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Summary: We report on a procedure for disambiguating Independently Moving Objects 
(IMOs), one of the 3 SVE types that we consider. However, the IMO maps provided by 
WP4 are not yet of sufficient quality to warrant for an automatic detection of the IMOs. 
Hence a disambiguation of these maps is required using an object recognition procedure 
that at the same time labels the objects by their types. It also facilitates the listing of the 
object’s visual properties such as relative speed, distance and so on. We also perform dis-
parity-based ground plane estimation so as to be able to detect obstacles (SVEs). The dis-
ambiguation of the Structured Action Event (SAE) is fortunately much less problematic 
since several actions are recorded via the CANBUS. Finally, we develop a concept of the 
SVE/SAE linking and also report on the first promising recordings that were recently 
made in support of the concept. 
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1 Executive Summary 

As stipulated in the TA, the objective of WP6 is to: 1) disambiguate the Structured Visual Events 
(SVEs), 2) disambiguate the Structured Action Events (SAEs), and 3) link SVEs to SAEs. In the 
first year, it became clear that the disambiguation of the Independently Moving Objects (IMOs, a 
particular type of SVE), detected in WP4, posed more serious problems than anticipated. Indeed, 
the IMO maps detected in WP4 often appeared as disconnected and sparse clouds of pixels repre-
senting the same object. Furthermore, false positives often occurred, thus, pixels falsely labeled as 
IMOs (see Fig. 1). This, and also the difficulty to fully include prior visual domain knowledge, 
made the initially suggested text mining approach (based on weighted word frequency histo-
grams) not suited. Hence, it was decided to spend much more time on IMO disambiguation as 
well as tracking. In this report, we show our progress on combining the IMO maps of WP4 with 
object recognition. In a later stage, also LIDAR data will be fused with visual data for disambigu-
ating the IMOs and for differentiating them from (still) obstacles. The disambiguation of the 
SAEs is fortunately much less problematic than anticipated, according to the analysis of the 
CANBUS data in year 2 in WP5. Finally, we show here a concept of SVE/SAE linking and men-
tion the recordings that were specifically made for it. 

 
Status of the Task: 
The disambiguation of the IMOs is an ongoing task which requires much more attention than 
foreseen. The disambiguation of the SAEs is much less of a problem since the CANBUS data 
can be readily used for that purpose. A concept of SVE/SAE linking is developed and recordings 
were accordingly made. Part of this work has been published (Chumerin and Van Hulle, 2008). 

 
Revision notes: 
As asked by the reviewers, we have included: 1) a more elaborate state of the art on fusion, a 
technique that can be used for disambiguating IMOs (see Introduction next), 2) a benchmark test 
to prove the advantage of disambiguation, 4) a concept of SVE/SAE linking, and 5) the descrip-
tion of the recordings recently made in support of the concept. Apart from these requirements, 
we have implemented a disparity-based ground plane detection algorithm (assuming planarity of 
the road) so that we can estimate obstacles by looking at the deviation of their stereo disparities 
from the “planar” disparity of the ground plane. 

2 Introduction 
The detection of the independently moving objects (IMOs) can be considered as an instantiation 
of the obstacle detection problem, which plays a crucial role in traffic related computer vision. 
The problem of independent motion detection from stereo video data acquired by static cameras 
differs dramatically from the same problem in the case of moving cameras. The problem is com-
plicated by ego-motion, camera vibrations, imperfect calibration, complex outdoor environ-
ments, insufficient camera resolution and other limitations. The fusion of information obtained 
from multiply cues and sensors can dramatically improve quality of information perception  
(Handmann et al., 1998; Stiller et al., 2000; Becker & Simon, 2000; Bertozzi et al., 2000; Ber-
tozzi et al., 2002; Fang et al., 2002; Kato et al., 2002; Steux et al., 2002; Laneurit et al., 2003; 
Hofmann et al., 2003; Kastrinaki et al., 2003; Blanc et al. 2004; Sole et al., 2004; Labayrade et 
al., 2005; Gandhi & Trivedi, 2006; Sun et al., 2006). There are a number of approaches to fusion 
characterization (Hall & Llinas, 1997; Dasarathy, 1997; Pohl, 1998; Wald, 1999) but, most fre-
quently, fusion is characterized by the abstraction level: 



1. Low (signal) level fusion combines raw data provided directly from sensors, 
without any preprocessing or transformation, 

2. Intermediate (feature) level fusion aggregates features (e.g. edges, corners, tex-
ture, optic flow) extracted from raw data before aggregation, 

3. High (decision) level fusion aligns decisions proposed by different sources. 
Depending on the application, several different techniques are used for fusion. Matching of the 
targets detected by different sensors is often used for obstacle detection. Extensions of the Kal-
man filter (KF) (Kalman, 1960) (e.g. extended Kalman filter (EKF) and unscented Kalman filter 
(UKF) (Julier & Uhlmann, 1997) are mostly involved in estimation and tracking of obstacle pa-
rameters, as well as in ego-position and ego-motion estimation. 
Furthermore, successful tracking of IMOs requires that a solution is found for the disconnected 
and sparse cloud of pixels representing the same object. Also, false positives are often detected, 
thus, falsely labeled as IMOs (see Fig. 1). 
The approach we will follow is based on an intermediate level of fusion: the IMO maps of WP4 
will be disambiguated by means of object recognition. The latter is performed with a convolu-
tional neural network. Next, a simple algorithm is proposed for tracking the disambiguated IMOs 
and, finally, a number of properties of the disambiguated and tracked IMOs are estimated such as 
distance, speed, acceleration. 

    
 

    

Fig. 1. Left images are rectified versions of original (left) frames taken from sequences city3 (upper) 
and motoway3 (lower). Right images are independent motion maps corresponding to left im-
ages.  

Without an additional disambiguating procedure it is quite hard to remedy these errors. Further 
steps such as object tracking and visual properties extraction obviously are also affected. In this 
report, we propose an approach to disambiguate IMO maps, based on a separate processing and 
successive fusion of two information streams: independent motion detection stream and disam-
biguating (recognition) stream (see Fig. 2). We show some results as well as on the retrieval of 
an IMO’s visual properties (IMO descriptors). 
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Fig. 2. Outline of proposed model. Upper branch represent independent motion detection stream and 
lower branch – disambiguating (recognition) stream. 

3 Model outline 
The main reason for exploiting two separate streams was the unsatisfactory quality of the final 
IMO segmentation based solely on the independent motion detection stream (IMO maps, see 
WP4). Without an additional disambiguation we cannot get rid of false positives and discon-
nected blobs in the IMO maps. On the other hand, we cannot use only object recognition alone, 
just because it works with static frames, and therefore does not take into account that the object 
might be moving. It means that recognition stream is not able to distinguish between moving and 
static objects.

4 Independent motion detection stream 
We have used the IMO maps obtained in WP4 (Task 4.3 Vision based organization of SVEs) as a 
result of the independent motion detection stream. 

5 Disambiguation (recognition) stream 
For the recognition of vehicles and other potentially dangerous objects (such as bicycles, motor-
cycles and pedestrians), we have used a state of the art recognition paradigm – the convolutional 
network LeNet, proposed by LeCun and colleagues (1998). Modifications of LeNet were suc-
cessfully exploited for generic object recognition (2004) and even for autonomous robot’s obsta-
cle avoidance system (2006). 

We have used CSCSCF configuration of LeNet (see  
Fig. 3) comprising six layers: three convolutional layers (C0–C2), two subsampling layers (S0–
S1) and one fully connected layer (F). As input, LeNet receives a 64×64 grayscale image. Layer 
C0 convolutes the input with ten 5×5 kernels, adds (ten) corresponding biases, and passes result 
to a squashing function1 to obtain ten 60×60 feature maps. In layer S0, each 60×60 map is sub-
sampled to a 30×30 map in such a way that each element of S0 is obtained from a 2×2 region of 
C1 by a summation these 4 elements, multiplying by a coefficient, adding a bias and squashing. 
For different S0’s elements corresponding C1’s 2×2 regions do not overlap. S0 layer has ten co-
efficient-bias couples (one couple for each feature map). Computations in C1 are the same as in 
C0 with only difference in connectivity: each C1’s feature map is obtained as a one single con-
volution, but as a sum of convolutions with a set of previous (S0’s) maps (see Table 1). 
                                                           
1  f(x) = A·tahn(S·x), where parameters were chosen A = 1.7159 and S = 2/3 according to LeCun and co-workers 
(1998). 
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Fig. 3. LeNet – a feedforward convolutional neural network, used for object recognition. 

Layer S1 subsamples C1’s feature maps in the same manner as S0 subsamples the feature maps 
of C0. The final convolutional layer C2 has kernels sized 13×13 and 180 feature maps which are 
fully connected to all S1’s 16 feature maps. It means that the number of C2’s kernels is 
16×180 = 2880 and correspondingly the connectivity matrix should have all cells shaded. Output 
layer consists of 7 neurons, which are fully connected to C2’s outputs. It means that each neuron 
in F (corresponding to a particular class background, cars, motorbikes, trucks, buses, bicycles 
and pedestrians) just squashes the biased, weighted sum of all C2’s outputs. 
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Table 1. S0-C1 connectivity matrix. In i-th column shaded cell corresponds to S0’s feature map in-
volved in C1’s i-th feature map computation. For example: in order to get feature map in C1 
indexed by 0, one have to convolve S0’s feature maps indexed by 0, 1 and 2 (see first column) 
with corresponding kernels, compute sum of these convolutions, add bias to the result and 
squash it. Number of C1’s kernels is equal to number of shaded cells in the table: 
6×3 + 9×4 + 1×10 = 64. 

LeNet scans the input image (left frame) in two scales, 320×256 and 640×512, with a 64×64 
sliding window and in 8 and 16 steps respectively. For each position of the sliding window we 
add the class’ output of LeNet to the corresponding (window) range in a 320×256 matrix which, 
after normalization, is considered as a probability map for the entire class. 

6 LeNet Training 
For the disambiguation stream training, we used two rectified stereo video sequences, each con-
sisting of 450 frames. Using specially developed software, we labeled the left frames of the se-
quences. These labels were used for preparing the training dataset for LeNet. 
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For the LeNet training, we prepared a huge training dataset of 64×64 grayscale images (see table 
hereunder). The images were taken not only from the training sequences but mainly from pub-
licly available recognition databases (LabelMe2, VOC3). All kernels, coefficients and biases de-
scribed in the previous section are trainable parameters. 
LeNet was trained with a stochastic version of the Levenberg-Marquardt algorithm with diagonal 
approximation of the Hessian (LeCun et al., 1998). The training and preliminary test perform-
ances are listed in the next Table. Trucks are often confused as cars; backgrounds are recognized 
very well even for test sets (so it can be used as a mask). 
 

Training set Testing set 
Classes Number 

of samples Ratio Correctly 
recognized 

Recognition
performance

Number 
of samples Ratio Correctly 

recognized 
Recognition
performance

Backgrounds 390490 78,10% 389490 99,74% 1000 76,92% 973 97,30% 
Cars 65806 13,16% 63916 97,13% 200 15,38% 145 72,50% 
Trucks 7972 1,59% 6826 85,62% 100 7,69% 23 23,00% 
Buses 4954 0,99% 3455 69,74% -  - - 
Motorbikes 15286 3,06% 14233 93,11% -  - - 
Bicycles 11210 2,24% 10891 97,15% -  - - 
Pedestrians 4282 0,86% 4013 93,72% -  - - 
Total 500000 - 492824 98,56% 1300  1141 81,50%

 

 

Fig. 4. Mask of most probable IMO appearance in a frame. 

7 Disambiguation 
IMO disambiguation we have done in three steps. The first step – mixing (multiplying) he inde-
pendent motion map with a mask of most probable locations of IMOs in a frame (see Fig. 4). 
The second step – the intersection of the previous result with the non-background map (these 
maps we have used further in tracking procedure). The third step – the intersection of the previ-
ous result with the (normalized) likelihood map of each class, which results in six maps L1,…,L6 
(one for each class, except the background). In Fig. 5 one can see an example of the procedure. 

8 Tracking and properties retrieval of IMOs 
As soon as we are able to disambiguate IMOs, it becomes much easier to track IMOs and to re-
trieve their properties (size, absolute speed, relative speed, time to contact, absolute acceleration 
etc). For IMO tracking we have used a simple tracking technique. As input we used maps, ob-
                                                           
2 http://labelme.csail.mit.edu/ 
3 http://www.pascal-network.org/challenges/VOC/ 
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tained on second step of disambiguation procedure (intersection of masked independent motion 
maps with corresponding non-backgrounds). Then we have performed a spatio-temporal filtering 
(i.e. for i-th map we apply smoothing of three-dimensional array – concatenation of (i–2)-th, (i–
1)-th, i-th, (i+1)-th and (i+2)-th two-dimensional maps along third time-dimension). Then we 
search for local maxima in the entire (i-th) filtered frame and consider them as IMO centers for 
this frame. 
For a more robust tracking of each IMO, we have introduced a parameter called tracking score. 
For a particular IMO we increase this parameter when in the next frame, only in a small 
neighbourhood of the entire IMO there is a new IMO with the same class label, and approxi-
mately with the same properties (size, distance). Otherwise the tracking score is decreased. An 
IMO survives while the tracking score is above a fixed threshold. The tracking score works as a 
momentum and allows the system to keep tracking IMO even when there is no sufficient data to 
track IMOs in the next few frames. 
 

 

 DD   C 

 A  B 

motorbikes trucks

carsbbaacckkggrroouunndd

Fig. 5. Results of IMOs disambiguation: A, an original (left) frame of testing video sequence. 
B, output of the independent motion detection stream: intensity of each pixel means probability 
of being part of the IMO. C, output the disambiguation stream: each subfigure contains the 
likelihood map for one of the classes: background, cars, motorbikes, trucks, buses, bicycles and 
pedestrians (we present here only four classes because the other maps contain values very close 
to zero). D, result of the IMO disambiguation. Here, we used different colors to represent the 
different classes. 

One of the most important tasks of WP6 consists of the retrieval of an IMOs properties. 
The Class ck of the k-th IMO we define as: 
 { }

1 6
arg max ( )k c

c
c L

≤ ≤
k= x , (1) 

where xk = (ik, jk) center of k-th IMO (in image domain I) and Lc – maps, defined in third step of 
disambiguation procedure. 
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For IMO’s size σk estimation we search for σ>0, where the first minimum of function (2) take 
place. 

 
2 2

( ) ( ) ( )k

kk c k c
I

k
L e Lσσ − −∆ = −∫ x xx dx x , (2) 

The IMO’s distance estimation is a crucial point in the retrieval process. Using an averaged (in a 
small neighbourhood of the entire IMO’s center) disparity, we have computed the distance to the 
IMO. In order to compensate for instabilities in the distance estimations, we have used averaging 
over the previous 5 estimates. The Relative speed in depth, we estimated as the derivative (w.r.t. 
time) of the distance using linear regression over the last 5 (averaged) estimations of the dis-
tance. In order to estimate the time to contact, we have divided the averaged distance by the av-
eraged relative speed in depth. Using the precise value of the egomotion speed from the CAN-
BUS data, and simply by adding it to the relative speed in depth we have also obtained the abso-
lute speed in depth. The derivative of the absolute speed in depth can be considered as an estima-
tion of the acceleration (it is true only in the case when the egoheading is collinear to the head-
ing of the entire IMO). An example of IMO tracking and properties retrieval is shown in Fig. 6. 

 

Fig. 6. Results of application IMOs disambiguation for IMO tracking and properties retrieval. 
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9 Benchmarking 
9.1 myLabel tool 
 
In order to assess the performance of our IMO disambiguation algorithm, and to compare it to the 
original IMO maps of WP4, we have developed a tool with which benchmark data sets of hand 
labeled IMOs can be generated. The tool, called myLabel, is a graphical tool for manual and 
semiautomatic pixel-wise labeling of image sequences in the MATLAB 7.0.4 
(Linux/Windows).environment (Fig. 7). The main features of myLabel are: 
• Project-like state support. Each state consists of an image list and all directory settings. 
• Arbitrary image resolutions (even per state) and graphical formats can be handled. 
• Labeling of up to 20 different objects in the same frame. 
• Labeling according to the layers concept of standard graphical editors (e.g. Adobe Photo-

shop): one can add, delete, copy, paste, overlay and shift labels as well as toggle visibility, 
change transparency, color and value of each label. 

• Semiautomatic object tracking/labeling using two simple techniques: 
o SIFT keypoints tracking with warping of the corresponded label mask; 
o best SSD (Sum of Squared Differences) matching. 

• Most operations have been coded by key shortcuts. 
With this tool, several movies have been hand labeled and used for benchmarking. 
 

 
Fig. 7 Screenshot of the myLabel tool. 

 
9.2 Evaluation of precision and recall 
 
In order to evaluate the IMO maps, and the disambiguated ones, for segmenting IMOs, we con-
sider two metrics: precision and recall. Precision is the number of correct detections divided by 
all detections; recall is the number of correct detections divided by the true IMO pixels. Since 



detection depends on a threshold, as we vary the threshold, we obtain precision vs. recall plots. 
By plotting these curves for each method, we are in a position to compare their performances. 
The optimal threshold can be chosen as the harmonic mean of precision and recall: 2/(1/precision 
+ 1/recall).  
In addition to the IMO map, we consider three disambiguation cases: using object recognition (as 
reported here), using the deviation from the disparity-based ground plane (see further), and the 
fusion of the latter two. In the next figure we show our evaluation of tour_03#000. The small cir-
cle on each plot is the harmonic mean. We observe that the performance improves when disam-
biguating the original IMO maps. 

 
Fig. 8 Benchmarking of IMO maps and the disambiguated ones (see text). 

10 Conclusion on IMO disambiguation 
The disambiguation procedure we presented is successful in disambiguating IMOs (Fig. 5), and 
allows for an easy tracking and properties retrieval (Fig. 6). By mixing IMO maps and class like-
lihood maps we increase the reliability of the detected IMOs and automatically cleans up the 
false positives. This is a crucial issue when video streams obtained from moving cameras are 
used. Furthermore, we have benchmarked two disambiguation techniques. 
Further improvements of the model’s performance we see in the combination of other cues with 
the IMO maps, and by using the CANBUS range radar data (LIDAR data) to refine the distance 
estimations and for detecting (static) obstacles. 
Also the two processing streams at earlier stages can be improved, namely, using a common 
bank of Gabor-like (fixed/non-trainable) filters in the visual cues extraction stage and in LeNet’s 
C0 layer. This step definitely will reduce computations. Another way to reduce computations is 
to reduce the amount of data to process. In the disambiguation stream, we can build the object 
likelihood maps not for the entire frame, but only for regions containing motion information. The 
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last idea has obvious biological support: in real visual system recognition takes place with prior-
ity for moving objects. 
 
11 Disparity-based ground plane estimation 
 
There are a number of studies on ground plane detection based on lane markings (Zhang et al., 
1994), v-disparity (Labayrade et al., 2002), geometry assumptions of urban scenes (Cornelis et 
al., 2006). Road modeling is a crucial issue in these studies. Assuming planarity of the road one 
can estimate obstacles by looking at the deviation of stereo disparity from a “planar” disparity. 
Using the phase-based, multi-scale stereo disparity algorithm of WP4, we have first computed 
dense disparity maps. Then, we have applied a predefined road mask and fitted a disparity plane 
through the remaining disparities. An example of a disparity-based ground plane is shown in 
Fig. 9. The red bullets indicate a fixed set of nine points (3×3 lattice) The disparities for these 
points are computed in each frame using the estimated disparity plane model. Note also the hori-
zon (yellow horizontal line). The actual plane fitting is done with a robust regression technique, 
called Iteratively Reweighted Least-Squares (IRLS) (Holland and Welsch, 1977). In order to 
track the ground plane over time, we verify whether the normal unity vector of the ground plane 
and the coefficient representing the distance from the camera nodal point to the plane do not dif-
fer much in two subsequent frames; if they do differ more than a preset threshold, then the previ-
ous frame’s ground plane estimate is taken. 
Given the disparity plane, all pixels for which the disparities that are larger than some preset 
value are considered as obstacles: δ(x, y) > αx + βy + γ + δ0 where δ(x, y) is the disparity value 
taken from the disparity map of the pixel at coordinate (x, y), parameters α, β and γ are the esti-
mates of the disparity model of the ground plane, and δ0 is a threshold which corresponds to the 
minimal height above the disparity plane for a pixel to be considered an obstacle. The result is 
shown in Fig. 10. 
 

 
Fig. 9 Disparity –based ground plane estimation. 

 

 12



 
Fig. 10 Obstacle detection based on the estimated disparity plane. In red color we depict the obstacle pixels and in 

magenta we show the pixels near the disparity plane. 
 
12 Concept of SVE/SAE linking 
 
Based on the successful SAE road following of WP7, we decided to draft up a similar concept 
for SVE/SAE linking. In WP7 several runs of the same tour were made and used as a database 
from which driving actions were extracted for the current situation (i.e., a Look-Up Table (LUT) 
approach). 
Here, we will also consider recordings of several runs of the same tour (see further), but we will 
issue warning signals if the driving state and actions are different from what is expected from the 
historical recordings. This illustrated in Fig. 11 for the case of lane following. Suppose that we 
have historical records that contain visual information about position on the road (differential 
GPS, line markings), orientation (heading), speed of the car, and also actions such as steering 
angle, acceleration/deceleration (braking) and indicator lights (the historical points are indicated 
by the green points in Fig. 11). Information on the line markings, speed, steering angle, braking, 
and indicator lights are available from the CANBUS. From this information, we can predict our 
current state based on an interpolation between the historical data points (LUT). We also have 
the information describing the current state, or even its predicted one (e.g. 1 s ahead), predicted 
from the current state (cf. heading, speed). We can compare the interpolated and the true or pre-
dicted state of the car to issue a warning if the current visual information and/or actions are 
anomalous compared to the historical records (which are regarded as “error”-free). Since the in-
formation is diverse (continuous as well as categorical, visual information as well as actions) we 
perhaps need to come up with several dissimilarity metrics and more than one threshold to detect 
anomalies. The thresholds need to be chosen empirically. 
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Fig. 11: Warning signal is generated when the predicted state (including actions) deviates from the current state 
(also including actions). 

 
A similar concept can be developed when IMOs are present. We assume that we can treat each 
IMO independently. The concept is depicted in Fig. 12. We can take into account the inaccurate 
estimates of the headings of our car and the IMO, and thus, their future positions, in our warning 
metric as follows. Assume that P1 is the area spanned by the uncertain positions over a certain 
time span, and likewise for our car, P2 (Fig. 13). The size of the conjunction of P1 and P2, 
P1∩P2, compared to the sizes of P1 and P2 are then an indication of danger, or, when normal-
ized: danger=  2 P1∩P2/(P1 + P2). If the danger level exceeds a threshold, we issue a warning. 
 

 
Fig. 12 Warning signal is generated when the current and predicted state (including actions) of our car deviates 

from the current and predicted state (also including actions) of the IMO. 
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Fig. 13: Definition of the uncertainty of the position over a given time span of our car (O2) and an IMO (O1) (green 

and red circle segments, P2 and P1). The conjunction of the circle segments P1∩P2 is indicated and used in 
the metric for deciding if a warning signal needs to be issued (see text). 

 
Finally, since we rely on historical recordings, since we are solving a regression problem with 
LUT, we can generalize beyond historical recordings and consider a more general regression 
problem instead, using different recordings. This is the subject of further research and will in-
volve machine learning techniques (for which we have extensive experience). 
 
 
13 Description of first promising recordings 
 
In order to test the SVE/SAE linking concept explained above (based on LUT), a number of se-
quences have been repeatedly recorded by UMU and SDU with a calibrated stereo rig. The se-
quences involve three different curves, characterized by soft bends (curve 5), medium bends 
(curve 6) and strong bends (curve 3). The trajectories are illustrated in the images below (fig. 
14).  
Three different conditions have been investigated: plain driving, car following and opposing traf-
fic. For each combination of condition and sequence, a total of 15 runs have been performed (10 
for training and 5 for testing). 
In addition to the stereo video stream, the following data is available for each run: eye move-
ments, curve radius, velocity, breaking, indicators, steering angle, LIDAR, lane information and 
GPS data. 
These historical recordings will then serve as the starting point of the SVE/SAE linking, which 
is currently being studied, and for which we hope to report on in September 2008. 
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Fig. 14: (Upper, middle and lower panels) Trajectories (in yellow) of the tour that was repeatedly recorded for the 
purpose of SVE/SAE linking. 
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