
Deliverable D5.2
Task optimized representation and the center of interest

1 Introduction

The extraction of information from the motion field estimated from camera sequences can be split
in several modi or tasks, estimate the parameters of self motion, identify obstacles, track the center
of interest, detect independent moving objects, determine the structure of the environment, etc.
Motion fields estimated from camera sequences are often very noisy and affected by the aperture
problem and to extract optic flow information requires the processing of the motion field. Depending
on the information to be extracted from the motion field, different processing modi are required.
For determining the global parameter of ego motion noise can be strongly decreased by bundling
motion information from large domains of the visual field. By this method local information is
several reduced but the global motion pattern is preserved. For identifying possible obstacles or
for detecting independent moving objects local motion information is very important and the prior
processing of the motion field can only take into account small domains of the visual field for a
weaker noise decreasing, but stronger preservation of the local properties of the motion field. Here
we focus on the first task, global motion estimation.
The present space variant filter model is optimized to extract the global motion pattern from motion
fields estimated from camera sequences. We use the task of heading detection from optic flow as a
way to estimate improvement of the flow field. Our filter model adopts properties of a particular
motion sensitive area of the brain which averages the incoming motion signals over receptive fields
whose size increases with the distance from the center of the projection. This representation is
optimized for motion fields elicited by forward ego- motion as in car driving situations and in
combination with tracking movements that stabilize the center of interest in the field of view. The
tests are conducted with two different sets of flow fields. The first set is calculated with a standard
flow algorithm from image sequences recorded by a camera installed in a moving car. The second
set is derived from a data base containing 3D data and reflectance information from natural scenes
with full control of camera motion and ground truth of the flow field and the heading. We test the
filtering method by comparing heading estimation results between filtered and raw flow for both
sets of flow fields. Due to noise and the aperture problem the results for the raw flows are often
unreliable. Estimated heading differs widely for different sub-sampled calculations. In contrast,
the results obtained from the space- variant filtered flows are much less variable and therefore
more confidential. We suggest extensions to this scheme that takes other properties of the motion
representation in this area into account to further improve the flow representation.

2 Global motion patterns

The patterns of optical flow fields elicited on optical detectors of visual systems by self motion en-
code much information about the direction of motion, the velocity, and the direction and magnitude
of camera rotation, and the position and relative velocity of independent moving objects. Biolog-
ical systems use such information for path planning, obstacle avoidance, ego-motion control and
foreground-background segregation [11, 20]. One wishes to make vision based technical applications
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like driver assistance systems or autonomous robots also capable to use optic flow information to
solve these tasks. For instance, the fast and correct assessment of the current driving situation by
a driver assistance system could help to make appropriate decisions and to avoid accidents. Such
a driver assistance system capable to estimate heading could warn the driver about any sideward
drifting and unintended lane changing on slippery roads. Furthermore, the correct estimation of the
parameters of self-motion is required for the task of identification of independent moving objects
like other cars and pedestrians from optic flow ([17]).

Optical flow fields obtained from flow algorithms applied to camera image sequences are usually
very noisy [8, 4]. Optic flow estimation is plagued by ambiguities due to the aperture problem, the
correspondence problem, noise inherent in the algorithms due to resolution and quantization effects,
lack of signal in homogeneous image areas, and ambiguities at depth discontinuities. Therefore,
estimates of self motion from optic flow are error prone. Since motion estimation in biological
systems also starts from spatiotemporal variations of image intensity it is likely to face the same
problematic optic flow on the input stage. But biological systems estimate self motion rather exact
(overview in [13]). Somehow, therefore, the brain must have developed methods to remedy the
shortcomings of the early flow detectors. We searched for features which enable biological vision
systems to handle noisy flow fields successfully.

In the visual system of primates, the raw flow field, i.e., the collection of early image motion signals,
is measured by motion sensitive cells in the primary visual cortex (V1). Their output is further
processed by motion sensitive cells in the medial temporal area (MT). From area MT the signals
are transferred to the medial superior temporal area (MST), which is thought to analyse the entire
optic flow pattern and to extract the parameters of ego-motion [12]. Area MT establishes a space
variant map of the visual motion field, i.e the size d of the receptive fields of the neurons in MT
increases proportionally to the eccentricity ε from the center of the field of view [1].

d = 0.018 + 0.61ε. (1)

Based on the properties of this map Lappe [10] proposed a method to decrease the noise of the
optical flow by averaging flow vectors over image areas which increase in size with eccentricity ε
from the center of the field of view. In this model, optic flow is represented in a population code
over direction selective neurons at any position in the visual field. The motion signal in the center
of the receptive field of a single neuron is derived from the average of all V1 motion signals within
its receptive field. In the center of the visual field, the integration is restricted to a small area. In
the periphery the integration area becomes very large (Figure 6).

The spatial integration over peripherally increasing image areas is well adjusted to the typical
structure of the flow field. For predominantly forward motion and restricted camera rotation the
singular point of the optic flow, i.e., the point with vanishing flow, is usually near the center of
the visual field [14]. The singular point is the center of a basically radial structure of the flow
field, which may however be distorted by superimposed rotation of the camera. Therefore, small
areas surrounding the center of the flow field contain sets of vectors with large deviations in the
local flow direction. The periphery of the flow field is more homogeneous allowing spatial averaging
over a large scale without loosing to much information. In human vision this is true even when
the direction of heading deviates from the direction of gaze since eye rotation reflexes in this case
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introduce rotational flow that nulls the motion in the direction of gaze [13, 14]. Since averaging over
large areas is more favorable for noise reduction and smoothing while averaging over small areas
retain information if neighbored signals are different, the space variant mapping is a compromise
that satisfies both goals to the degree necessary for the structure of the flow field.

In [10] one can find an application of this method, and an implementation of a standard heading
detection algorithm [6] in terms of a neural network model. This network was tested with artificial
motion fields of simulated self movements through three dimensional random scenes. The flow
fields contained translation and rotation components, and uniform noise was added. The results
show that noise is reduced, and heading detection is possible with errors up to 4 degrees for a
signal to noise ratio of 1, similar to human performance with identical stimuli in psychophysical
experiments [21, 22]. These results demonstrate that the space-variant filtering stage is a sensible
model for the flow representation in the primate visual system and that it can capture performance
characteristics of the human visual system. But, it remains unclear whether this method is beneficial
for the processing of flow fields derived from camera images. The noise that is inherent in motion
fields derived from camera images is often very different from the uniform noise that was artificially
added in model simulations and in the psychophysical and physiological studies that the model was
based upon. Furthermore, for the types of motion performed by a rigidly installed camera in a
moving car, for example, the method might be suboptimal when the singular points is shifted far
away from the center of view.

The present paper is concerned with the examination of the improvement of noisy flow fields derived
from image sequences by space-variant filtering. Since we concentrate on the processing of flow fields
for egomotion estimation, we use the task of heading estimation from the filtered flow fields as a
criterion for improvement. The space variant filtering method is compared with results obtained
from the raw, unfiltered motion field. We start our investigation with image sequences recorded
by a camera rigid installed behind the wind shield of a moving car. The car is moving forward
and encounters rotational motions caused by steering in curves or bumps in the road. Without
ground truth about the correct heading, our main criterion to evaluate the efficiency of the space
variant filtering method is the consistency of the heading estimation for subsampled flow fields
and the constancy of the expectation value for heading over time. Since we can roughly see the
original motion of the car from the image sequence gross errors in the heading estimation would be
observable. To better quantify improvements with respect to true heading, for the second part of
our analysis we use image sequences constructed from three dimensional data sets of several natural
scenes. Image sequences are directly calculated from the scene data assuming a given self motion.
Flow fields are calculated from the image sequence. The advantage of this procedure is that we
have the exact knowledge about the correct heading direction of the simulated self movements –
and of the true flow field –and are thus, able to evaluate the results of the filtering method against
ground truth.
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3 Space-variant filtering

3.1 Estimation of optic flow from image sequences

Since many algorithms and models of motion estimation have been proposed (cf. [4]), the first
step in our analysis involves the choice of a flow algorithm to begin with. For several reasons, we
have chosen a version of the Lucas-Kanade flow estimation algorithm [15] as the input stage to
the filtering procedure. First, many flow algorithms that are based on differential techniques are
modifications of the Lucas-Kanade algorithm [2]. Second, the Lucas-Kanade algorithm shows the
typical range of errors caused by the aperture problem, numerical problems, weak contrasts, etc.,
which occur in optic flow estimation from image sequences. Third, the algorithm is simple, requires
only a few samples in space and time, and generates dense flow fields which are well suited for the
filtering procedure. The algorithm is not intended as a model for early stages of the visual system
but rather as a generic representative of early motion estimation.

Our implementation of the Lucas-Kanade algorithm follows the description in [4]. We use a spatial
neighborhood of 3×3 pixel to calculate the spatial luminance gradient, and a temporal neighborhood
of 3 frames for the temporal derivative. The spatial neighborhood for the least-squares minimization
is 4×4 pixels. In certain degenerate cases the algorithm will not find a solution. In these cases, the
respective pixels are omitted from the subsequent analysis. This also applies to image areas with
very low contrast. As this happens only infrequently, the resulting flow field is dense, but noisy
(second row Fig. 2).

3.2 Mathematical description of the filtering method

The space variant filtering is achieved by averaging flow vectors over domains of position depending
sizes. The filtering method adopts the domain sizes from eq. (1). This has to be converted into
a pixel based formulation. Let f be the focal length and (i, j) be a position in a pixel composed
image and (px, py) the principal point of the image. For eccentricities smaller than 30 deg the
radius r in pixel can be approximated as

r(i, j) = 0.009f + 0.4
√

(i− px)2 + (j − py)2. (2)

To generate the filtered flow from the raw flow a subset of positions in the pixel grid is selected,
mainly to reduce calculation time and because the heading estimation procedure is based on a
subsampling of the flow field anyways. At these positions, the filter procedure is performed over
all signals of the original pixel grid falling into the averaging domain. Mathematically, this can be
described as follows: Let W × H be the dimension of the image and P = {(i, j)}i=1,...,W ; j=1,...,H

be the set of pixel positions. Further let S = {(σ, ρ)} ⊂ P be a subset of P . Let P ⊃ P̃ (σ, ρ) =
{(i, j) ∈ P |

√
((i− σ)2 + (j − ρ)2) < r(σ, ρ)}. The filtered vector vf (σ, ρ); (σ, ρ) ∈ S is determined

by

vf (σ, ρ) =

∑
(i,j)∈P̃ (σ,ρ);‖vr(i,j)‖>0 vr(i, j)∑

(i,j)∈P̃ (σ,ρ);‖vr(i,j)‖>0 1
, (3)

where vr(i, j) means the raw flow at position (i, j). The condition ‖vr(i, j)‖ > 0 in the sum ensures
that pixel positions with vanishing motion signals are not included in the averaging procedure.
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Positions (σ, ρ) ∈ S with vanishing motion signals or with radiuses r(σ, ρ), for which averaging
domains would cross the borders of the image, are also omitted from S. Therefore, regions which
present sky in the images and regions close to the image boundaries do not contribute to the filtered
flow.

3.3 Estimation of heading

For the estimation of heading from the optic flow we use a version of the Heeger-Jepson subspace
algorithm [6] as implemented in [10]. Briefly, the subspace algorithm combines a small set of flow
vectors into a residual function R(t) of the heading t. Then for a given flow field the direction of
translation (heading) can be estimated by minimizing the residual function

R(t) = ‖(ΦtC⊥(t))‖2

by variation over t. Since the residual function involves only a matrix product and rectification
it can be easily implemented in a neural network to yield a map of heading direction likelihoods
[12, 14]. The minimization is usually performed over several small sets of flow vectors (m > 5)
and a compound residual function is constructed by adding the individual matrices. This strategy
increases the robustness of the heading estimation against outliers and reduces the complexity of
the orthogonalization. We use m = 10 and draw 5 × 10 random samples from the flow field. The
5 individual residual functions for each collection of 10 flow vectors are summed into a compound
residual function. Thus, a single heading estimate of the algorithm is based on a subsampling of
the flow field of 50 vectors.

4 Results for real camera sequences during car driving

We tested the filtering method for 3 image sequences of different car driving situations (Fig. 2).
The first image sequence was taken during straight open road driving. The second sequence was
recorded on a motorway. The third sequence was taken during driving in a town. During the
recording of this sequence, the camera car slowed down and turned left to bypass another car that
was braking and turning right in front of the camera car. This introduced two common difficulties
of driving which the algorithm has to deal with. First, the motion of the car involves a rotation of
the path and a slightly sideward component of translation. Second, the other car to some degree
disturbs the global flow pattern obtained from the otherwise static scene. The image sequences
were recorded by a camera rigid installed closely behind the front shield of a moving car. The
view direction of the camera was approximately parallel to the longitudinal axis of the vehicle.
The camera had a focal length of 2388 pixels. The image resolution was 1276 × 1016 pixels. The
position of the principal point was (627, 551).

From each sequence, 10 successive frames were used in order to allow the tracking of the estimated
heading over a length of time of car motion. Raw flow fields for the image sequences were estimated
with the Lucas-Kanade algorithm. Filtered flow fields were derived from the raw flow. Figure 2
shows the raw and the filtered flow for the first frame of each driving scenario. In all three cases, the
singular point of the flow pattern is close to the center of the field of view. Note that the singular
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point coincides with the heading only without rotational motion of the camera. If the camera
translates and rotates the singular point is different from the heading direction. A comparison of
the raw and filtered flow fields in Figure 2 shows that the filtered flow is much less noisy and shows
the typical pattern of a mainly forward motion. This pattern is less recognizable in the unfiltered
flow fields.

The panels in the forth and fifth row of Figure 2 show the results of heading estimation from the
unfiltered and the filtered flow fields seen in the second and third row of Fig. 2. For each flow, 60
random subsamples of 5 × 10 flow vectors were drawn and heading was estimated as described in
section 3.3 based on the particular subsampling. For the raw flow, heading estimates from different
subsamplings of the flow field show large variability. The standard deviations of over 60 runs are
17 degree for the first sequence, 16 degree for the second and 17 degree for the third. This suggest
that the heading algorithm applied directly to the raw flow is rather unstable. In contrast, for
the filtered flow the same heading estimation procedure yields estimates that are tightly clustered.
Standard deviations are 5 degree, 3 degree and 1 degree for the filtered flow. The large standard
deviation for the first scene is caused by one outlier which is not visible in the image because it
is not within the field of view. Without this outlier the standard deviation is reduced to only
1 degree. Thus, the consistency of the heading estimate is much improved by the space-variant
filtering procedure.

The first row of figure 3 shows the consistency of the heading estimate over frames of the sequence.
The plots give the standard deviation over 60 subsamplings for each frame of the space variant
filtered flow and the raw flow. In almost all cases, the standard deviation is lower for the filtered
flow than for the raw flow field. Excluding frames 8 and 9 of scene 2, the differences of the
standard deviations between the raw and filtered flow is between 7 and 17 degree. The large
standard deviations for the filtered flow in frames 8 and 9 of scene 2 are probably due to the car
being in an ”extreme” motion situation where the driver is performing a fast navigation correction.
Therefore, the camera encounters a sudden large rotation. This rotation shifts the singular point
far away from the center of view, and the space variant filtering method fails to improve the flow
field in this case. Indeed, the flow field extracted from these frames shows no singular point within
the field of view.

Since it is unlikely that the motion of the car changes significantly over the ten successive frames
of each sequence we can use the coherence over time of the expectation value of heading over the
60 subsamplings for each frame as a measure of the quality of the heading estimate and, indirectly,
of the flow representation. Figure 3 shows the expectation values of heading estimation over the
10 successive frames. The heading estimate from the raw motion field is quite variable and does
not capture the properties of continuous motion of the car. In contrast, the curves presenting the
temporal evolution of the heading estimate from the space variant filtered flow are much smoother
and consistent with continuously changing motion. For instance, the motion in scene 1 is going
through a slight left curve and bumping down. The decreasing absolute value of the slope of
the curve of the vertical heading component between frames 1 to 5 and between frames 8 to 10
respectively indicate that the bumping is damped by the anti-shocks of the car.

These results suggest that the space-variant filtering method can improve the consistency of heading
estimation for camera sequences taken during car driving. However, the evidence is indirect since
the true heading of the car is not known. Moreover, the applicability of the method to more
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biological motion situations is not fully explored. We have therefore devised a second test which
involves different image sequences and camera motions.

5 Results for range image sequences

Although the results obtained with real camera sequences are promising, we have no ground truth
about the correct motion. Thus, the errors of heading estimation can only be evaluated indirectly
and qualitatively. Therefore, we decided to test the space variant filter method also with flow fields
estimated from image sequences that are calculated from the three dimensional data of natural
scenes. For comparison, we also include true motion fields from these scenes with superimposed
artificial noise. The direct calculation of the image sequences and the true motion fields from the
3D data provides the ground truth to quantitatively evaluate the efficiency of the noise reduction
by space-variant filtering.

5.1 Construction of image sequences and flow fields from range image data

Our image sequences were derived from the Brown Range Image Database, a database of 197 range
images available from Brown University ([7]). The range images were recorded with a laser range-
finder. Each image contains 444 × 1440 measurements with an angular separation of 0.18 degree.
The field of view covers 80 degree vertically and 259 degree horizontally. The distance of each point
is calculated from the time of flight of the laser beam, where the operational range of the sensor is
2−200m. The laser wavelength is in the near infrared region (0.9µm). Thus, the data of each point
consist of 4 values, the distance, the horizontal angle and the vertical angle in spherical coordinates
and a value for the reflected intensity of the laser beam. Figure 4 pictures panoramically a typical
range-image. The knowledge of the 3 dimensional data of a given environment makes it possible to
simulate the view of a moving camera in this scene and calculate both the image on the camera as
well as the true motion field. The panel A of Figure 5 shows an examples of the projection of range
image data onto a plane identical to the situation in cameras, where the intensity of light coming
from the reflecting surfaces of the environment and bundled in the lens is projected onto planes of
a light sensitive sensor. All images used in the investigation are composed of 350000 pixels and are
generated with a projection of focal length of 341 pixel. The projection plane is 683 pixels wide
and 512 pixels high. The resulting images are not true grayscale images but rather near infrared
intensity images. The optical properties and the contrast values are sufficient, however, to estimate
motion between successive frames in a matter identical to camera images.

To simulate the motion of the camera within the range image scene the camera centered coordinates
are transformed by a shift and a rotation (see panel B of Figure 5). Let T = (Tx, Ty, Tz) be the
translational component and Ω = (Ωx,Ωy,Ωz) the rotational component of the camera motion.
Further let It be the number of images taken by the camera over the course of motion. Thus
between two frames the camera is translated over the distance d = ‖T‖

It
and rotated over the angle

φ = ‖Ω‖
It

. Let s = (Tx
It

,
Ty

It
, Tz

It
) be the translation vector. The original position vector r of any point
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in the environment is transformed to the new camera position by

r′ =
Ω · (r − s)
‖Ω‖2

Ω + cos(φ)
(

(r − s)− Ω · (r − s)
‖Ω‖2

Ω
)

+ sin(φ)
(r − s)× Ω

‖Ω‖
,

where · and × denote the scalar product and the vector product respectively. The image sequences
we investigate are generated by translations of 0, 01m/frame and rotations between 0deg/frame and
0.2deg/frame. The components of the camera motion, translation and rotation, simulate straight
ahead movement (with respect to scene coordinates) and rotation such that the point in the center
of the image is stabilized. The view direction towards this stabilized point is different from the
heading direction. This form of motion is similar to the common biological situation in which an
observer is moving but keeps gaze onto a particular object of the scene [13]. In this case the singular
point is in the center of view.

The natural scenes from the range image data base can be subdivided in urban scenes and forest
scenes.The panels A of Figure 5 shows a typical example for the urban case. The distribution of
objects in the urban scene is more structured than in forest scenes. Also, the depth statistics of
the scenes differ. Thus, as a by-product of our analysis, we investigate whether scene structures
influences the efficiency of the space variant filtering method.

The data set we use comprises 70 different urban scenes and 34 different forest scenes. For each
scene 16 different motion situations are tested. The motion situations are distinguished by their
respective magnitude of rotation of the camera. Psychophysical findings [13] and computational
considerations [9] suggest that rotation rate has a critical influence on heading estimation. A given
value of rotation can be achived by a particular motion direction relative to the camera (or view)
axis in conjunction with the distance of the fixated object from the camera. For each such set
of motion parameters both rotation in the negative and the positive direction are evaluated. For
each scene and and motion situation the optic flow estimated by the Lucas-Kanade algorithm from
the image sequences and the correct optic flow directly calculated from the range image data and
superimposed by uniformly distributed noise with a signal to noise ratio of 1 are considered. Then
the raw and the noisy motion fields are filtered according to the space variant filter procedure.
Figure 5 show examples for the flow fields obtained from the range image data.

5.2 Quality of heading estimates

Figures 6 and 7 depict examples of the heading estimation results obtained from raw and filtered
flows for urban and forest scenes, respectively. For each scene 20 single runs are shown. The results
are similar to those of the car driving scenes in that the estimates are quite variable for the raw
flow and more tightly clustered for the filtered flow. Similar calculations were performed for all
available scenes. Ten heading estimates with different sub-samplings of the flow field were used
for each motion situation and scene. For rotation values higher than 8 deg/s, some scenes had to
be withdrawn because the depth of the nearest object in the scene was too large to achieve the
required rotation rate. The total number of heading estimates in each different motion situation
ranged from 400 to 1400 for the urban scenes and from 380 to 680 for the forest scenes.

The left panels of Figure 8 show the mean errors for raw and filtered flow of the heading over all
scenes and motion situations. In all cases the filtered flow provides superior performance, although
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the error rises with rising rotation rate. Thus, space variant filtering leads to more reliable heading
estimation also with respect to ground truth heading. Moreover, there seem to be no principal
differences in the efficiency of the performance of the space variant filtering method between urban
and forest environments.

The right panels of Figure 8 show the mean errors for raw and filtered versions of the true motion
field with added artificial noise. These true motion fields were directly calculated from the 3D data
of the scene and superimposed with uniformly distributed noise with a signal to noise ration of 1.
Evidently, for the artificial noise flow fields the space variant filtering is more efficient than for the
real flow fields. This is to be expected because the spatial filtering is statistically optimal for this
type of noise. This results confirm the findings in [10] with respect to natural scenes.

6 Conclusion and discussion

Our results clearly demonstrate that space-variant filtering is a reasonable strategy to decrease
noise in optical flow fields and to improve heading detection. The method works well on optical
flow fields based on natural scenes affected by strong noise and the aperture problem. The stability
of the heading detection algorithm is increased, the spread of the resulting heading directions is
decreased and the mean is more reliable than in the unfiltered case.

A single flow vector in the filtered case combines information from a large set of raw flow vectors.
In the raw flow field each single vector is only one measurement. Thus, it may be that similar
improvements in heading estimation occur if more flow vectors are used in the heading estimation
algorithm from the raw flow field. Likewise, combining a larger number of heading estimates from
different subsamplings into a compound estimate may improve the heading estimation from the
raw flow field. However, the complexity of the heading procedure described in section 3.3 increases
considerably with the number of flow vectors. The space variant filtering stage is thus, a simple
and effective mid-level method to recode and condense information in a sensible way for subsequent
heading estimation.

The stability of the heading estimate is clearly improved after space variant filtering. However,
this does not mean that the filtered flow field matches the true motion field in all aspects. The
smoothing properties of the method, particularly in the periphery, are too strong to accomplish
this. Direct comparisons of the true motion field and the filtered flow in Fig 5 shows the differences.
We rather believe that the space-variant filtering method reproduces the global structure of the
correct flow and therefore allows to better estimate the correct components of self motion. Hence,
our method is a task specific optimization that enhances the applicability of the flow field to the
task of heading detection, but not for other task. For instance, the segmentation of objects in
depth would rather become more difficult after the space-variant filtering. Nevertheless, our results
encourage the view that space variant mapping of the visual field is advantageous for certain tasks
of visual processing [3, 16, 19].

The filtering approach is based on the expectation that averaging over many independent measure-
ments of essentially the same signal reduces noise. Because of the radial structure of the optic flow
averaging can be performed over large image areas in the periphery but only small image areas in
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the center of the visual field. Thus, noise reduction is particularly effective in the periphery. How-
ever, in the visual pathway of primates a space variant mapping of the visual field already exists
on the early stage of visual processing, i.e., in the retina and primary visual cortex V1. Thus, for
primate area MT the input is already organized such that averaging over small image areas in the
center of the field of view includes many individual measurements of the motion signal. In this case,
the noise reduction properties of the filtering procedure are probably equally effective across the
visual field. Therefore, our filtering method would become even more efficient if the input consists
of a space variant representation of the image rather than a standard camera representation. Such
space variant sensors have been developed and may be used in our approach as well [5, 18].

The filtering method easily lends itself to further improvements by adding for instance disparity
information from a second camera [6]. Therefore, the successful performance of heading estimation
on the filtered flow should only be the first step of a larger agenda. Certainly, the next step is to
estimate the rotational component of the self motion from the filtered flow. Further, although the
filtered flow is not applicable to extract grouping information, to perform background-foreground
segregation, or to identify moving external objects, the knowledge of the global parameters of self
motion from the filtered flow gives the possibility, supposing one has the disparity information of
the scene, to reconstruct the correct flow. Thus, apart from the relevance for the reliable estimation
of the global motion parameters from noisy flow, the space-variant filtering method could be used
as a part of an improved optic flow algorithm.
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Figure 1: Increasing filter fields sizes with respect to a noisy optic flow stimulus
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Figure 2: Top row: First frames of the camera sequences for different driving scenarios, Second
row: Optic flow estimated from the first three frames by the Lucas-Kanade Algorithm, Third row:
Space variant filtered flow, Forth row: Single heading estimations from the raw flow, The large
black square denotes the mean. Fifth row: Single heading estimations results from the filtered flow
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Figure 3: Top row: Standard deviation over 60 heading estimation runs for the different driving
scenarios, Middle and bottom rows: Horizontal and vertical components of the mean for 10 subse-
quent frames, Positive and negative angles mean leftward and rightward and upward and downward
translation respectively. Squares: Heading estimations from the filtered flow, Triangles: Heading
estimations from the raw flow
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Figure 4: Panoramic projection of the reflectance data of a range-image.

15



Figure 5: A: Reflectance data of a range-image projected onto a plane simulating a camera shot. B:
Transformation of camera centered coordinates during ego-motion, C,D,E and F: Optic flow fields
generated from range image data for a rightward translation of 27 degree and a rotation around the
vertical axis of 7deg/s, C: True flow, D: True flow with superimposed uniformly distributed noise
(SNR=1), E: Space variant filtered flow, F: Raw flow estimated from the image sequence,
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Figure 6: Results of heading estimation for urban scenes, Translation of the camera motion is
towards the grey point (horizontal component between 10 degree and 35 degree rightwards), Rota-
tions are 3 deg/s, 5 deg/s and 9 deg/s. The black cross denotes the principal point of the camera.
The small black points show the results of single runs. The large black point marks the mean over
20 runs. The grey point denotes the correct heading. A: Raw flow, Standard deviations are 10
degree, 19 degree and 11 degree, B: Space variant filtered flow, Standard deviations are around 1.6
degree.
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Figure 7: Results of heading estimation for forest scenes, Translation of the camera motion is to-
wards the grey point (horizontal component between 4 degree and 20 degree rightwards), Rotations
are 3 deg/s, 5 deg/s and 9 deg/s. The black cross denotes the principal point of the camera. The
small black points show the results of single runs. The large black point marks the mean of 20 runs.
The grey point denotes the correct heading. A: Raw flow, Standard deviations are 16 degree, 17
degree and 13 degree, B: Space variant filtered flow, Standard deviations are 1.9 degree, 1.6 degree
and 2.8 degree.
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Figure 8: Mean error for heading estimation, Boxes: space variant filtered flow, Triangles: Raw
flow, Left: Flow obtained with the Lucas-Kanade algorithm, Right: True motion field derived from
the scene data with uniformly distributed noise added (SNR=1)
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