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1.  Introduction 

1.2. Short Project Overview 
The main goal of the DRIVSCO project is to arrive at a largely autonomously car driving system by 
combining adaptive learning mechanisms with conventional control. A major role is assigned to 
predictive mechanisms that will lead to an anticipatory, and therefore safe, driving style. 
To acquire such a system, several learning techniques will be employed, e.g. correlation learning and 
statistical methods (s. also D 4.2).  
The core idea is to learn a model that maps sensory input to output. This in- and output is clustered into 
units called Structured Visual Events, SVEs, and Structured Action Events, SAEs.  
 

1.3.  Importance of Hierarchy 
In the following we will give an overview of which features SVEs and SAEs ought exhibit, in order to 
be used with any learning method. One important issue will be, that we can subdivide SAEs and SVEs 
into different levels of a hierarchy. 
 

2.  SVEs, SAEs and Learning Agents 
Driving a car on a street has the advantage of taking place in a highly structured environment. Due to 
this, successful driving can be seen as result of solving 3 tasks: First, the vehicle must stay on the street 
while following it at an appropriate speed, second it should not crash into  obstacles, fixed or 
moving, and third it must obey street laws, such as left yields right. 
Each of these tasks can be solved individually and applied when there is need for it. E.g. a car should 
always follow the street unless it must avoid an obstacle. The interplay of these indidvidual tasks can 
then be regulated by a higher level control unit, which could be seen as a  decision unit. Following the 
street would  be on the lowest level and traffic rule obedience and obstacle handling would be above 
it.  
For these reasons we assume that tasks can be treated individually, e.g. each being learned by a 
different agent, where their interplay can be learned separately.  
 
 

3.  Mapping SVEs to SAEs 
The paragraph above motivated the division of the driving problem into 3 subtasks to solve. However, 
it left open how these subtasks can be addressed, which will be discussed now. 
Each of the 3 tasks can again be described  into different levels of complexity, or rather of a  semantic 
hierarchy.  Street following, for example, can be segmented into being on a straight stretch of the street, 
or a right or left curve, etc.. The same applies to the sensor information. 
On the lowest level there is steering data as an angle alpha dependent on time and speed 
 information in our system in form of a numeric value between 128 and -128 also dependent on 
time. But this data can also be clustered into discrete entities on different levels. One major issue here 
is, that a task is discrete on a high level and a continuous function of time on the lowest level. And this 
holds for both datatypes, i.e. input and output data, or sensory information and action commands, or 
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SVEs and Sues. Therefore, to apply any learning algorithm to these tasks their different appropriate 
levels must be identified. “Appropriate” here, refers to their relevance for learning. It naturally follows 
that correlations between input and output data are are best established between entities on the same 
level of the hierarchy, as illustrated in Fig. 1. 
 

 
 

Figure 1: Abstract view of an agent. The horizontal arrows (in red) indicate where linkage between 
sensor and action domain can take place. 
 

 
In this sense, SVEs and SAEs can be identified as entities (on the lowest level we would not have 
entities anymore, but continuous functions of time) in the hierarchy of each task. Identification of SVEs 
and SAEs, thus, is the same as determining the appropriate levels. Another important issue is to find 
out, on which level SVEs and SAEs shall best be correlated. Here, an additional complication occurs: 
The various levels of such a  hierarchy are not independent from each other. Situations might arise in 
which the accordant action is also influenced by higher level or lower level information. So information 
flux must also be guaranteed in a vertical way as shown in Fig. 2. The proposed structures stay in the 
domain of layered architectures normally used for organizing autonomous robot behaviours as  well as 
for driving robots (Gat, 1998, Thrun et al, 2006).  
 

 
 Figure 2: The vertical arrows indicate that sensor and action events must be seen in a certain context,        
 which can be given by higher, or lower level information. 

4.  Specification of  Requirements for SVEs and SAEs 
In order to map SVEs to SAEs via a learning algorithm they must not only lie on the same level 
 in the according hierarchy, but they must also be represented in a way, that they can be 
 correlated. That is, every SVE must be described by parameters that can specify the related 
action. So one requirement for the specification of SVEs is not only the identification of the appropriate 
levels in the hierarchy as explained in the paragraph above, but also the identification of the needed 
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parameters. Here it makes sense to first identify the possible actions and then to trace back to what 
caused them. 
 

4.2.  SAEs 
In our study action events are based on steering s(t), velocity v(t), and braking b(t) time series. 
Indicator signals, that contain information about the intentions of the driver, such as eye movements, 
are available  from the test car setup (true car indicators also exitst), but in the first approach we will 
not be analyzing intentional driving, so actions where indicators are used will be excluded from 
analysis. In the simplified laboratory setup only s(t) and v(t) series will be considered. In real road 
experiments attention will also be investigated, and attention events can be attributed to action events. 
Attention will be investigated through the usage of an eye tracking system. Gaze  position on the 
camera image series p_x(t), p_y(t) will be collected during real-road driving, but attention issues will 
not be analyzed in this deliverable. 
 
Structured action events will be described at several levels of complexity, as mentioned above. At the 
lowest level we distinguish actions: (1) acceleration, (2) deceleration, (3) braking, (4) steering left, (5) 
steering right. The specificity of this level is that each event intakes only a single control variable: 
steering, velocity control and braking respectively. 
 
At a higher level, bigger scale action events are defined, which we will be calling “driving conditions” 
for example: (1) straight driving, (2) curve taking, (3) tailgating, (4) stopping, (5) obstacle handling, (6) 
lane changing, (7) overtaking, (8) corner taking (at the intersection). These higher level actions are 
specific in the sense that they include more than one control variable (e.g. steering, velocity control 
and, possibly, braking during taking a turn). The first four driving  conditions we classify as automatic 
driving behaviours, and the last 4 (5)-(8) as intentional driving behaviours. In the first stage only 
automatic driving behaviours (1)-(4) will be analyzed using real road experiments. In addition obstacle 
handling will be addressed in laboratory experiments. Straight driving formally might be analyzed as a 
special case of curve taking with zero curvature. Similarly overtaking and tailgating might be 
interpreted as special cases of obstacle handling. But to remain closer to everyday understanding of 
driving sequences we will be treating those cases separately. 
  
To explain variability in behaviours, combination of events should be analyzed (e.g. taking a turn with 
tailgating (a car in front), and taking a turn without tailgating). Combination of events will form again 
higher level of action description. We are choosing the country road scenario with most prevailing 
situations for real road driving as mainly composed of the four automatic driving conditions as 
mentioned above. Obstacle handling will be investigated under laboratory conditions first, due to 
difficulties in collecting enough real world data.  
Specifications of the 4 automatic driving conditions are provided in table 1: 
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Condition Visual inputs Non-visual inputs Control parameters 
Straight driving - Lane marking signals 

- Heading vs. lane 
marking signals 
- Position within the 
lane 
- Uphill/downhill 
condition 
− Possibly optic flow 

(flow rate)  
 

- Current speed of a car 
- Current steering angle 
 

- Throttle position 
- Steering angle 

Curve taking - Lane marking signals 
- Heading vs. curvature 
- Position in the lane 
- Curvature estimation 
vs. distance 
- Optic flows (curved 
flow vectors) 
- Tilt of the road 
surface  towards the 
center of the curve 
- Uphill/downhill 
condition  

- Current speed of a car 
- Current steering angle 
- Current break force of 
a car 
Possibly: 
- Previous speed of a 
car 
- Previous steering 
angle 
 

- Throttle position 
- Steering angle 
- Brake force  

Stopping (or slowing 
down to given speed 
limitation) 

- Obstacle description 
(size, distance, position 
on the road) 
- Intersection/traffic 
sign/traffic light 
- tail lights flashing 
- depth map of the 
scene 
- Uphill/downhill 
condition 

- Current speed of a car 
- Current brake force 

- Throttle position 
- Brake force 
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Tailgating - Fact of a car in front 
- Relative speed of a 
car in front 
- Distance to a car in 
front 
- Time to contact of a 
car in front 
- Back lights of a car in 
front 
- Position on the road 
of a car in front 
- Orientation of a car in 
front on the road 

- Current speed of a car 
- Current steering angle 
of a car 
- Current break force of 
the car 
- possibly distance and 
relative speed of the car 
if measured other than 
vision 

- Throttle position 
- Steering angle 
- Brake force 

Obstacle handling1 - Obstacle type 
- Obstacle size  
- Position of the 
obstacle on the road 
- Position of a car on 
the road 

- Current speed of a car 
- Current steering angle 
of the car 
- Current break force of 
a car 
Possibly: 
- Previous speed of the 
car 
- Previous steering 
angle of the car 

- Throttle position 
- Steering angle 
- Break force 

 Table 1: A listing of driving conditions and their required input, visual and non-visual. 

The SAEs specified here are provided at an intermediate level of the described hierarchical structure. 
Higher actions would be composed by combining several actions of this level (e.g. curve taking with 
tailgating). Lowest level actions would correspond to simple controls, like  staying on the road or 
keeping distance to a car in front. Although specific lowest level action  would be dependent on the 
branch of the hierarchy through which we are descending towards  them (e.g. possibly different 
steering algorithms would be used to stay on the road during straight driving or curve taking). 

 

4.3.  SVEs 
With the results of section 4.1 it is now possible to specify the requirements for the desired SVEs. 
Mainly column 3 (“Inputs”) of table 1 already lists the necessary information that is to be extracted 
from the visual sensors. Straight driving and curve taking can be derived from an SVE that includes the 
following information: Curvature of right and/or left street boundary, which corresponds to “lane 
marking signals”, disparity between point of infinity of the cameras and of the street, which can give 
the “heading vs. lane marking signal” and also “position within the lane”. “Uphill downhill condition” 
will be ignored at this early stage. 
 Thus, we can create a visual event, let' s call it “trajectory”, which is formed by the curvature of each 
pixel on the right and/or left street lane border, e.g. c(lane_right, L). Where, c is a function that returns 
curvature, of the right lane (lane_right) and the pixel p(x,y) which is given by the parameter L, which is 
the arc length of the lane border. (Notice that L includes temporal information, since a small value 
refers to the near future and a larger L value to something further ahead in space and thus time.) 
The corresponding event on the action side would be steering, which, again on the lowest level, can be 
described by a function s(t), which is the steering angle at a time t. Furthermore, street following should 
                                                 
1  Obstacle handling experiments will be done in laboratory with the simplifying assumption 
 that there is only one obstacle. 
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happen at an appropriate speed, so the current velocity v(t) of the car, which is also sensory information 
must be taken into account. Thus we can derive the following specification of the structured visual 
event trajectory: 
SVE_TRAJECTORY = ( CURVATURE = c(x, t), VELOCITY = v(t) , CONTEXT). The variable 
“context” can be seen as a placeholder for other information that influences the corresponding action. 
This can be higher level information, as mentioned paragraph 3 (“Mapping SVEs to SAEs”). 
  
For the task of obstacle avoidance we need to distinguish between different kinds or classes of 
obstacles depending on their influence on the driving style. For example an obstacle that is on the street 
and not moving is calling for another action than an obstacle that is moving with the  traffic flow, 
like another car ahead. A moving obstacle can further be subdivided into, as said before, one that is 
moving with the traffic flow, or in a different way, for instance a pedestrian crossing the street. 
Depending on the kind of obstacle, different parameters are needed to specify the appropriate action. 

− SVE_OBSTACLE_FIX( DISTANCE, LOCATION, TIME_TO_CONTACT, CONTEXT) 
− SVE_LEADER_CAR(DISTANCE, LOCATION IN THE LANE, TIME_TO_CONTACT, 

HEADING_DIRECTION, STOP LAMP STATE, CONTEXT). 
− SVE_MOVING_ELSE(DISTANCE, LOCATION, TIME_TO_CONTACT, 

HEADING_DIRECTION, CONTEXT). 
 

Finally an SVE called “traffic_law”, according to driving condition “stopping, slowing down” shall be 
specified. For this traffic sign (or traffic light) detection and recognition is required.  

− SVE_TRAFFIC_LAW(SIGN | LIGHT, SEMANTICS, DISTANCE, CONTEXT). 
 
These SVEs, although still rough, are sufficiently well defined to derive which information must be 
extracted from the visual sensors.  

1. Curvature and length of the street lanes are fundamental information that require detection and 
further processing of the street borders in the camera images. Furthermore it might turn out, that 
the effects of perspective projection must be erased. 

2. Depth information must be acquired, for calculation of distances and time-to-contact. 
3. Street sign detection and recognition is required. 

 
  

5.  Learning 
 To cover the requirements of learning raised by the hierarchical structures presented above a set of 
learning methods should be employed:  
  

− Simple correlation/regression-based learning; 
− Model-based learning; 
− Learning to combine agents (experts); 

 
We are also planning to check suitability to driving tasks of several biologically-inspired learning 
algorithms with elements of unsupervised learning. 
  
In simple correlation/regression type learning we will investigate (1) how much speed correlates with 
visual flow rate; (2) how much speed correlates with time to contact signal; (3) how much steering 
correlates with curved flow vectors on a curve, etc. If the correlations will be substantial we will 
include these parameters in speed and steering control rules. Here only more scientifically interesting 
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correlation trials are outlined. More of these sorts of correlations would be needed to develop feedback 
control rules for velocity and steering in the set of situations defined by structured action events.   
  
Model based learning will be needed for action events having predefined time course, e.g. for stopping 
or obstacle handling. We know that stopping requires dropping speed from the current value to zero at 
the predefined point. This requires choosing a model structure (some class of functions), and learning 
parameters of those functions depending on current speed and distance to the stopping point. For 
obstacles we know that we need change the position on the road (as a function of a distance to an 
obstacle, position on the road of an obstacle and speed of a car), then drive by an obstacle, and change 
back to the previous lane. Here again function parameters  have to be tuned. Predictive aspects here are 
included in model structure itself, where the whole  action is described as a unity and contains an action 
plan. Obviously feedback control rules mentioned above are needed on top to adhere to the plan. 
  
To perform driving action, simpler controls have to be combined to perform bigger action sequences. 
E.g. actions proposed by straight driving should be combined with obstacle handling if there is an 
obstacle on the straight road segment, or actions proposed by tailgating should be combined with 
feedback control to stay on the road on the curve. Here several approaches would be used. One needs to 
distinguish which actions are additive, and combine those by simple summation.  If simple summation 
is not sufficient then more complex methods shall be used. Specifically, Committee Machines are 
considered as an approach to combine control from several agents. Here returning to the tailgating on 
the curve example, a decision unit of a committee could be trained to distinguish in which proportion to 
include control suggested by  tailgating, and in which proportion algorithms of taking the curve 
autonomously should be used. 
  
For some control subtasks, specifically following the curvature of the road, specific biologically- 
inspired control methods using receptive field representations will be analyzed. Here in the procedure 
of human driving receptive fields will be created representing vision information. After the receptive 
fields have formed, this information will be used to control curve taking. This is an alternative 
approach, more black-box type as compared to explicit SVEs-SAEs definitions we were doing before. 
  
Predictiveness of the approach is in interpretation of the visual scene as a unity, where lower fragments 
represent nearer future, while upper fragments represent more distant future. Though the approach is 
different from the previously defined SVE-SAE ideology, but for some situations these approaches 
could be used, and combined with other types of action experts using e.g. earlier mentioned Committee 
Machines.  
  
Other variety of biologically-inspired method, proposed by participants of a project as a possible way 
to learn actions includes self-organizing network, where prototypical 2D visual scenes are 
 associated directly with actions. This is close to learning by an example which could be a 
feasible method in learning to drive where it is not easy to otherwise systematize variety of possible 
visual inputs and relation of those to actions.    
 

6.  Decision Making issues 
Decision making is a substantial component of driving, and is specifically required for the intentional 
driving conditions described above: obstacle avoidance (if several obstacles are  possible at the same 
time), lane changing, overtaking, corner taking.  The first three conditions usually require decision in 
situations where uncertainty is introduced by failing to evaluate presence of other vehicles (obstacles) 
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e.g. in overtaking with limited visibility, or failing to evaluate other drivers’ behavior (e.g. in lane 
changing). The corner taking requires decision at the level of the travel plan of the driver. A usual way 
to handle uncertainty concerning actions of  other traffic participants is by developing several parallel 
scenarios and evaluating measures of utility and measures of dangerousness (evaluated by time to 
contact or similar measures), and acting not exceeding dangerousness threshold (Holzman et al, 2005). 
Decisions about the driving plan (corner taking) can be dealt inside route choosing scenario. Although, 
in this project we are going to concentrate on automatic driving conditions, where the higher level 
knowledge required for making decisions can be neglected. 
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