

Project no.: IST-FP6-FET-16276-2

Project full title: Learning to emulate perception action cycles in a driving school

 scenario

Project Acronym: DRIVSCO

Deliverable no: D6.1

Title of the deliverable: Algorithm for adaptive subspace transformation based on mutual

information and class labels

 Project Co-funded by the European Commission

 Dissemination Level

PU Public X

PP Restricted to other program participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Date of Delivery: 14.06.2008

Organization name of lead contractor for this deliverable: KUL

Author(s): M. Van Hulle, N. Chumerin (KUL)

Participant(s): KUL,BCCN,AAU,UMU,VMU

Work package contributing to the deliverable: WP6

Nature: R

Version: 2.0 (revised 10.06.2008)

Total number of pages: 18

Start date of project: 1 Feb. 2006 Duration: 42 months

Summary: We perform a detailed benchmarking of two adaptive subspace methods
that are based on mutual information maximization between the data points projected
in the developed subspace and their class labels. However, we found that, when these
methods are followed by a classifier, no acceptable results are obtained for large, real-
world datasets. We found this in particular to be the case with the Independently
Moving Objects (IMO) detection problem, where the IMO and the background are
used as class labels. As an alternative, we suggest a specially designed multilayered
perceptron for detecting IMOs.

 1

Contents

1 Executive Summary 3

2 Introduction – Aim 4

3 Torkkola’s Method 5

4 Artés-Rodŕıguez’s Method 6

5 Measures for Comparison 7

6 Comparison Methodology 8

7 Results 13

8 Discussion 13

9 Application to IMO detection 16

10 Conclusion 17

2

1 Executive Summary

As mentioned in the Technical Annex, the purpose of Task 6.1 is to develop
compact representations of the extracted Structured Visual Events (SVEs) in
WP4. Initially, a text mining approach in terms of SVE occurrences (weighted
histograms) was proposed, followed by a low-dimensional (subspace) represen-
tation in terms of (action, SAE,. . .) labels by optimizing mutual information
between the subspace projected data and the labels (i.e., supervised feature
extraction) (Torkkola, 2002). Soon after the start of the project it was real-
ized that a text mining approach was not feasible since the stable detection of
Independently Moving Objects (IMOs) was a much harder problem than an-
ticipated. Indeed, the IMO maps of WP4 often appeared as disconnected and
sparse clouds of pixels representing the same object. Furthermore, false posi-
tives often occurred, thus, pixels falsely labeled as IMOs (see Fig. 1 in D6.2a)
Hence, the disambiguation of the SVEs, mentioned in the TA for WP6, received
more attention than foreseen.

Torkkola’s method was, therefore, put to the test for the stable detection
of IMOs given labels of what is an IMO and what is background (supervised
approach). But prior to that, we benchmarked Torkkola’s and compared it
with an alternative technique by Artés-Rodŕıguez and Leiva-Murillo (2006) on
a number of synthetic examples for which the solution is analytically known.
This was deemed necessary given the SVE data are noisy and prone to outliers.
It turned out that, with Torkkola’s or its alternative, no acceptable results
were obtained for large, real-world datasets. When applying a classifier, the
classification performance was unsatisfactory. Also, the algorithms easily could
get trapped in local optima. We also verified all this on the IMO vs. background
detection problem just mentioned, where the dimensions consisted of several
image cues.

As a remedy, we designed a multilayered perceptron for detecting IMOs and
for which encouraging results were obtained. This “cue fusion” solution was the
highlight of the first year’s review since it enabled us to attach descriptors to
the IMOs (such as their tracking accuracy, speed, distance, acceleration,. . .).
These results are reported in D6.2.

Status of the Task:

The original idea of subspace representation based on mutual information was
not further considered, after the negative benchmarking results. Instead, a mul-
tilayered perceptron was used for cue fusion. We have in the second year also
examined a clustering approach, but this is not reported on here. Part of the
results reported in this deliverable have been published by us [1].

Revision notes:

In order to answer the criticisms of the reviewers, we have included: 1) a thor-
ough introduction (called here Executive summary), where the motivation and
the change in the course of WP6 is explained, 2) the status of the task (see
above), and 3) a list of the concrete contributions of the papers cited in this

3

report (see References).

2 Introduction – Aim

Feature Extraction (FE) is a more general method in which one tries to develop
a transformation of the input space onto the low-dimensional subspace that
preserves most of the relevant information. We will further focus on linear FE
methods which means that they can be represented by a linear transformation
W : R

D → R
d, D > d. Feature Extraction methods can be supervised or

unsupervised, depending on whether or not class labels are used. Among the
unsupervised methods, Principal Component Analysis (PCA) [2], Independent
Component Analysis (ICA) [3], and Multidimensional Scaling (MDS) [4] are
the most popular ones. Supervised FE methods (and also Feature Selection
methods) either use information about the current classification performance, or
use some other, indirect measure. Methods of the first type are called wrappers,
those of the type filters. One expects that, in the case of a classification problem,
supervised methods will perform better than unsupervised ones.

Recently, a method has been introduced by Torkkola [5] that has attracted
a lot of attention. Consider the data set {xi, ci}, i = 1, . . . , N with xi ∈ R

D

the data points, and ci the class labels taken from the discrete set C = {cp},
p = 1, . . . , Nc. The objective is to find a linear transformation W ∈ R

D×d for
which the mutual information (MI) of the transformed data points Y = {yi} =
{WTxi} and the corresponding labels C = {ci} is maximized. The objective
is different from ICA’s where MI between the transformed data components is
minimized. Also, the presence of the labels C makes the objective different.
Torkkola derived an expression for MI based on Renyi’s quadratic entropy [6],
instead of Shannon’s entropy, and a plug-in density estimate based on Parzen
windowing.

Prior to Torkkola, Bollacker and Ghosh [7] proposed an incremental ap-
proach to MI maximization that was derived by rewriting the original MI objec-
tive function as a sum of MI terms between the one-dimensional projections and
the corresponding class labels. A polytope algorithm was used for the optimiza-
tion and histograms for estimating the probabilities. Very recently, a method
based on the same reformulation of the MI objective function was introduced by
Leiva-Murillo and Artés-Rodŕıguez (2006) [8]. However, they used gradient de-
scent as an optimization strategy, and expressed the one-dimensional MI terms
as one-dimensional negentropies, which were then estimated using Hyvärinen’s
robust estimator [9].

The purpose of this report is to perform an in-depth comparison of the two
MI based FE methods. The report is structured as follows. Section 3 briefly
describes the FE method based on quadratic MI maximization, as proposed by
Torkkola. In Section 4 we also briefly describe the approach proposed by Leiva-
Murillo and Artés-Rodŕıguez. In Section 5, we describe a number of measures
for FE comparison, and in Section 6 we explain our comparison methodology.
The results of the comparison are given in Section 7, followed by a Discussion in

4

Section 8. In Section 9, we consider feature extraction followed by a classifier,
and consider the detection of Independently Moving Objects (IMOs) from their
backgrounds as a classification problem for a large, real-world data set. We
found no satisfactory classification performance (i.e., IMO segmentations in real
movies). We suggest an alternative strategy based on a multilayered perceptron
(MLP) classifier. Finally, we conclude this report in section 10.

3 Torkkola’s Method

Given two random variables X1 and X2 with joint probability density p(x1, x2)
and marginal probability densities p1(x1) and p2(x2), the mutual information
(MI) can be expressed as:

I(X1, X2) = K(p(x1, x2), p1(x1)p2(x2)), (1)

with K(·, ·) the Kullback-Leibler divergence.
In order to estimate MI, Torkkola and Campbell [5] use the quadratic mea-

sures KC or KT originally introduced by Principe and co-workers [6]:

KC(f, g) = log

∫

f2(x)dx
∫

g2(x)dx
(∫

f(x)g(x)dx
)2 (2)

KT (f, g) =

∫

(f(x) − g(x))2 dx. (3)

For continuous-valued Y and discrete-valued C, using (1), (2) and (3), one can
derive two types of MI estimates:

IC(Y,C) = log
V(cy)2Vc2y2

(Vcy)2
, (4)

IT (Y,C) = V(cy)2 + Vc2y2 − 2Vcy, (5)

where:

V(cy)2 =
∑

c∈C

∫

y

p2(y, c)dy,

Vc2y2 =
∑

c∈C

∫

y

p2(c)p2(y)dy,

Vcy =
∑

c∈C

∫

y

p(y, c)p(c)p(y)dy. (6)

The class probability can be evaluated as p(cp) = Jp/N , where Jp is the number
of samples in class cp. The density of the projected data p(y) and the joint

5

density p(y, c) are estimated with the Parzen window approach [10]:

p(y) =
1

N

N
∑

i=1

G(y − yi, σ
2I)

p(y, cp) =
1

N

Jp
∑

i=1

G(y − ypj , σ
2I), (7)

with G(x,Σ) the Gaussian kernel with center x and covariance matrix Σ, and
yjp the j-th sample in class cp. In order to reduce the number of parameters
to optimize, Torkkola proposes a parametrization of the desired matrix W in
terms of Givens rotations in R

D. As a result, there are only d(D−d) parameters
(rotation angles) to optimize instead of D2. Obviously, the maximal number of
parameters to estimate occurs for d near D/2. The computational complexity
of the method is claimed to be O(N2).

4 Artés-Rodŕıguez’s Method

In the Artés-Rodŕıguez method, an objective function (global MI) in terms of
the sum of individual MI’s is considered:

IAR(Y,C) =

d
∑

i=1

I(yi, c) =

d
∑

i=1

I(wT
i x, c), (8)

with yi = wT
i x the data projected onto direction wi, and wi ∈ R

D the i-th
column of the desired orthonormal matrix W.

Assuming the original data is whitened, each individual MI can be estimated
as:

I(yi, c) =

Nc
∑

p=1

p(cp) (J(yi|cp) − log σ(yi|cp)) − J(yi), (9)

with yi|cp the projection of the p-th class’ data points onto the wi direction, J(·)
the negentropy, and σ(·) the standard deviation. Hyvärinen’s robust estimator
[9] for the negentropy is used:

J(z) ≈ k1

(

E
{

z exp(−z2/2)
})2

+k2

(

E
{

exp(−z2/2)
}

−
√

1/2
)2

, (10)

with k1 = 36/(8
√

3 − 9) and k2 = 24/(16
√

3 − 27). In a top-down scheme,
one should sequentially (thus, one-by-one) obtain the projection directions wi

thereby preserving the two constraints: ‖wi‖ = 1 and wT
i wj = 0 for 1 ≤ j < i.

The second constraint means that each projection direction must be searched
in the subspace orthogonal to the projection directions already obtained, and
this causes the search for each new projection direction to be carried out in a

6

subspace of decreasing dimension. The sequence of individual MI’s obtained in
this way is also decreasing: I(yi, c) > I(yj , c) for i < j. The bottom-down scheme
involves a sequential removing of the directions with minimum individual MI’s
between the variables and classes.

5 Measures for Comparison

In order to compare the two FE methods, we use four different MI estimators:
the two mentioned above, IC and IAR, the binned estimator IB, and the one pro-
posed by Kraskov and co-workers [11], namely, the I(2) estimator (rectangular
version).

The most straightforward, and most widely used method to estimate the MI
between two variables X and Y is the histogram-based approach. The support
of each variable is partitioned into bins of finite size. Denoting by nx(i) (ny(j))
the number of points falling in i-th bin of X (j-th bin of Y), and n(i, j) the
number of points in their intersection, we can estimate MI:

IB(X,Y) = logN +
1

N

∑

i,j

n(i, j) log
n(i, j)

nx(i)ny(j)
. (11)

Unfortunately this estimator is biased, even in the case of adaptive partitioning.
Another disadvantage of the binned estimator is the high memory requirements
in the high-dimensional case.

Kraskov MI estimator I(2) is based on entropy estimation using k-nearest
neighbor statistics. Let X and Y are normed spaces with norms ‖·‖X and ‖·‖Y

respectively. Consider new space Z = X × Y with norm ‖ · ‖Z which for every
z ∈ Z, z = (x,y) is defined as

‖z‖Z = max{‖x‖X , ‖y‖Y }.
For fixed natural k let us denote by ǫ(i)/2 the distance from zi to its k-th
neighbor, and by ǫx(i)/2 and ǫy(i)/2 the distances between the same points
projected into the X and Y subspaces. Denoting by

nx(i) = # {xj : ‖xi − xj‖X ≤ ǫx(i)/2} ,
ny(i) = # {yj : ‖yi − yj‖Y ≤ ǫy(i)/2}

MI can be estimated by

I(2)(X,Y) = ψ(k) − 1

k
− 〈ψ(nx) + ψ(ny)〉 + ψ(N), (12)

here 〈. . . 〉 = N−1
∑N

i=1 E {. . . (i)} is averaging operation both over all i =
1, . . . , N and over all realizations of the random samples and ψ(x) is digamma
function:

ψ(x) =
1

Γ(x)

dΓ(x)

dx
. (13)

It satisfies the recursion ψ(x + 1) = ψ(x) + 1/x and ψ(1) = −C where C =
0.5772156 . . . is the Euler-Mascheroni constant. For large x, ψ(x) ≈ log x−1/2x.

7

Data set name Dimension (D) Number of samples (N) Number of classes (Nc)
Iris 4 150 3
Pima 8 500 2
Glass 9 214 7
Pipeline flow 12 1000 3
Wine 13 178 3

Table 1: Information about used real data sets

6 Comparison Methodology

In order to have a fair comparison, we use the original source code of the Artés-
Rodŕıguez algorithm (courtesy of Leiva-Murillo and Artés-Rodŕıguez) and the
publicly available implementation of Torkkola’s approach MeRMaId-SIG by Ken-
neth E. Hild II [12]. For the Artés-Rodŕıguez algorithm, we choose the top-down
scheme. We consider both synthetic and real world data sets. The synthetic data
set consists of a variable number of equal-sized, normally distributed clusters
(modes) in R

D. The clusters centers are Gaussianly distributed with variance
equal to 3. All data sets are centered and whitened before applying the respec-
tive FE methods. We consider Nc = 3, . . . , 10 clusters, and use 1000 data sets
with d = 1, . . . , D − 1 subspace dimensions. The MI estimators’ means and
standard deviations for the 1000 data sets are then plotted as a function of the
subspace dimensionalities d. For the real-world data sets, we compute the MI
estimates for each possible subspace dimension d. The Pipeline Flow data set
was taken from Aston University1. The rest of the real-world data sets were
taken from the UCI Machine Learning Repository2. If the data dimensionality
was more than 9, we did not evaluate IB (binned estimator) due to memory
limitations.

The algorithms are implemented using quite different, yet simple optimiza-
tion techniques: the Artés-Rodŕıguez algorithm employs a simple adaptation of
the learning rate during evaluation, while the MeRMaId-SIG uses a pure gradient
ascent with constant learning rate and fixed number of iterations. Due to this, a
fair comparison of the run times is not straightforward. Therefore, we determine
the number of float-point operations (flops) needed for one gradient evaluation
of each algorithm. It is a more relevant measure than the average computing
time because it does not depend on the optimization techniques used by these
algorithms.

The flops were obtained using the flops function (in Matlab 5.3) on data
sets with N ∈ {1000, 2000, 3000, 4000} and D ∈ {4, 8, 12, 16}.

8

1 2 3 4 5 6

0.8

1

1.2

1.4

1.6

dimensions

M
I(

b
in

n
e

d
)

D = 6, N = 1000, N
c
 = 5

FE_Artes_Rodriguez
FE_Torkkola

Figure 1: Mean of IB vs. d

1 2 3 4 5 6

0.8

1

1.2

1.4

1.6

dimensions

M
I(

K
ra

sk
o

v)

D = 6, N = 1000, N
c
 = 5

FE_Artes_Rodriguez
FE_Torkkola

Figure 2: Mean of I(2) vs. d

9

1 2 3 4 5 6

4

6

8

10

dimensions

M
I(

A
rt

e
s−

R
o

d
ri
g

u
e

z)

D = 6, N = 1000, N
c
 = 5

FE_Artes_Rodriguez
FE_Torkkola

Figure 3: Mean of IAR vs. d

1 2 3 4 5 6

1

1.5

2

dimensions

M
I(

P
ri
n

ci
p

e
)

D = 6, N = 1000, N
c
 = 5

FE_Artes_Rodriguez
FE_Torkkola

Figure 4: Mean of IC vs. d

10

1 2 3 4

1.05

1.1

1.15

1.2

1.25

dimensions

M
I(

P
ri
n

ci
p

e
)

D = 4, N = 150, N
c
 = 3

FE_Artes_Rodriguez
FE_Torkkola

Figure 5: IC versus d for Iris Plants Database

1 2 3 4 5 6 7 8

0.2

0.3

0.4

0.5

0.6

dimensions

M
I(

b
in

n
e

d
)

D = 8, N = 768, N
c
 = 2

FE_Artes_Rodriguez
FE_Torkkola

Figure 6: IB versus d for Pima Indians Diabetes Database

11

1 2 3 4 5 6 7 8 9
0

2

4

6

8

dimensions

M
I(

A
rt

es
−

R
od

rig
ue

z)

D = 9, N = 214, N
c
 = 6

FE_Artes_Rodriguez
FE_Torkkola

Figure 7: IAR versus d for Glass Identification Database

1 2 3 4 5 6 7 8 9 10 11 12

1

1.2

1.4

1.6

dimensions

M
I(

P
ri
n

ci
p

e
)

D = 12, N = 1000, N
c
 = 3

FE_Artes_Rodriguez
FE_Torkkola

Figure 8: IC versus d for Pipeline Flow data

12

Data set Approach 〈IB〉 〈IC〉 〈IAR〉 〈I(2)〉
Iris AR 1.0391 1.1541 5.0251 0.9944

Torrkola 1.0181 1.0565 4.0409 0.9561
Pima AR 0.3428 0.2089 0.8528 0.1628

Torrkola 0.3461 0.2026 0.4140 0.1678
Glass AR 0.7078 0.4212 6.8401 0.5952

Torrkola 0.7430 0.4409 3.8368 0.4764
Pipeline AR 1.0814 1.4331 20.461 1.0668

Torrkola 1.0749 1.4889 5.9973 1.0605
Wine AR 1.0668 1.5019 8.3007 0.8798

Torrkola 0.9009 1.2422 3.0588 0.7194

Table 2: Averages of the estimated MI for all real data sets considered and
d = 1, . . . , D − 1; 〈IB〉. Note that the estimates were computed only for d < 9)
(see text).

7 Results

For the synthetic data sets we show only the case of D = 6, N = 1000 and
Nc = 5 (Figs. 1–4). The results for the real-world data sets are shown in
Figs. 5–8 and in Table 2.

The speed comparison results are shown in Table 3. The case D = 8 for
Torkkola’s method is shown in Fig. 9 in more detail. We do not show the plots
for the Artés-Rodŕıguez approach because each gradient evaluation needs the
same number of flops for all d = 1, . . . , D − 1.

For data sets with fixed numbers of samples N , fixed dimensions D and
different numbers of clusters Nc, gradient evaluation in both methods needs
almost the same numbers of floating point operations (the deviation in flops
for constant N , D and Nc ∈ {5, 10, 20} was less than 1%). This is the reason
why we present here the comparison only for Nc = 5 and different N and D
values. The CPU time should grow with increasing Nc, however, it stays almost
constant. We explain this by the highly optimized manner Matlab treats matrix
computations: for fixed N , the more classes we have, the more portions of the
data (with smaller sizes) are processed in a vectorized manner.

8 Discussion

The results show that, for most data sets, the Artés-Rodŕıguez approach yields
better results. From our point of view, one of the reasons of the better perfor-
mance of the Artés-Rodŕıguez algorithm is the fact that IAR is more smoother
and has less local optima than the other measures, including the IC metric used
in Torkkola’s, with almost coinciding maxima. This is illustrated in Fig. 10.

1http://www.ncrg.aston.ac.uk/GTM/3PhaseData.html
2http://www.ics.uci.edu/˜mlearn

13

D N Torkkola Artés-Rodŕıguez
4 1000 0.165 0.253 . . .0.390

2000 0.329 0.505 . . .0.778
3000 0.493 0.757 . . .1.166
4000 0.657 1.009 . . .1.554

8 1000 0.438 1.976 . . .5.121
2000 0.874 3.900 . . .9.977
3000 1.310 5.824 . . .14.833
4000 1.746 7.748 . . .19.689

12 1000 0.841 6.977 . . .27.540
2000 1.677 13.517 . . .50.544
3000 2.513 20.057 . . .73.548
4000 3.349 26.597 . . .96.552

16 1000 1.372 17.556 . . .104.446
2000 2.736 33.192 . . .175.022
3000 4.100 48.828 . . .245.598
4000 5.464 64.464 . . .316.174

Table 3: Comparison of floating point operations (in Mflops) needed for one
gradient evaluation.

1 2 3 4 5 6 7

5

10

15

20

dimension

M
fl

op
s

N = 4000

N = 3000

N = 2000

N = 1000

Figure 9: Plots of the floating point operations required for Torkkola’s gradient
evaluation for D = 8 and different N . It should not come as a surprise that
the shape of plots reflect the quadratic nature of the number of parameters to
optimize (see text).

14

 I
B

 I
AR

 I
C

2⋅ I(2)

Figure 10: Plots of IB, IAR, IC and I(2) (which is doubled for the sake of expo-
sition) as a function of the angle of the direction on which the data points are
projected, given a two-dimensional data set consisting of 3 equal sized Gaussian
clusters. For each plot the direction of the maxima is indicated with a line
segment. It can be clearly seen that IAR is smoother than the other measures,
with almost coinciding maxima.

15

One should also remind that in the Artés-Rodŕıguez approach, for all computa-
tions of the gradient, one-dimensional projections are used, whereas Torkkola’s
approach gradient evaluations are based on data of dimensionality d(D − d).
This could be beneficial as well.

−6

−5

−4

−3

−2

−1

0

1

2

3

−12
−10

−8
−6

−4
−2

0
2

−2

0

2

4

background

IMO

Figure 11: Result of real data (50 frames of city3 sequence) subspace transforma-
tion (feature extraction) from 9-D early vision feature space to 3-D space, using
Torkkola’s method. Only 10000 samples are plotted for the sake of exposition.

Another issue is data preprocessing. In Torkkola’s only PCA is used as
data preprocessing, whereas Artés-Rodŕıguez employs a more sophisticated tech-
nique: successively PCA and SIR (Sliced Inverse Regression) are used, which
already yields a quite good MI result.

9 Application to IMO detection

The application above is only valid for relatively small datasets (no more then
105 samples). For larger data sets, the application of these methods become
problematic because they rely on batch learning. Another important issue is
that in reality the dimensionality can be high. We consider the detection of In-
dependently Moving Objects (IMOs) based on several cues, that were previously
extracted from the image, such as optic flow, average flow, disparity of the pre-
vious, current and next frames, ON/OFF contours, static (1D) disparity, grey
scale image, (x, y) position coordinates of the pixels, and so on. . . We consider
two types of classes: IMOs and background (non-IMOs). Hence, we perform cue
fusion given a specific task, namely, the separation of the two classes as much
as possible. In our simulations, the number of cues varies between 8 to 20, de-

16

Figure 12: The left image is a rectified version of the original (left) one, which
is frame number 63 of the city3 sequence. The right image is the result of the
MLP-classification of the left image.

pending on the initial setup (i.e., set of cues selected for further processing). A
result of Torkkola’s feature extraction method, applied on a real movie sequence
(city3), is shown in Fig. 11. We found that, by reducing the dimensionality of
the original cue space, we actually made the ensuing classification task more
difficult. We can explain this by noting that the classifier is trained separately
from the adaptive subspace algorithm (which only uses the class labels for find-
ing the optimal subspace but does not take into account the geometry of the
actual classifier).

One way to improve the classification performance is to combine cue fusion
with classification and train them as one classification paradigm. This can be
done in the framework of multilayered perceptrons (MLPs), where cue fusion
and classification stages are represented by different layers. In our experiments,
we tried different MLP configurations, but all of them had 3 layers with (4–8)
linear neurons in the first layer, (8–16) nonlinear neurons in the second layer
and one linear output neuron. The first layer could be considered as the fusion
part, the second layer coupled with the third one – as the classification part. A
typical result for the city3 sequence is shown in Fig. 12.

Because of the better performance with the MLP, we propose to switch from
MMI feature extraction methods followed by classification to MLP classifiers.

10 Conclusion

In line with the TA, we have considered Torkkola’s [5] supervised subspace
method based on mutual information: We have benchmarked two supervised
subspace methods based on mutual information: not only the algorithm of
Torkkola [5], but also that of Artés-Rodŕıguez and Leiva-Murillo [8]. By test-
ing on synthetic data sets, we found that these algorithms only work well for
relatively small datasets. This was confirmed in the case of a real world segmen-

17

tation problem where the subspace was followed by a classifier: the idea was to
find a subspace that optimally segments Independently Moving Objects (MOs)
from their backgrounds. As inputs we used several visual cues, all of which were
obtained from WP4. This led to disappointing results. As an alternative, we
developed a cue fusion paradigm based on a multilayer perceptron (MLP). This
yielded much better results, so that we decided to continue with this paradigm
for disambiguating IMOs (further reported on in D6.2).

References

The papers referred to are concerned with techniques and algorithms for
subspace development, i.e., the transformation of the input space onto a
low-dimensional subspace. In our case, we look for a subspace that best sep-
arates SVEs from the background. At the time of the TA writing, Torkkola’s
feature selection (Torkkola, 2002) method seemed very promising. In the
reference list the papers cited are briefly commented, as required by the
reviewers.

[1] N. Chumerin, and M.M. Van Hulle, “Comparison of two feature extraction
methods based on maximization of mutual information,” in IEEE Work-

shop on Machine Learning for Signal Processing (Maynooth, Ireland, 6-8
September 2006), 2006, pp. 343-348.
Publication of part of the results reported here.

[2] J.E. Jackson, A User’s Guide to Principal Components, Wiley, New York,
1991.
The standard work on PCA, an unsupervised method for developing sub-
spaces.

[3] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis,
John Wiley & Sons, 2001.
The standard work on ICA, another unsupervised method for developing
subspaces.

[4] F.W. Young, “Multidimensional scaling: History, theory, and applica-
tions,” R.M. Hamer, Ed. 1987, Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates.
A review on MDS, a non-linear subspace transformation technique.

[5] K. Torkkola and W. Campbell, “Mutual information in learning feature
transformations.,” in ICML, 2000, pp. 1015–1022.
The article on which this report is based.

[6] J.C. Principe, J.W. Fisher III, and D. Xu, “Information theoretic learning,”
in Unsupervised Adaptive Filtering, Simon Haykin, Ed., New York, 2000,
Wiley.
This article describes an approximation of mutual information, on which
Torkkola’s is based.

18

[7] K.D. Bollacker and J. Ghosh, “Linear feature extractors based on mutual
information,” in Proceedings of the 13th International Conference on Pat-

tern Recognition, 1996, vol. 2, pp. 720–724.
This article describes a method for subspace development based on the
direct estimation of mutual information.

[8] A. Artés-Rodŕıguez and J. M. Leiva-Murillo, “Maximization of mutual
information for supervised linear feature extraction,” submitted.
This article offers an alternative method to Torkkola’s.

[9] A. Hyvärinen, “New approximations of differential entropy for indepen-
dent component analysis and projection pursuit,” in Advances in Neural

Information Processing Systems, Michael I. Jordan, Michael J. Kearns, and
Sara A. Solla, Eds. 1998, vol. 10, pp. 273–279, The MIT Press.
This article describes how mutual information maximization can be done
with negentropy maximization.

[10] E. Parzen, “On the estimation of a probability density function and mode,”
Annals of Mathematical Statistics, vol. 33, pp. 1065–1076, 1962.
The classical paper on density estimation with Gaussian kernels.

[11] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual infor-
mation,” Phys. Rev. E, 69, 066138, 2004.
A new distance-based method for estimating mutual information.

[12] K.E. Hild II, D. Erdogmus, K. Torkkola, and J.C. Principe, “Sequential
feature extraction using information-theoretic learning,” in press.
A paper that describes the publicly available implementation of Torkkola’s
approach

19

