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1 Introduction

The model discussed in this report has been developed on the basis of neuro-
physiological data obtained in an attention study performed by Vanduffel et. al.
[4]. In a first section, a short discussion of these experiments and the obtained
results is given. Next, the data that was generated by these experiments and
that served as the basis for the model are explained. The model itself and the
results obtained by training it are given in a subsequent section. We conclude
with the future directions that will be taken within this project.

2 Physiological Experiments

The experiment was concerned with the investigation of attention-dependent
modulations in the early stages of the macaque visual system. A modified
double-label deoxyglucose (2DG) procedure [1] was used to register activation
levels in these areas for awake monkeys, performing a task which involved feat-
ural attention. The main advantage of this technique is that the neural activity
can be measured with very high spatial resolution. A disadvantage is the low
temporal resolution; for one animal only two, temporally aggregated, activity
images can be obtained. This does however allow for one control condition,
which in this case involved a task with approximately similar visual stimulation
but involving spatial attention.
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(A) Spatial Attention (B) Featural Attention

Figure 1: Task descriptions

2.1 Task Description

The monkeys were trained to identify the orientation of a large circular square-
wave grating (Fig. 1(B)). After 100 ms of fixating, the stimulus, tilted either
to the left or to the right, appeared for 170 ms. Immediately afterwards, the
animal had to make a saccade, in the direction of the orientation of the grating,
to one of two target points. In the spatial attention control task (Fig. 1(A))
the grating carried no behavioral significance and the monkey had to make a
saccade to a single target point that appeared to the left or the right of the
fixation point. For both conditions, high resolution images were recorded using
2DG.

2.2 Results

By comparing metabolic activity for the two conditions, attentional effects were
observed in areas as early as the lateral geniculate nucleus and the magnocellular-
recipient layers 4Cα and 4B of the striate cortex. In these areas, attention man-
ifests itself as a retinotopically specific band of suppressed activity, peripheral
to the representation of the stimulus. In Fig. 2(B) the difference in activation
for both conditions is shown for layer 4Cα. It is clear from this figure that
there is a region with lower activation (coded in red) during featural attention,
surrounding the representation of the stimulus. At the location of the stimulus
no significant differences were observed. These results are indicative of an early
selection/filtering gating mechanism. By suppressing irrelevant visual informa-
tion outside the focus of attention, an increased signal-to-noise ratio is obtained
for the processing of the attended feature in (less retinotopically-organised) ex-
trastriate areas.
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Figure 2: (A) Schematic illustration of the location of the stimulus representa-
tion in layer 4Cα. (B) Reassembled layer 4Cα showing a ring of suppression
surrounding the stimulus. Color scale: red = lower featural attention-related
DG uptake; yellow = no differential DG uptake

3 Available Data

The source images, from which the difference image in Fig. 2(B) was constructed,
were used to construct our attention model. These images are shown in Fig.
3(A) for the case of spatial attention and in Fig. 3(B) for featural attention. It
is apparent that these images are very noisy and contain many artifacts. In the
figures, air bubbles and missing pieces are clearly visible. Furthermore, due to
the complicated process of reconstructing layer 4Cα, misalignment errors may
be present as well.

(A) Spatial Attention (B) Featural Attention

Figure 3: Available 2DG data
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Figure 4: Model Overview

4 Model

In the following subsections the proposed model for attentional modulation in
early-visual processing is explained in detail.

4.1 Assumptions

The model is built on the following assumptions. The task is to detect very
small differences in the orientation of the grating. It is assumed that, in or-
der to do this, the monkey uses an attentional mechanism that allows it to
attribute increased processing to the feature ‘orientation’, which results in an
increased sensitivity for orientation differences. The attentional mechanism we
propose, temporarily changes the inputs received from lateral inhibitory neu-
rons by changing their effective connectivity. In this way, activation levels are
changed in order to suppress activity in non-attended regions.

4.2 Model Neurons

Since the available data only contains the neuron activation levels during two
different task conditions, we need to restrict our model to this part of the cor-
tex. Consequently we do not include external stimulation and conceptualise the
model as an array of neurons (with constant neural density) corresponding to
layer 4Cα of monkey primary visual cortex. Since visual input is not part of
the model, issues related to the cortical magnification factor [2] need not be
considered here.

4.3 Attentional Modulation

A mechanism is proposed to model the attentional effects observed when at-
tending the feature ‘orientation’. The activation observed while performing the
spatial attention task is considered as ‘passive’ activation, caused by observing
the stimulus (left-hand side of Fig. 4). Consequently, we assume this activation
remains present during the dynamical evolution of the proposed modulatory
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mechanism and serves as a constant input to the layer of neurons that comprise
the model. The neurons themselves are fully interconnected and specific weights
are assigned to these connections to dynamically alter the neurons activation
levels (center of Fig. 4). Goal of this modulation is to transform the ‘passive’
activation into the observed featural attention activation, including the ring of
suppression surrounding the representation of the stimulus (right-hand side of
Fig. 4).

The constant spatial attention activation of neuron i, Ai also serves as its initial
featural attention activation Fi at iteration 0:

F
(0)
i = Ai . (1)

The connection weight from neuron j to neuron i is depicted by wij . Since the
neurons are fully and recurrently connected, the network is a dynamical system,
the final activation F ∗i of which needs to be determined iteratively. Based on the
featural attention activation at iteration k, the activation at the next iteration
is determined as follows:

F
(k+1)
i =

N∑

j=1

f(wijF
(k)
j + Aj) , (2)

where

f(x) =





0 x ≤ 0
x 0 < x ≤ 1
1 x > 1

. (3)

The weights wij are determined using a learning algorithm that tries to match
the final activations Fi to the featural attention activations observed in the
2DG-study (see Fig. 3(B)). Specific constraints are enforced on the shape of the
weights interconnection pattern. These constraints are the subject of the next
section.

4.4 Connection Pattern

Our model of V1 consists of a two dimensional array of fully interconnected
neurons. A weight can be assigned to each connection to control the excita-
tory or inhibitory effect a neuron’s activation has on other neurons. Obviously,
such a massively interconnected lattice has far too many degrees of freedom.
To prevent the network from overfitting the data, the connection pattern needs
to be constrained. Since we are mainly interested in explaining the effects us-
ing center-surround interaction patterns, the connection weights are sampled
from a continuous Mexican-hat-shaped kernel. In Fig. 5 an example kernel
is shown. With increasing distance (in lattice coordinates), the connection
strengths change from an excitatory center, to an inhibitory surround until they
finally saturate at zero. Furthermore, the kernel is constructed in such a way
that the average incoming effect equals zero and the self-connection strength
equals one.

A variety of different kernels have been investigated. First of all, classical Lapla-
cian or Gabor kernels are not suitable since they only have one adjustable pa-
rameter. Since our goal is to control the ranges of the center and surround parts
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Figure 6: One dimensional, continuous, splines kernel

separately and for each neuron individually, two different parameters should be
available to accomplish this. The most obvious choice are Difference Of Gaus-
sians (DOG). They have however proved to be unstable during training, mainly
because of a singularity that originates when the standard deviations of the ex-
citatory and inhibitory component are nearly identical. To solve this problem,
a novel kernel has been developed that consists of two cubic splines, parame-
terised in such a way to demonstrate all of the desirable properties mentioned
above.

The shape of the kernels is determined by the parameters Se and Si, which are
related to the span of the excitatory, respectively inhibitory region. The first
spline is defined as:

ye = 2
(

Se + Si

S3
eSi

)
x3

e − 3
(

Se + Si

S2
eSi

)
x2

e + 1 , (4)

where 0 ≤ |xe| ≤ Se. The second spline equals:

yi =
Se

Si (Si − Se)
3

[
S2

i (3Se − Si)− 6SeSixi + 3 (Se + Si)x2
i − 2x3

i

]
, (5)

where Se < |xi| ≤ Si. The right side of an example splines kernel with pa-
rameters Se = 4 and Si = 8 is shown in Fig. 6. In the two-dimensional case,
x-values are replaced by the distance from the center r =

(
x2

1 + x2
2

)1/2. To
compensate for discretisation errors which may cause the weights not to sum to
zero, a normalisation is performed by rescaling the inhibitory part of the kernel.
An example of a discrete, two dimensional kernel is shown in Fig. 7.
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Figure 7: Two dimensional, discrete, splines kernel

4.5 Learning Rule

A novel learning rule has been developed for selecting the sizes of the excita-
tory and inhibitory regions of the kernels for each neuron. The goal of the
learning process is to generate a mapping from the activation observed during
spatial attention to that observed during featural attention. Since the model
neuron activations evolve dynamically over time, it is not possible to use a con-
ventional gradient descent scheme. For this reason we locally approximate the
error gradient numerically. A good approximation is obtained by reiterating the
model after small parameter updates and evaluating the error. The advantage
of this procedure is that it avoids the cumbersome training procedures, often
used with recurrent neural networks, and that it enables training a very com-
plicated model using a straightforward procedure. The cost of this simplicity
is a longer training duration, which is not really a concern here. A procedure
like this has additional advantages since it can, in principle, even model the dy-
namical behavior of the network. In order to accomplish this, data with higher
temporal resolution is however required.

5 Results

Since the full model suffers from issues relating to border effects and is difficult
to train, we have performed a proof of concept simulation using a simplified
version of the model and artificial data. Synthetic, one-dimensional data has
been created which closely resembles a cross-section of the observed 2DG-data.
This dataset is shown in Fig. 8. The stimulus is represented on the left-hand
side of the figure. Since, in accordance with the 2DG data, there is less vi-
sual stimulation outside the representation, the activation is slightly lower at
those locations. In the featural dataset, activation is lowered with respect to
the spatial activation in a limited region (ring) outside the stimulus represen-
tation. The only simplifications that were made to the model are the removal
of the dynamical aspects and the nonlinear transfer function. In other words,
for each neuron individually, the splines excitatory and inhibitory parameters
are determined so as to generate the functional mapping from the spatial to
the featural attention dataset. The parameters were initialised randomly and
the best (in terms of minimal deviation from the featural attention activation)
results of different trails were retained. These results are shown in Fig. 9. Since
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Figure 8: Synthetic datasets

(A) Splines Parameter Values (B) Model Activation
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Figure 9: Featural attention activation (B) obtained by the model with trained
excitatory and inhibitory parameter values shown in (A)
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Figure 10: Representative kernel configurations in the region corresponding
to the stimulus representation (A) and the suppressive region surrounding the
stimulus representation (B)

the activation does not have to be changed in the areas corresponding to the
stimulus representation and outside the ring of suppression, different parameter
configurations are possible. For this reason, the fit is perfect and the parameter
values are always relatively small. No modulatory mechanisms are required here
since the neurons are already driven to saturation. The apparent noise present
in the parameter estimates is due to the discrete nature of the kernel parametri-
sation and the consequent difficulties in training the model. The higher values
on the left-hand side of the figure are caused by border effect. The area outside
the stimulus representation is more interesting and clearly shows a consistent
parameter configuration. The excitatory center is always relatively small and
the inhibitory surround is always large. Fig. 10 shows the connection pattern
for the two kernels marked with arrows in Fig. 9.

These results indicate that the observed ring of suppression may originate from
long-range inhibitory connections that start from within the stimulus repre-
sentation and end in a peripheral region. The connections use the activation,
generated by the stimulus, to inhibit a spatially localised, surrounding, region.

6 Conclusions

A novel model architecture has been introduced to investigate attentional effects
observed in early visual cortex during 2DG experiments. The model involves a
new center-surround kernel and requires a novel learning rule to be trained. Us-
ing a synthetic dataset which closely resembles the observed physiological data,
it has been shown that a specific spatial configuration of long-range inhibitory
connections (originating at the location of the representation of the attended
stimulus) can generate a ‘ring of suppression’ surrounding the focus of attention.
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7 Further Steps

Since further 2DG experiments are not supported by the project, and since
this class of experiments are extremely demanding in terms of material and
personnel costs, additional data are not to be expected in the near future. As a
consequence this WP is revised towards a more technical approach. Specifically,
the interactions between attention and context will be further investigated. We
will adopt the view that attention and context interact simultaneously [3] and
will involve lateral connectivity to be in line with the suppression observed in
the 2DG experiments.
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