
 1

 

 
 

Project no.:                                    IST-FP6-FET-16276-2 

Project full title:                            Learning to emulate perception action cycles in a driving school       

                                                        scenario  

Project Acronym:                          DRIVSCO 

Deliverable no:                     D7.1b 

Title of the deliverable:       Specification of Learning Requirements (Update 1) 

 

 

   
 
Summary: This Deliverable gives an overview of the DRIVSCO system in its different stages, 
training, robot operation and testing; it reviews the literature on autonomous vehicles; it treats the 
reviewer comments from year 2; and it provides an outline of the future objectives and tasks to be used 
also in the addendum to the TA for September 2007.  

                             Project Co-funded by the European Commission 

                                                  Dissemination Level 

PU Public    X 

PP Restricted to other program participants (including the Commission Services)  
RE Restricted to a group specified by the consortium (including the Commission Services)  
CO Confidential, only for members of the consortium (including the Commission Services)  

Date of Delivery:             14.6. 2007 

Organization name of lead contractor for this deliverable:        BCCN 

Author(s):                                                                                          I. Markelic, F. Wörgötter, BCCN 

Participant(s):                                                                                   BCCN  

Work package contributing to the deliverable:                             WP7 

N ature:                                                                                                R 

Version:                                                                                              2.0 (revised 10/06/2008) 

Total number of pages:              21 

Start date of project:                                                                         1 Feb. 2006                    Duration: 42 months 



 2

1 General Introduction – The DRIVSCO Concept 
This deliverable is being used to provide a general introduction to the DRIVSCO project in its current 
state as many components come together in WP7. This general introduction will be used also for the 
revised TA. 
 
Figure 1 shows the structure of the system of which many components are already operational. Three 
modes exist: A) Training, B) Robot Operation and C) Testing. Components which are identical are 
shown using the same color code. The large green block in B and C is also identical. In general, these 
diagrams describe a control loop, operated either by the human or the robot: Perceived sensor inputs 
together with an evaluation using planning will lead to an action. 
 
During training (A) the human will perform the action. At the same time the system analyses the 
incoming images towards generating SVEs combined in a visual feature vector. At the moment we 
include curvature information as well as obstacle information into this vector (in WP7). The system 
also stores the performed human actions and matches the feature vector to the observed actions in the 
form of a perception-action mapping (Sense-Act Map). From this an interpolation is calculated for 
creating a dense sense-act map for data points that have not been observed. 
 
Panel B shows the robot operation. The machine uses the incoming feature vector together with the 
interpolated sense-act map. These pieces are being brought together with the planner (“lookahead”)1 to 
create an action. Through the action of the robot its own sensor percepts will change, closing the loop. 
 
Panel C shows how these components can be brought together in a real car arriving at a benchmarking 
without having to give full control to the car (which would be not allowed due to safety requirements). 
The human drives the car, while the system “simulates driving the car”. From this there is a moment-
to-moment comparison between human actions and (suggested) car actions possible and errors can be 
benchmarked (for details see D8.1 and D8.3). Note, in this project this is the only allowed way for 
system testing. It does stop short from a full closed-loop car-operation as the human will always 
impose a quasi steady state situation on the system, because wrong suggested car actions have no 
consequences on the driving! 
 
Some short notes on the approach (more details/data will follow in the remainder of the text below):  
The heuristic way of building the sense-act map has been criticized. It has also been stated that 
learning seems less important.  
 
In answer to this, we note that the building of such a sense-act map is motivated by many approaches 
in humanoid robotics, which deal with learning-from-demonstration [Breazeal and Scassellati 2008; 
Schaal et al 2003; Dillmann 2004]. This is nowadays a prevalent learning method for human-
supervised action learning and has therefore been adopted for the DRIVSCO project, too.  
 
In humanoid robotics such a mapping needs to be achieved for a system with many degrees of 
freedom (robot arm and hand). In these cases plain perception-action mapping is not possible as the 
data- as well as the action-space has many dimensions leading to a very sparse filling of this space 
when using a naïve mapping approach even after prolonged experimentation. This as well as the more 
complex target domain of a humanoid robot (3D instead of 2D, for driving) requires generalization 
methods and the building of invariances for transposing actions taking learning-from-demonstration 
into the realm of difficult machine learning methods.  
 

 

                                                 
1 The term “lookahead” is going to be used interchangeably with the word “proactive”, meaning to equip the 
system with the ability to react to upcoming events.  
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Figure 1 DRIVSCO System 
 

 
In our driving scenario, things are much different. We have to deal with only 2 degrees of freedom at 
the output consisting of steering, and velocity. This allows densely filling the sense-act map (in the lab 
after about 10 rounds). Due to the small dimensionality of the target domain (2D) there is no need for 
more sophisticate generalization methods – at least not for the problem of road following (see below 
for agent architecture, etc). This may have raised the impression that the adopted method appears 
simplistic and heuristic. On the contrary, this method just benefits from the simple perception-action 
space (at least on plain roads and road following, see below for some results on real road perception-
action mapping – more will be presented in September). Furthermore, it also fulfills the real-time 
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requirement! Below we will show results where much more sophisticated methods, that we had tested 
(mainly in year 1), that show that those methods did not perform any better. So, there has been a fair 
amount of work spent on the problem that at the end could not be used on the robot. Failure to report 
these negative results may have led to the impression of having used a simplistic, heuristic approach in 
an unjustified way. 

2 Revision D7.1b 
D7.1b has been criticized and rejected. This has largely followed with criticism of WP7 and we will 
use the revision of D7.1b for treating both. Hence, in the following we will carefully address all the 
criticisms made by the reviewers. To facilitate the reading the criticisms or comments made by the 
review committee are set in Courier. 
The structure of this document is as follows: We start with stating the general goals of the 
workpackage (Section 2.1, Introduction), then we summarize previous work done in the field of 
automatic driving (Section 2.2, Previous Work), shortly listing their successes and shortcomings and 
based on that motivate our own approach (Section 2.3, Where Do We Place Ourselves With Respect to 
Others). We will list what work has been done in the course of the DRIVSCO project, and how it 
relates to the stated goals (Section 2.4, Work Done). 
We will give a detailed system architecture outline (System Architecture) and finally we will present 
what future work we intend to do and how we plan to realize it (Future Plans, Expected Results). 
 

2.1 Introduction 
In general the objective of WP7 is to learn links between perception and action to achieve a system 
that is capable of proactive behaviour. We define proactive behaviour as actions that are aimed at 
future events. For safe driving for example, the system should be able to react to upcoming events, that 
will effect the own driving situation. There are two possible ways to achieve that. One would be an 
“extended sensor”, which leads to a proactiveness by implicitly incorporating this future information 
into an action signal, and the other possibility is to generate explicit plans, which are sequences of 
actions. The first approach improves the system behaviour, yet it is limited, since only one action 
signal per timestep, or very few action signals, are elicited. The second approach overcomes this 
shortcoming. There are several benefits in endowing a system with such a “planner”2 in addition to the 
capability to react to future events.  

 It enables the system to cope with periods of lacking sensory input, imposing some kind of 
open loop control (e.g, while loosing track of the lane during an obstacle avoidance action. 

 It can relieve the system from continuous sensory information processing saving these 
resources for other computations. 

 It can help to make the system more robust/adaptive, since the action plans can in principle be 
used to make state predictions. These state predictions can be compared to the really 
encountered states and the conducted actions can be corrected accordingly if necessary. 

 Typical sequences that reoccur often can be used for situation recognition. 
We first looked at the initially proposed ISO learning method. It is a modern sequence learning 
method that was successfully applied to numerous problems [Porr et al., 2003; Trancoso, 2007; Porr, 
Wörgötter, 2006] and therefore seemed promising for the problem at hand.  However, it was found that 
ISO cannot be so easily adapted to a supervised scenario, such as aimed at in DRIVSCO. In addition 
ISO would be more an example of an implicitly proactive system, as described above. Before tailoring 
this method to the problem, which of course would also be an option, we decided to analyze what 
would be the best way to tackle the problem in the first place, not restricting ourselves to a fixed 
course of action. Thus, all effort in this workpackage has been aimed at supervised predictive sequence 
learning. It might be, that we failed to make this clearer before, which gave rise to the impression that 
the course of “WP7 has shifted […] dramatically with respect to what was initially proposed”, or that 

                                                 
2 The word “planner” in this context is not be interpreted in the classical AI sense that usually refers to high level 
planning systems such as STRIPS, but rather denotes a system that can generate a sequence of short term 
actions. 
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“the learning from human driving seems to have become secondary.” But we will address this critique 
also further in the course of the text. 
 

2.2 Previous work  
Previous work in automated vehicle control started at the end of the 70ies. Since then heavily funded 
long term programs, e.g. the 800 million ECU EUREKA Prometheus project, the NavLab project from 
Carnegie Mellon University, CMU, the ARGO project [www.argo.ce.unipr.it/ARGO] from Universita 
di Parma in Italy, or the DARPA challenge [http://www.darpa.mil/grandchallenge/index.asp] funded 
by the US government, propelled advances in the field. Impressive results were demonstrated in 1995 
by a 1600 km trip by the VaMP test vehicle (Vehicle for autonomous Mobility and Computer Vision) 
from Universität der Bundeswehr Munich, UBM, from Munich in Germany to Odense in Denmark 
and back, with speeds up to 175 km/h with only 5% human intervention. Lateral and longitudinal 
control were achieved based on vision sensors and “engineering methods” (comp. paragraph Physical 
Models). 
In the same year NavLab from CMU achieved 98.2% autonomous driving on a 5000 km trip, called 
"No hands across America". It used neural networks for lateral control. Longitudinal, i.e. velocity 
control was not included, but handled by a human operator. 
The ARGO project proved its potential in the “MilleMiglia in Automatico”, a journey of 2000 km 
over six days on the motorways of northern Italy. It achieved an average speed of 90 km/h. and the car 
was in automatic mode 94% of the time.  
 
The above successes were based on the usage of very different methods and mixtures of them. One 
way of differentiating between them is to measure the amount of required a priori knowledge, compare 
Figure 2. On one extreme are the heavily model based methods, that employ either models of the 
physical environment, or models of the human controller and on the other extreme are all methods that 
try to overcome this, usually by making use of machine learning techniques.  

 

 
 

Figure 2 Visualizing the different strategies used in automatic vehicle control. The model based 
methods are based on a high amount of a priori knowledge (bias), whereas the model free methods try 

to minimize it. 
 
In the following we will give a short overview of the different strategies and discriminate them against 
each other, listing their pros and cons and finally placing ourselves. 
 
2.2.1 Model based approaches 
There are two different kinds of model based approaches. One is based on physical models and the 
other on human models. 
 
Physical Models 
For automatic vehicle control a typical “engineering method” is to build a model of the system to be 
controlled and its environment. The exact knowledge on the parameters that determine the system 
dynamics results in very elegant and minimalist mathematical control laws. The main challenge is then 
estimating the required parameters from the sensory input. This approach has been heavily used by the 
group around Ernst Dieter Dickmanns. A famous example is the 4D approach to dynamic vision, 
where the use of spatio-temporal motion models is used as the basis for recursive state estimation 
[Dickmanns, 1994]. 
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• Pro 
a) When all models are known a very good level of control can be achieved, grounded in 

the well studied and powerful Newtonian Mechanics. For examples of this strategy 
see [Dickmanns, 1994; 1990] 

• Con 
a) The more complex the scene the more models and their interactions must be known. 

This is often not realistic. For example one would need to have a model of a truck, of 
a cyclist, of the road, and evtl. how all these models change with changing weather 
conditions. One cannot possibly consider all contingencies. It would be preferred that 
the system could acquire some knowledge by itself. 

b) Even if all models were known they have to be preprogrammed into the system, thus, 
a lot of effort is required by the system designer. 

 
Modelling the human controller 
Achieving a model of the human controller, instead of modeling the rigid objects of the environment is 
another example of a model based approach. The goal is to understand the human control by 
modelling it. The major challenge here is to arrive at control laws. Usually studies are done in 
simulation and therefore the necessary cues from the visual input are known. In the area of driving 
there is research on a) curve negotiation [Boer, 1996], b) lane changing [Salvucci & Liu, 2002] c) car 
following [Boer, 1999]. Most of these works are done using simulations.  
Similar advantages and disadvantages as in the rigid body modeling approach apply. That is: 

• Pro 
a) For certain well studied and verified models a very good level of approach can be 

achieved, when the necessary cues can be provided. 
• Con 

a) For real applications it can be difficult to obtain good feature estimates, e.g. the 
interesting feature is not in the camera image. 

b) All models must be preprogrammed into the system, thus the more complex the 
environment the more effort is required by the system designer. 

 
2.2.2 Model free approaches 
To remedy the shortcomings of model based approaches, which is basically the necessity to provide a 
lot of a priori knowledge, or bias, machine learning techniques are usually employed. They can be 
distinguished into 1) heuristic methods and 2) inductive/knowledge extraction methods. 
 
Heuristic Methods 
Heuristic methods have shown to make good use of existing knowledge for building simple and robust 
controllers. They are obtained by looking at the response curve of the system output according to a 
certain input signal and have proven to be useful in various applications, for car driving one of the 
most prominent examples is ALVINN [Pomerleau, 1989]. Other examples applied to the problem of 
automated vehicle control were for example: Artificial Neural Networks (ANN) [Tahirovic, 2005], 
Pattern Matching [Krödel & Kuhnert, 2001], Artificial Evolution [Agapitos, 2007], Reinforcement 
Learning (RL) [Riedmiller, 2007], and Clustering Based Techniques [Vasquez et al., 2008]. All these 
methods have a in common that they map an output signal to an identified state.  

• Pro  
a) A big advantage of these methods is that the relation between input cues and control 

output is handled automatically. Neural Networks are especially intriguing, since they 
can handle a great number of inputs and select implicitly the relevant ones. 

b) They generalize to a certain extend (but comp. item b) in the “Con” part) and can be 
robust to noise. 

c) They are well suited to realize nonlinear input-output relations. 
d) They are usually very fast. 

• Con 
a) Concerning Neural Networks it is not easy for the human to identify which features 

the techniques discovered to be meaningful and what impact they have (“opaque-box 
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problem”). In the case of the ALVINN approach this lead to additional work aiming at 
solving this problem. [Pomerleau, Touretzky, 1993]. 

b) When learning from observation a fundamental problem is that often only positive 
examples can be provided. The system consequently cannot know what to do, when 
encountering a situation that is “bad”, since it is very different from the training 
examples. This is a general problem of all techniques that realize a mapping between 
input and output signals. 

c) It is difficult to include predictions of sequences, more suited for realizing closed 
perception-action loops. 

 
2.2.3 Inductive/Knowledge extraction methods 
Knowledge acquisition methods applied were: Case Based Reasoning [Weng & Chen, 1995], Fuzzy 
Logic [Salila & Lezy, 1994], and finally combinations of inductive and heuristic methods, Neuro-
Fuzzy [Rusu et al., 2003].  

• Pro 
a) The advantages of the knowledge extraction methods are that they can make hidden 

relationships overt and as such help to analyze the underlying control strategy. This is 
a very interesting property and has been applied in e.g. [Shang & Wang, 2006]. 

• Con: 
a) Traditionally such methods are used and suited in higher level knowledge, e.g. 

symbolic knowledge tasks. There is little research in using them for other 
applications. 

 
2.2.4 Combined Approaches 
The combination of model based and model free approaches is probably the most promising strategy, 
as some aspects are probably best described by using models, for example for motion description one 
can advantageously use the rigid body motion formalism. On the other hand machine learning 
methods can help to equip the system with more adaptability that then in return alleviates the burden 
of having everything to be preprogrammed into the system. A good example of a successful 
application is EMS-Vision (Expectation Based Multi-Focal Saccadic Vision) [Gregor et al., 2002]. 
This is a modular (object oriented and agent based) system extending the 4D approach with machine 
learning applications. 

2.3 Where Do We Place Ourselves With Respect To Others 
The selected approach should be well positioned with respect to 
the state-of-the-art, including sufficient discrimination to 
ALVINNS’s and Dickmann’s technologies for autonomous driving. 

 
As seen from the above discussion, despite the amount of work that has been done in the area of 
automatic vehicle control and the impressive results achieved, still many problems remain unsolved. 
Probably the combination of both (model-based and model-free) approaches is the best strategy. But in 
the course of this project we focus on the model-free approaches, because: “In the long run, even 
autonomous learning seems to be essential since not all knowledge should have to be programmed into 
the system by human developers.” [Dickmanns, 2002] We believe that adding a predicitive component 
to machine learning techniques, such that sequences of actions/states can be generated, will improve 
their performance as we motivated in the beginning of this document. Therefore, in DRIVSCO our 
goal is to build a driving system using machine learning by equipping it with lookahead, thus it can 
react to upcoming events. In the case of street following this would mean that it would adapt its 
momentary (local or reactive) steering actions towards the upcoming road trajectory, or concerning 
speed it would mean, that it would slow down (in a similar distance and similar way as the supervisor,) 
before it reaches a sharp turn. In particular we are investigating how lookahead information from the 
visual sensory system can be used. We want to analyze how we can use which technique for this 
purpose and we want to learn the necessary skills from a human supervisor. Therefore, we differ much 
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from the usually engineering based methods fostered by the group around E. Dickmanns3. We differ 
from other machine learning methods because we explicitly focus on adding lookahead and aim at 
achieving a system that generates sequences, and not only one action command per timestep, as 
motivated in the beginning of this document in the Introduction. That also distinguishes us from the 
famous ALVINN approach [Pomerleau, 1989]. In addition ALVINN was trained on synthesized 
images, and was used for controlling steering and not speed. 
 
A long term goal (beyond the limits of this project) would be to arrive at a system that can interpret its 
current situation, because “Understanding of what is happening around oneself and what may be 
future actions of other subjects involved in the situation given, is a prerequisite for a desirable 
defensive style of driving” (E. Dickmanns in [Dickmanns 2002]). 
 
But before such an ambitious goal can be achieved there is need to solve basic tasks. It has been found 
that the mentioned lack/difficulty of including lookahead information already shows in the most basic 
skills that such a system should be endowed with. That is following a given trajectory at a reasonable 
(in our case operator-like) speed. Lateral control when driving in a structured environment is relatively 
easy, since it can partly be treated like a reactive control loop, and the system already shows good 
behaviour when only relying on that strategy. Note, however, that there is strong indication that lateral 
control is the result of a two level control, where the basic sensory-action loop is modified by another 
“lookahead”- process [Donges, 1978]. In contrast, longitudinal control requires to take future states, 
e.g. a sharp turn ahead, into account. Humans do that easily. To our knowledge nobody has equipped a 
robot/vehicle with the ability of lateral AND longitudinal control using machine learning techniques 
based on visual sensory input. Research was mainly limited to simulations, or lateral, or longitudinal 
control, but not both, this has also been reported by [Partouche et al., 2007].  

2.4 Work done 
In year 1, a reactive controller for lane following has been 
proposed. It is a simple sensory-motor mapping for a small 
mobile robot that is learned from human driving.  
 

Based on the premise that steering control is twofold (consisting of a reactive and a lookahead 
component) we started with the simpler task of learning reactive steering from human observation. For 
that we used an ANN (a simple multilayer perceptron trained using back-propagation), since it had 
proven to perform well for such applications. However, we did not use the entire image as input 
leaving the feature selection/extraction task to the method, but we treated the street as an obvious SVE 
and extracted it beforehand using conventional computer vision techniques (feature extraction). We 
used the right lane and from that we calculated several cues that showed relatively high correlations 
each (feature selection) and tested them as input parameters for the network. This way we made a 
compromise between not putting into the system how the incoming signals should be processed (that 
was learned from observing the human) but at the cost, that we solved the feature selection task for the 
system 
The performance on training data is shown in Figure 3. It tends to oversmooth, which in curves 
sometimes leads to a situation where the robot gets too close to the border of the track and then cannot 
get back to it fast enough, which results in loosing it. It might be that this problem does not occur on 
wide streets that are not heavily curved, but it posed a problem to our robot, that must drive on a 
strongly curved and narrow track. When trying to improve performance we first tried to reduce the 
fitting error. We divided the steering problem into smaller problems, e.g. we trained a network only on 
right turns, hoping to better capture the human steering, and thus avoiding the problem of loosing the 
track, but as can be seen from Figure 4 it was not successful. Furthermore, we applied a more 
sophisticated kind of network, in this case a Radial Basis Function network. The result is shown in 
Figure 5. As can be seen from the image the network was overtrained. When tuning the radial basis 
parameter we could not get good performance either.  
To learn more about the reasons for that bad performance we decided to analyze the input data further. 
For that purpose we constructed a matrix of the two most influential parameters against the steering 
                                                 
3 Although recent publications show that this group is now bridging previous work with machine learning 
methods. For example in the EMS-project. 
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values from the human. Because of its low dimensionality and the finite values that the parameters 
could take it was interpretable and we found the reason why the robot was loosing track. It was due to 
the problem of training only on positive examples, as explained above, and which was also treated in 
the ALVINN approach, as explained in [Pomerleau, 1989]. The network smoothes the data and from 
that results a slight understeering. As such that is not problematic, but a consequence is, that the robot 
gets too far towards the lane boundary and from there it cannot return because these situations are 
critical and do not need a smooth action but fast corrective steering. When the robot once gets into this 
situation it has not seen before, its generated action is too low in intensity and what follows almost 
immediately is that the robot looses the street in its field of view. The robot cannot return, because the 
ANN as a reactive controller does not contain any memory.4 In ALVINN this problem was solved by 
synthesizing different views from one image using image projections, and accordingly altering the 
steering commands. Thus, for each incoming image several training examples were produced. 
In the case of the matrix (where we plotted the human steering values against the two most influential 
parameters) however, the solution could be acquired much simpler. It was easy to fill the uncovered 
state space with meaningful values. In fact it only required filling in the four extreme values in the 
edges of the matrix and applying a linear interpolation between the values. Of course, that could only 
be done, because a linear relationship between the in- and output parameters could be observed. This 
simple controller now works very well and its performance is shown in Figure 6. The problem of 
loosing track was solved! It can be seen that it is not as smooth as the ANN output, which makes a 
signal filtering necessary (not applied to the data shown in Figure 6), that introduces a slight delay.5 
In this case the problem could be solved because we understood – at least roughly – the relation 
between in- and output data. In addition we could read it from the image when we plotted the matrix, 
which was only possible because of its low dimensionality. This points to a bias/variance dilemma that 
can be frequently found in machine learning e.g. [Weng & Chen, 2001]. Interesting would be to 
investigate how this could be generalized to the case of higher dimensionality. Since we are currently 
investigating how we can introduce speed in our system this is part of current and future work. 
Summing this up, we want to enumerate the advantages of the controller: 

• It works in real time. 
• It has been learned from the human. 
• It covers the complete state space, even if that had not been part of the training data. 
• It is easy to adjust, because it is understandable. 
• It can be used with a single uncalibrated single camera. 

The disadvantages: 
• It is not clear yet how to modify it to incorporate more input, such as speed.  

Please, also note that the matrix is equivalent to the notion of a policy from Reinforcement Learning. 
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Figure 3 shows the result of generating steering data (in green and red) with a neural network, for 

two different test set (in blue). 
  

                                                 
4 And even if it could return, such behaviour would be far from desirable. 
5 This delay can be eliminated by generating sequences of actions and then filtering forward. This work has been 
done, too. And therefore the work on learning a two-level steering agent for fixed speed has been completed. 



 10

0 100 200 300 400 500 600 700-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
Figure 4 Generated steering data of an AN N   
trained on right turns only. Blue is the data 

generated by the human and red is the network 
data. The training set was based on the first 
500 entries. It can be seen that the network 

performs badly on the test set. 
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Figure 5 Radial Basis Function N etwork applied to 
steering data.  The training set comprises entries 

from 1 to 200. The output from the network is 
plotted in green and the data from the human in red. 

It can be seen that the network is extremely 
overtrained. 
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Figure 6 The black line shows the steer signal from the human driver over time and the red is the 

synthesized signal for the same image sequence. The data before the dashed line (from left to right) 
shows the performance on the training data and after it on a test data set 

 
These techniques […] may work well for the actual slow-moving 
robot, but it is not clear how the controller obtained could be 
used for a regular car. It is unfortunate that no attempt was 
made to test the approach on the dataset obtained from the test 
car. 
 

It is indeed important to test the algorithms on the real car. We have started with this work and will 
now show first results. The right lane marker was extracted similar to the robot scenario and angles α 
and β were calculated as shown in Figure 7. The correlation between these angles and the human 
driving signal were investigated at various distances (measured in vertical pixels) forward along the 
road. For the case of angle α, 150 pixels in vertical direction were always kept between the red point 
and the green point, when moving forward along the line. For the angle β the distance was 70 pixels, 
as it was observed that smaller distances between the two points give better fits to driver’s steering 
signal for this angle. Also a third angle γ was introduced, which is similar to β, but the red point 
always remains at the beginning of the line, while the green point moves along the line. As the whole 
view has a considerable up and down motion component, a correction was made to place the line start 
point (bottom right) always 100 pixels above the bottom of the image.   
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Figure 7 shows the extracted right lane (in red) from the street images and the angles α and β, used 

for correlating with driver’s actions. 
 
The results for the angles measured 200 and 250 pixels from the bottom of the image are given in 
Figure 8. The red curve is for the angle α, magenta is for β, and green is for γ. The steering signal is 
plotted in blue. One can see that results for 200 and 250 pixels are similar, as well as all three angles 
(normalized amplitude) produce similar results. Although the curve descriptors are noisy, one can 
observe a reasonable correlation between those descriptors and the steering signals. As this is first 
data, quantifications of the correlations have not yet been performed, but are on the way. Hence, this 
work is currently under progress. 
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Figure 8 Line descriptors: angle α (red curve), angle β (magenta curve) and angle γ (green curve), 
and the steering signal (blue) with the amplitude normalized to one. The left panel is for 200 pixels up 

the picture, and the right panel is for the further view, 250 pixels up the image. 
 
To equip the simple reactive controller with more lookahead based on the data from the supervisor, we 
proposed to build a database and use it as memory for the system. Incoming robot- or car-images can 
be compared to the entries of the database and thus to the actions elicited by the supervisor when 
exposed to a similar situation. In WP6 and 7 there are efforts under way that use the same approach for 
SVE-SAE linking in order to generate warning signals for the driver, based on the car data, as depicted 
in Figure 9. For that a number of sequences have been recorded by UMU and SDU and are being 
used for establishing that database and a test set. For more information please see WP6 in the PAR. 
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Figure 9 A warning signal is generated when the predicted state (including actions) deviates from the 
current state (also including actions). 

 
Year 2 has been dedicated to improving this simple controller. 
Different techniques have been tested in order to provide the 
controller with more lookahead.  
 

Our next goal was to construct the second control level for steering, which should modify the short-
term steering command by anticipating future situations. That was supposed to be done using visual 
sensory information and to achieve at a control sequence. This has been successfully finished for fixed 
speed (see PAR2 description of WP7). The next step, as also explained in the “Future Work” 
paragraph is to augment the controller using speed. This work is in progress.  
 

It is unclear why WP7 does not use the output of WPs4, 5 and 6 
(SVEs and SAEs) 

 
WP7 needs to deal with two aspects: A) Real-time robot control and learning from humans and B) 
Transfer of learning methods to the car scenario. At the beginning of the project no output from the 
other work packages was available, because the project had just started. Thus, effort had to be spent on 
data pre-processing, e.g. creating a real-time lane extraction method.  
Concerning A (robot control): At the current stage of the project there is not yet  real-time capable 
output from the main scientific work on WP 4,5, and 6 accessible for the robot set-up and robot 
control has to deal with this (in contrast for the car set up real-time information is already available via 
the HELLA lane detection system). We note, however, that the methods developed for the robot are 
capturing similar SVEs as those described in the PAR from WP4,6, albeit in a simpler and less 
complete and less robust way. Hence, WP7 and WP4,6 are rather tightly linked and discussion 
between the main involved groups (SDU, BCCN, VMU and KUL) are taking place to coordinate these 
efforts. Obviously, we have failed to make this clear in our earlier writings and failed to provide clear 
explanations as to this.  
 
Concerning B (transfer to car scenario): We have now reached a state were the more complex SVE 
algorithms are now stable and robust (WP4,6, IMOs, tangent point, time-to-contact) and can be linked 
to the drivers actions (WP5) such that perception action linking has become possible (WP6), we 
expect that the lookahead methods introduced in WP7 can be used with some modifications on car-
data, too. Real time aspects are also increasingly becoming available due to the successful work in 
WP1. 

2.5 System Architecture 
It has to be clarified in detail how individual agents 
(including “street following”, obstacle avoidance”) and 
associated behaviours will be integrated into an overall 
consistent system behaviour that will generate supportive 
actions in the context of driver assistance, for instance 
applying existing approaches in behaviour based robotics. 
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In the following paragraph we will first motivate a general architecture that we then specify in detail in 
the subsequent paragraphs. 
 
5.2.1 General Architecture 
There has been much research on efficient robot architectures and their implementations. Starting with 
deliberative “sense-plan-act” systems [Chatila & Laumand, 1985] that turned out to be too slow for 
many real world performances to reactive “sense-act” systems [Brooks, 1985] that perform well in 
dynamic environments but lack the possibility to store information and plan longer strategies. The 
most common approach nowadays is a combination of both referred to as “hybrid architecture” 
[Donges, 1998], which brings together the advantages of reactive and planned behavior. However, the 
cost for that is the difficulty to design the interplay between processes that work on different time 
scales. Usually such architectures rely on several processes on different hierarchies that handle one 
more or less complex task each and that can communicate with each other. These processes have been 
given various names in the literature e.g. skills, situated modules, agents, or behaviors. Following the 
divide and conquer principle has proven to be useful for many years and therefore we adopt it, too. 
Note that the architecture does not define how to arrive at the various agents, they can be realized by 
hardcoding them, using machine learning techniques or realizing appropriate models for solving a 
certain task. In our case we call them agents and learn them from a human supervisor. 
 

The agent-based approach has been extensively researched on in 
the past. The partners do not seem to be aware of all the 
research done on this topic over the past 20 years, and it is 
not clear what the chosen direction will yield.  
 

Our goal is to link perception and action in a way that allows for proactiveness and that we learn from 
a human supervisor. Therefore, we investigate how this can be realized. Using an agent based 
approach seems suitable because so much research has been done on it. It is a well known approach 
that we seek to use for achieving the stated goals. (See earlier reports and D 7.1a) 
 
As a consequence of adopting this modular design the question of interprocess-communication (IPC) 
and synchronization must be clarified. Possibilities are synchronous (send-receive) or asynchronous 
(e.g. publish-subscribe) communication. In the latter a global timing mechanism is necessary. Since 
we would like all processes to work concurrently for greatest flexibility we decide for an 
asynchronous communication protocol that is to be realized on a real time system.  
 
Software: Another important issue in designing robot system architectures is reusability. In the 
beginning of robotics developers built specialized systems for every robot. With the increasing number 
of robots, that often shared similarities, a need for reusable software arose. Such software should offer 
blocks general enough to be applicable to various platforms, but also specializable enough to be 
adaptable to a particular system. Using such software can speed up the realization of a system 
architecture and also the time that developers need to familiarize with a certain control software. 
Examples for such software systems supporting hybrid architectures are: CLARATy [Nesnas, 2001], 
YARP (Yet Another Robot Platform) [Metta et al., 2006], MCA (Modular Controller Architecture) 
[www.mca2.org], and OROCOS (Open Robot Control Software) [www.orocos.org]. There are more 
software systems, but we restricted ourselves to these, since they are new and actively used. We are 
considering using the OROCOS framework since: 

1) it is under GPL (gnu public license)  
2) is actively used  
3) offers explicit real time support 
4) supports modular design 
5) the documentation is available  
6) supports distributed computing 

 
 
Disadvantages are: 
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1) only partly usable between different operating systems 
2) communication based on and restricted to CORBA (Common Object Request Broker 

Architecture, short CORBA. A specification for an objectoriented middleware)  
As indicated by bold letters, item three was found to be the most beneficial feature of OROCOS. The 
Real-Time Toolkit (RTT) middleware facilitates building real-time software. 
We decided against CLARATy since it is not entirely free software and against MCA due to little 
documentation. YARP is not restricted to a certain operating system. Unfortunately it only supports 
soft real time constraints by focusing on distributed computing. This only pays off when the system to 
be realized is highly parallelizable.  
 
 
5.2.2 Concrete System Architecture  
In this paragraph we will motivate the following features of the proposed architecture:  

- modular (agent based) 
a) asynchronous communication 
b) real time capability 

- agents learned from human supervisor 
- explicit feedback loop/efferent copy for realizing proactiveness 
- maintenance of a belief/world model (for planning) in the time domain 
 
 

The usage of an agent based approach was already motivated above. According to this we will now 
further specify the system. As shown in Figure 10 the architecture consists of entities with information 
flow from sensors to actuators. In addition to this usual unidirectional flow, we use a feedback 
mechanism which resembles the expectations of the system which can be used to make predictions in 
the world model and thus to reduce uncertainty in the results of the feature selection process. All boxes 
again contain modules that belong to the same functional class, e.g. several feature extraction 
algorithms. Some modules are already used and printed in black letters in the figure, whereas others 
not yet used or realized but could easily be added are printed in grey. The shown architecture is being 
implemented in an object oriented manner, which is suitable for realizing a modular approach. All 
boxes can be thought of as classes and the modules as instances derived (inheriting) from the class 
they belong to. They are being realized as threads working concurrently at their own pace. 
Please note, that such a setup is state-of-the-art and not a special development from our side. It is 
general and augmentable enough to be implemented on a variety of systems (in our case robot and 
possibly car) and modules can easily be added or exchanged.   
 In the following we are defining the interfaces of particular modules: 
 
Sensor Interface: The sensor interface is a process that continuously receives data from a sensor, 
timestamps them and puts them in a global data buffer. Therefore, the interface is the requested sensor 
data, e.g. image frames in case of the camera sensor interface, and output is the timestamped data 
frame. 
 
Preprocessing / Feature Extraction: 
In the robot case all feature extraction modules take camera frames as input. Therefore they consult the 
global data buffer for the camera images and grab the newest frame. After extracting the features they 
are designed for they write the feature values to another global data buffer. Please note, that the car is 
equipped with more sensors e.g. LIDAR. Although this is not yet considered here, the proposed 
system architecture allows a fast incorporation for further sensor modules. 
 
State Belief / World Model: 
The world model maintains two data objects containing information concerning the state of the world 
(environment) and the state about the system (self). In contrast to the other classes it has the ability to 
track knowledge in space and time. To clarify what is meant by that we give an example concerning 
the process containing the “self” object: It receives data from the feature extraction modules, e.g. 
about the systems position with respect to the street. At every instant in time it memorizes this 
information (forgetting very old entries), resulting in a history. It also receives the actions of the 
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system from the feedback loop, thus it can also build an action memory. Based on these it can realize 
two things. First it can evaluate incoming feature values that are always prone to noise and uncertainty 
and second it can make predictions about a) future actions and b) future states.  
The interface to this class thus is as follows: inputs are a) extracted (image) features and b) conducted 
actions. Output is the updated data objects.  
 
Higher Level System / Decision Maker: 
Consulting the state belief (the data objects) of the system this module decides which of the available 
skills should be activated. E.g. in case of collision course with an independently moving object (IMO) 
it would activate the obstacle avoidance module. This is a higher level decision in the sense that for 
realizing obstacle avoidance the trajectory follower is necessary. But this is then handled automatically 
by the agent in charge, in this case the obstacle avoider. It can also schedule interrupts to quit 
execution of a certain agent, when preconditions for this agent are suddenly not given anymore, e.g. 
due to a course correction of an IMO. 
 
Skills / Agents / Behaviors: 
The activated agent obtains its input from the world model. Note that every agent knows what input is 
needed for its special task. It either processes this information in a direct way, or it can employ other 
agents for that. In each case the outcome are action signals, in our case steering and velocity 
commands.  
Since the system is designed to work on different timescales, also the action commands are on 
different timescales, e.g. a reactive steering command in comparison to a predicted sequence of 
steering commands. Therefore, a fusion unit is necessary the task of which is to optimally combine the 
generated actions. The calculated control commands are again written to some dedicated buffer and 
time-stamped. 
 
Act / Motor Interface: 
Analogous to the sensor interface the motor interface takes the newest control commands from the 
particular buffer and sends them to the motors. However, in contrast to the sensor interface, it must do 
this in time intervals of fixed duration!6 In addition to this it continuously checks if the generated 
action commands are incoming fast enough by comparing elapsed time between two consecutively 
used action commands. If not, then this it is a hint that the feature extraction layer might work too 
slow, or that the system is moving too fast. In any case it must notify the world model about its health 
state, possibly resulting in a lower driving speed of the system. 
 

                                                 
6 Note, that this is a very important constraint, since it can seriously alter the behaviour of the system if not 
considered! This is one of the reasons why we are going to use a dedicated real time scheduler.   
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Figure 10 The proposed Robot/System Architecture. In addition to the conventional unidirectional 
information flow we add a feedback loop to enable proactiveness of the system. Boxes within boxes 
(e.g. Camera) are referred to as modules. Modules already incorporated in the current system are 

written in black, and those not available but eventually useful to include are written in grey. 
 

5.2.3 Technical Realization 
Our system is based on a Linux 2.6 kernel, that can be patched to achieve real time performance7. 
Several patches are available, for OROCOS the real time application interface (RTAI) [www.rtai.org] 
is required. We have applied it and installed the OROCOS library.  
The communication between components8 in OROCOS is realized by three mechanisms: 

1) push for asynchronous communication, a component pushes data to others that subscribe 
2) query for requesting data from another component 
3) send one-way communication to send data to a server 

Data is communicated in form of CORBA data objects. In Figure 11 we show the planned 
collaboration between modules of our architecture, by indicating which data objects are contained in 
the particular module and how they travel within the architecture. 

                                                 
7 Note that real time performance mainly means that processes are carried out in a defined time. Not that they are 
necessarily fast.  That of course depends on the used hardware and implemented algorithms. 
8 The term „component“ is used, because it is a basic concept in OROCOS. It is equivalent to the way we used 
the term “module”. 
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Figure 11 shows the interaction between modules of the architecture, akin to an UML collaboration 
diagram. 
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2.6 Future Plans  
It is of utmost importance that the objectives, task and 
deliverables of WP7 be updated. The objectives must be clearly 
defined in a principled manner. 
After abandoning ISO, the objectives, task and deliverables 
must be stated. 

As can be inferred from above, there are six major concerns in order to achieve a proactive driving 
system: 

1) Port to a real-time architecture using dedicated software. 
2) Proceed/improve learning linking between SVEs and SAEs. 
3) Improve the predictive capacities (lookahead). 
4) Include more results from WP4, 5, 6 in aspects 2 and 3 above.# 
5) Include night vision 
6) Test the system structure on the car data 
 

6.2.1 Objectives 
Concerning 1, (specified in Task 7.1) 
- Create the appropriate behavior of the system due to motor commands scheduled at the correct 

time intervals. 
- Include multiple agents working concurrently at individual pace in real time. 
- Increase reliability of system by eliminating dependencies between processes from different 

agents. 
 
Concerning 2, (specified in Task 7.2)  
-  Finish/Elaborate the developed agents 

a) Improve the speed generating agent. 
b) Augment the steer generating agent to consider speed. 
c) Elaborate the obstacle avoidance agent. 
 

Concerning 3, (specified in Task 7.3) 
- Include predictive components in the driving as already started. 
- Investigate the interdependency between current situation (and its speed) and the future road 

trajectory. 
- Implement a mechanism which uses the future situation from image analysis to select the 

appropriate driving pattern from the learned one (human). 
- Possibly include the aspect of predicting upcoming SVEs (hence in the image domain). 

 
Concerning 4, (specified in Task 7.4) 
- Results from WP 4, 5, 6 need to be included – if possible – in the robot system. 
- SVEs need to be synchronized between car and robot applications. 
- SVE-SAE mapping and prediction methods need to be synchronized between car and robot 

applications. 
 
Concerning 5, (specified in Task 7.5) 
- Night vision needs to be analyzed in the car and the robot scenario (note this is essentially 

done and there are no forbidding differences between day and night imagery. Hence, nothing 
remains to be done here apart from a possible implementation of system components at the 
end of the project in the car.) 

 
Concerning 6, (specified in Task 7.6) 
- To realize the proposed system setup from the beginning of this document (comp.  Figure 1 c) 

we will (this process has been started, please comp. “Work done”) port working agents to the 
car scenario. 
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6.2.2 Tasks 
Task 7.1 Realization of the proposed architectural framework with OROCOS. That includes: 

- Task 7.1.1: Implementation of the described components and their communication pathways 
in OROCOS 

- Task 7.1.2: Performance testing and debugging. 
Note these steps will have to be continuously adapted to the outcomes from tasks 7.2 and 7.3. 
 
Task 7.2 Improving the speed generating agent. To achieve longitudinal control the system must 
especially make use of the upcoming observed trajectory that we treat as an SVE. Trajectories are 
being learned from human driving. 

- Task 7.2.1 We will investigate how the upcoming trajectory should be represented best in 
conjunction of the above sentence. As a first approach we can modularize the parts of the road 
and combine such pieces (e.g. curves, straight segments etc.) to create the required 
representation for a certain situation. 

- Task 7.2.2 Incorporating the upcoming trajectory information into the speed generating agent. 
Possibly this could be achieved by also using artificial neural networks for generalization 
purposes. 

- Task 7.2.3 Modify the steering agent using speed information to augment the steering (partly 
done). 

 
Task 7.3 Elaborate the obstacle avoidance agent: 

- Task 7.3.1: The obstacle avoidance agent acts like a path planner. The task is to implement the 
obstacle avoider by essentially an “imagined lane” is being “drawn” around the obstacle and 
followed. This imagined lane is being generalized from the human’s driving (partly done). 

- Task 7.3.2. Using IMO information the obstacle avoider can be modified to treat also car 
following or approaching objects. 

 
Task 7.4 Results from other WPs 

- Task 7.4.1 Assess real-time capabilities from the methods developed in WPs 4 ,5 and 6. 
- Task 7.4.2 If real-time compatible implement in the robot. 
- Task 7.4.3 Synchronize SVEs and SAE-SVE proactive mapping between car and robot using 

similar methods if possible. 
 
Task 7.5 Night vision 

- Task 7.5.1 Implement night driving in the robot. (Note the actual robot control will not be 
different from day driving, hence – as the night vision system is installed and working – there 
is nothing to be done here anymore apart from showing that the same augmented learned 
controllers also work with IR illumination.) 

- Task 7.5.2 Implement night warning in the car. 
 
Task 7.6 Port working agents to car scenario 

- Task 7.6.1 Re-adjust the state descriptor in accordance to the car data, as for example 
currently being done for the reactive controller. 

- Task 7.6.2 Port working agents to the car and benchmark according to Figure 1c above. 
 
6.2.3 Expected Results 
At the end we will have a robot equipped with an extendable system architecture (which can therefore 
include results from other WPs) that captures the path following strategy from a human supervisor 
including coping with non-moving obstacles as well as being able to follow other “cars”. Specifically: 
 

1) The system will operate in real-time using driving data extracted from human driving to 
emulate autonomous robot driving. 

2) The system will be able to incorporate the upcoming trajectory information into the speed 
generating agent. 
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3) It will adjust the actions of the steering agent using speed information to improve 
performance. 

4) It will be able to anticipate in a limited way future SVEs (lane structure) by predicting them 
from future road trajectories. 

5) The system will also be able to avoid obstacles and to follow other robots using the human’s 
behavior as a model. 
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