first-
order differential invariants. The information about time to collision can be expressed as
bounds:

te

2 <ot (12)
divv + defv — © — divv — defv

If we consider a pure translational motion perpendicular to the visual direction it will
result an image deformation with a magnitude which is determined by the slant of the
surface o and with an axis depending on the tilt of the surface 7. It is worth noting that
divergence and deformation are unaffected by viewer rotations such as panning and tilting
of the cameras, which is a valuable property because it allows the cues to be utilized even
when the camera is not completely stabilized.

3.2 Working assumptions

The narrow field of view hypothesis (p ~ 0) adopted in Section 3.1 it is not sufficient
to derive from differential invariants quantitative measurements of TTC in real-world
situations (cf. Eq. 12). To remove the residual ambiguities, additional (exteroceptive)
assumptions must be introduced. Such assumptions are based on a partial a priori knowl-
edge of either camera-scene relative geometry or motion. Although, in general, these as-
sumptions limit the application of these methods to carefully controlled scenarios, some
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of them are quite reasonable and do not represent a severe limitation of the operating
conditions for the system used in the DRIVSCO project. In this section we summarize
a classification of the assumptions discussing their different implications on the TTC
estimation.

Although there is a connection between the divergence and TTC, as described by
Eqgs. (7), which can be exploited to achieve obstacle avoidance in a qualitative way, the
TTC cannot be recovered from the divergence alone, since the values of divergence can
be altered also by other geometric and kinematic conditions. By example, translation
parallel to an inclined surface or certain motion discontinuities can produce or being
interpreted as a divergent flow. In these situations, deformation components occur, which
are generated by rotational velocity and/or by motion towards non-frontoparallel surfaces.

In general, non-ambiguous TTC estimates can be obtained from first-order structure
of the planar motion field, without solving explicitly the rigid motion problem, provided
that some constraints are set on relative motion or viewing angles:

1. Narrow field of view (p ~ 0)[4] [2]
2. Dominant translation (||S2|| ~ 0) [9] [10].
3. Frontoparallel surface (||VZ|| ~ 0) [11] [3].

Specifically, it is possible to show that the deformation vector defv can be expressed
as the sum of two terms, taking into account translations and rotations, respectively:

defv = defr(p; VZ; Z; T) + defq(p; Q). (13)

The term defgq vanishes in the case of pure translation (2 = 0) or, whatever Q, at the
image origin (p = 0). According to the narrow field hypothesis (p ~ 0) the defg can
be neglected without introducing the “dominant translation” hypothesis. On the other
hand, deft vanishes either in the case of pure rotation (T = 0) or, whatever T, if the
tangent plane at P) is parallel to the image plane (frontoparallel condition, VZ = 0).
Considering that we assumed a motion in the direction of the optical axis, the residual
term deft can be neglected, without assuming the “frontoparallel surface” hypothesis.

3.3 Algorithm

Our method for TTC detection is based on the direct use of the flow field differential
invariants, as originally proposed by [4] [2] further developed by [12] [13]. Though, differ-
ently from those approaches we estimate the differential invariants through an adaptive
technique that recovers first-order flow components from patch-wise context-sensitive fil-
tering of a dense optic flow field. Here, we assume that the image optic flow is given by
the front-end developed in WP1. In this way, we exploit the full vector field information
(but see [12]) while avoiding the problem of numerical differentiation of the noisy flow
field. The affine coefficients obtained by the adaptive templates are indeed more reli-
able and robust to noise than those derived by smoothed differentials [14] or by bilinear
interpolation (see Deliverable D2.1), and come together with their confidence measures.



Considering the small vergence angle of the cameras fixed on the car, we assume
that the viewing direction is almost aligned with the heading direction. This simplifies
the relations of A and allows us o estimate the TTC with an object on the path of the
observer by limiting the analysis to the central (foveal) part of the image. It is worth
noting that, though this is a realistic situation for the DRIVSCO experimental set-up,
in general, it is possible to first derive the heading direction !, still from the linear flow
properties, and then focus the attention around the heading direction to estimate the
TTC with possible obstacles along the path. This will be part of a future work.

The complete algorithm is given as follows:

1. Subsample the flow field at a low resolution. We subsample an optic flow of size
512 x 640 to a size of 32 x 40.

2. Calculate the differential invariants for a 3 x 3 neighborhood around the image
center, by using the Kalman-based filtering procedure, described in Deliverable
D2.1. The size of each patch is 6 x 6. By considering the dimension of the patch
the total size of the considered neighborhood is 12 x 12 at the lower resolution.

3. Verify that the def components are negligible, under the simplification assump-
tions of narrow field-of-view and of motion towards a frontoparallel surface (this
hypothesis will be removed in a future work).

4. Derive an estimate of the local divergence by spatial averaging of the different
estimates over the neighborhood, rescaling the divergence value respect with the
original size of the image.

5. Finally, the time-to-collision is computed according to Eqgs. (7).

4 Evaluation of performances

4.1 Approach and methodology

To quantitatively assess the performance of our technique, the estimated TTC must be
compared with the “ground truth”. The different methods proposed in the literature
were tested either with synthetic image sequences or with real-world sequences captured
from a moving vehicle equipped with a laser range finder and a camera. Unfortunately,
to the best of the authors’ knowledge, no systematic benchmark sequences are available
from public databases, and this prevents a comparative analysis of our results with the
state-of-the-art.

In the following, we will test our method with a VRML synthetic sequence and with
real videos provided by Hella, from camera mounted on a car, for which the LIDAR
information from the CAN bus is used as the ground truth. Artificial video sequences with
known ground truth can also be constructed using a stop motion technique, where the

le.g., by solving an overconstrained system of equations obtained by Eq. 7 for a sufficient number of
points in the image plane.



camera (or the object) is moved by a controlled amount between exposures. However, this
approach does require particular care, since accurate increments in position are required.
In addition, as reported in [15], stop motion sequences produced with ordinary digital
cameras suffer from the effects of automatic focus and automatic exposure adjustments,
as well as artifact introduced by image compression. The effects of the estimation error on
the reaction time of a potential automatic emergency system are discussed in Section 4.4.

4.2 Evaluation of TTC with synthetic sequences

First we create a synthetic benchmark sequence to evaluate the performances of the
proposed approach for time-to-contact estimation. All the parameters of the synthetic
scene are known and can be varied and controlled.

The sequence has been created in OpenGL environment and it is composed of different
textured-surfaces representing a street and two side walls and an object (a cube) in the
middle of the scene, object respect to which we want to measure the TTC. The virtual
camera moves toward the object, along the Z axis. Figure 2 shows some frames captured
by the virtual camera. We tested the approach by varying the speed of the camera.

Figure 2: Virtual scene used to benchmark time-to-contact. The camera has been moved
toward the black and white cube at different speeds.

The parameters that describe the scene are the following:
- Initial distance between the observer (the camera) and the target: 48 m
- Dimension of the target: 3 m X2 m
We tested the approach in three different situations:
- Seql: speed of the camera 1 m/frame (about 90 km/h);
- Seq2: speed of the camera 0.5 m/frame (about 45 km/h);

- Seq3: speed of the camera 0.5 m/frame (about 45 km/h) with a small difference
(10 degrees) between the direction of the camera and the direction of sight;

In all the cases the speed has been kept constant, and in the first case the observer
arrives very close to the target object. For each frame of the sequences the affine coef-
ficients (then the divergence) have been estimated, then from the divergence we obtain
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the TTC, following the approach described in Section 3.3. The plots in Figure 3, in
Figure 4 and in Figure 5 show, as a function of the time, the estimation of the time
to collision (continuous line), the linear fitting of the experimental results (dotted line)
and the ground truth (thick line). The values of ground truth have been obtained by
considering the known speed of the observer and the initial distance between the camera
and the target. Since we kept constant the velocity, the time-to-contact decreases as a
straight line. The equations of the linear fitting are 77TC' = —t+48, TTC = —0.51t 4+ 48
and TT'C' = —0.48t + 43 respectively. The slope of the linear fitting is coherent with the
velocity of the camera and the starting point is the initial distance between the camera
and the target. In the third situation the initial distance is 43 m, as evidenced by the plot
in Figure 5 and by the linear fitting. The correspondence between the TTC expressed
in seconds and in frames has been done by considering a frame rate of 25 frame/sec.
By analyzing the results it is worth noting that the first two/three frames do not give
a good estimation of TTC because the Kalman estimate of the affine coefficients needs
some frames to reach a steady-state, then the error in the TTC estimation is constant
in time. We do not notice an improvement or a deterioration of the performances when
approaching the target, except for the situation in Figure 3, where after 1.4 seconds the
camera is too close to the cube-target and it is not possible to recover a reliable optic
flow.

“Time (sec)

Figure 3: Estimation of TTC for Seql. The speed of the camera is 1 m/frame. The
continuous line is the estimation of TTC with the described approach, the dotted line
represents the linear fitting of the data and the thick line is the ground truth. From
frame 33 the camera is too close to the target, so both the optical flow estimation and
the TTC computation are wrong. The linear fitting does not consider data beyond frame
33.
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Figure 4: Estimation of TTC for Seq2. The speed of the camera is 0.5 m/frame. The
continuous line is the estimation of TTC with the described approach, the dotted line
represents the linear fitting of the data and the thick line is the ground truth.

Table 1 shows the mean error in the TTC estimation and its standard deviation for
the 3 synthetic sequences. It is worth noting that the mean error is similar in the three
different situations.

| | mean error (msec) | st. deviation (msec) |

seql 68 47
seq2 62 72
seq3 65 67

Table 1: Mean error and standard deviation of the TTC estimation for the synthetic
sequences.

4.3 Evaluation of TTC with real-world sequences

To evaluate the performances of TTC estimation in real-world situations, we used a set
of sequences recorded by Hella with the DRIVSCO project setup (see Fig 6). In these
sequences the car is driven towards a target (a car-balloon, usually used in crash test
experiments). The velocity of the car is similar in the two situations and it is about 37
km /h.

Both the image sequences and the CAN-bus data are available. The CAN-bus data
cannot be considered a real ground truth signal because it is affected by errors itself
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Figure 5: Estimation of TTC for Seq3. The speed of the camera is 0.5 m/frame and
there is a small difference (about 10 degrees) between the direction of the camera and
the direction of sight. The continuous line is the estimation of TTC with the described
approach, the dotted line represents the linear fitting of the data and the thick line is the
ground truth.

Figure 6: Crash-test sequence.
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(i.e. acquisition errors). Moreover, the sampling frequency of the data from the LIDAR
is lower than the frame rate from the cameras and this implies that we do not have a
value from the CAN-bus for each estimation. Anyway we have compared our results
with the LIDAR signals, when such information is available. From Figure 7 and Figure
8 it is evident that the TTC evaluation with our algorithm is coherent with the LIDAR
measures. The presence of possible outliers, as the one occurring in Figure 7, can be
reduced by taking an average of the last n time-to-contact estimates (e.g., with n = 3+4)
as the final measure of the time-to-contact (cf. [7]) or some other means of averaging,
such as exponentially decaying filter.

3.5

251

TTC (sec)

05 I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (sec)

Figure 7: Estimation of TTC. The continuous line is the estimation of TTC with the
described approach, the squares represent the data read from the LIDAR.

Since in real-world situations the ground-truth is not available, we have not computed
the mean error and the standard deviation of the TTC estimation.

4.4 Behavioral considerations

By assuming to have available the TTC at the potential onset of braking, this informa-
tion can be used to derive the available manoeuvring space at the moment the evasive
action starts. On the basis of the average error in the estimate of the TTC, we can an-
alyze how underestimations of the time-to-contact affect the driver’s reaction responses
to avoid the collision. To this end, we used the reaction threshold paradigms used in
designing emergency braking systems. These systems usually adopts a function with two
parameters: the first is the braking distance and the second is the lateral acceleration
[16]. The calculation of the thresholds is done in two steps: For the braking system,
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Figure 8: Estimation of TTC. The continuous line is the estimation of TTC with the
described approach, the squares represent the data read from the LIDAR.

estimating that the maximum deceleration is not larger than 10m/s?, we can calculate if
the driver has a chance to stop in front of the obstacle. For the lateral acceleration, we
can calculate the maximum lateral distance the driver can handle in the remaining time.
If this value is smaller than the size width of the car, then the red corner of the moving
vehicle has no chance to pass the blue corner of the obstacle without a collision (see Fig.
9).

Tz
AL

AZ

& a
<

Figure 9: Typical time-to-contact scenario.

In case the result of both calculations shows that the driver has no chance to avoid the
collision, the automatic emergency system has to be activated. Formally, by assuming a
uniform deceleration, the time to stop can be obtained by:

T
totop = —2— (14)

AZmax

where azmq, 1 the maximum deceleration (e.g. azmae = 10m/s?). The maximum possible
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lateral displacement (along the X axis) is:
AX = 0.5 xmaxt> (15)

where axq, is the maximum deceleration (e.g. axmex = 7m/s?). Given t, as the
maximum time to react, and assuming t. > t4,p, the error (e) in the ¢, estimate (', =
t. + €) must be below the difference value t, — 50

te — tstop > €. (16)

In other words, an overestimate of the TTC is equivalent to a reduction by the same
amount of the effective time-to-stop:

tstop|eff - tstop — €. (17)

Although it is not possible to conclude on the maximum tolerable error, since it de-
pends on the specific situation, it is evident that the danger of the error increases as t.
approaches tg,,. This can be evidenced by defining the relative error measure:

€

(18)

Crel = .
" tc - tstop
Accordingly, we can state that if ¢, is larger than 2t,,, a relative error of 10% is an
acceptable situation. From the results of our simulation, we observed an error € ~
65msec. Assuming a Ty = 90km/h and t. = 5sec, ty,, = 2.5sec, the resulting relative

error is:
0.065

2.5
which remains below the threshold of 10% until ¢. is equal to 3.15sec.
Similarly, we can derive the effect of an erroneous ¢, estimate on the lateral displace-
ment threshold. In this case, ¢, = t. + € affects the measure of the lateral displacement
as:

= 0.026 (19)

Crel =

AX' = AX 4 axmazte€ + 0.50 xmaz € (20)

Disregarding the quadratic term, we can impose that
AX — AL > axmaztc€ (21)

Again, we can define a relative error:

maa:tc
ax € (22)

el 0 Baxmant? — AL

If AL < AX, the e, is twice the relative error of the ¢. estimate, and the amplification
of the danger becomes more severe as AL approaches AX.
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5 Conclusions

At a first approximation, and under proper conditions [1] [17], important information
about heading, time-to-collision and the 3D layout of the scene can be obtained by
looking at the spatial first-order differential properties of the motion field, and many
different approaches have been proposed in the literature to recover reliable estimates
of these differential properties. It is worth noting that a a complete solution for the
3D motion estimation using only a first-order approximation is not possible, without
considering additional information. Several approaches can be used to overcome the
problem: (1) to give a qualitative interpretation of the first-order approximation under
proper assumptions; (2) to solve for the interesting parameter by minimizing an error
function in different area of the patch [18]; (3) to use additional sources of information if
they are available.

In this report we focused on the analysis of the time-to-contact estimates, presenting
a specific introduction to the problem and a quantitative assessment of the performance
of our technique with both synthetic and natural sequences. The preliminary results
demonstrate the validity of the approach and the significance of the optic flow descrip-
tors extracted by the Kalman Filter software module in cascade to the front-end optic
flow module. A more comprehensive analysis of the meaningfulness of the first order
differentials for extracting SVE will be subject of future work.
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