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Abstract: - Image entropy as prior in Bayesian inference was gpplied to the redtoration of X-ray digitd
images with additive zero mean Gaussan digtributed noise. An iterdtive agorithm based on a conjugate
gradient method with numerica evaluation of partia derivatives was developed to efficiently minimize the
potentiad function associated to any positive, additive distribution. The correlation matrix of the errors, both
in the data acquisition and the modeling process, was built up and used as prior in Bayesian approach.
Digitized and digitdly acquired X-ray mammograms were subject of comparative analyses before and after
running the agorithm. All output images displayed better overdl qudity as compared with their input
counterparts in terms of contrast, signa to noise ratio, and visbility of details. No artifacts were detected by
al means as being introduced by the entropic method, which theoreticdly ensures the least biased and

structurel ess output image restoration.
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1 Introduction

In many aress like data andyss, sgna processing,
and neura networks, a common task is to find an
adequate representation of multivariate data for
subsequent processing and interpretetion. Linear
transforms ae often invoked due to their
computationa and conceptua simplicity. Despite
of their sophidtication and diversity, the numericd
methods generdly used to convert experimenta
data into interpretable images and spectra heavily
rely on sraightforward transforms, such as the
Fourier transform, or quite eaborated emerging
classes of transforms like waveets [1] [2],
wedgelets [3], ridgelets [4], and so forth. Yet
experimentd data are necessarily incomplete and
noisy due to the limiting congraints of digita data
recording and the finite acquistion time. The main
drawback of these transforms is that defects in the
data are directly transferred into the transform
domain dong with the genuine dgnds. The
traditiona gpproach to data processng in the
transform domain is to ignore any known
imperfections in the data, st to zero any
unmeasured data points, and then proceed as if
data were perfect. A different gpproach based on
maximum entropy (ME) principle is to proceed
from the frequency domain to the time domain. In
data anadlysis, ME techniques are generdly used to
restore podtive digtributions, such as images and
spectra, from blurred, corrupted or, generdly,
from imperfect data ME methods ma be
developed on axiomatic foundations based on the

probability calculus which itsdf has a specid
datus as the only interndly consistent language of
inference [5]. Within its framework, pogtive
digtributions ought to be assigned probabilities that
ae based on the entropy of these digtributions.

2 The Inverse Problem of Image

Restoration

The methods used in image restoretion are oriented
towards modding the image degradations and
agoplying an inverse procedure to obtan a rdidble
gpproximation of the origind scene.

If a digitd image made out of N pixds is
represented as sequence of podtive numbers
f,, n=12,..N with corresponding proportions

p, = fn/é erlfn’ then the axioms of probability

are sdtisfied. Since the configurational structure of
the images satisfies these axioms then the concept of
image entropy may be introduced [6]. If we consider
a complete collection of images corresponding to dl

possble intendty digtributions, then measurements
act as a filter over the collection by restricting our

attention to the images that satisfy the data with any

conceivable condraints (noise). Among these, a
natural choice may be the one that could have arisen
in the maximum number of ways, depending on our
counting rule. By maximizing the entropy, the
smoothest and most uniform distribution among the
st of dl admisshble digtributions is sdected as the
most featurdess possible image. ME regtoretion
dlows to associate error bars on the retrieved



images which provides means to assess
quantitatively and objectively the rdiability of the
extracted features. Furthermore, we are able to
assess different variants of ME and give quantitetive
comparison [7].
The methods used in image restoration are
oriented towards modeling the image degradetions
and agpplying an inverse procedure to obtan a
relidble gpproximation of the origind scene. Linear
transforms encompass a large class of physica
experiments [8]. In generd, for an image with true
continuous light intensity  distribution £ (t), the
messured image light intensity distribution g(s) is
given by the convolution equation
+¥

g(s)= y(s.t)xf(t)dt+e 1)
- ¥

where r(s,t) is the space invariant blurring function

(PSF) of the imaging system. It is nevertheless
assumed that the observed noise eis independent of
the function f. The inverse problem may be Stated as

to determine a unique and stable solution, sy £ (t),
representing the unknown function f(t) by using
the messured vaues g(s) of the data This is a
typicdly ill-posed problem, in the sense tha,
generaly, there are infinitdly many solutions f(t)
consistent with the same data g(s) and comply with
the errors.

Practically, in a physicdl experiment g(s) is
observed on a finite st of isolaed points
Sn, M=12,...,M inthe data space D

g, =9(s,)= Qf (t)=(t,s,)dt+els, )=

\

Qf(t)wm(t)>dt+em, m=12,...M

Furthermore, the statement should be correct only if
the discretization is performed properly, i.e, each
component g,,,m=12,.M of g(s) messures a
distinct aspect f,, n=12,...,.N of f(t) through its
own linear response kernd rm(t), m=12,.M,
and with its own additive measuring error
e,,m=12,.,M. For a dense set of N discrete

points t,, n=12,...,N, which ae sufficiently
evenly spaced so  that neither  f(t) nor
rm(t) m=12,..M vay sgnificantly between t,
ad t,, , the componerts g, may be put in a
quadraturelike form
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n=1
The above expression can be put in a matrix form
g=R f+e, where R is a matrix of sze M" N

having the components R, = r(t,) {tos - to.1)/2-
Though the number N of unknown pixd vaues,
which we wish to determine, may equd to the
number M of the observed vaues, the direct
solution of the problem by inverting the matrix R
rarely works. This is the consequence of either R
being singular or ill-conditioned, or else, because
the solution may include negetive pixd vaues due
to the unknown noise €. In fact, the finer the
discretization of the continuous functions is, the
moreill-conditioned R [9].

Regularizetion theory deds with solving ill-
posed or ill-conditioned problems through the
andyss of an associaed well-posed problem,
whose solution is supposed to yidd meaningful
answers and approximations to the ill-posed
problem. The well-posed inverse problem of image
restoration may be formulated by asking for some
rdisble estimate f to the exact solution f, given
the measured sample data g, the space invariant PSF

of the imaging sysem R, and some information
about the errors e, such as their covariance matrix

c=lc,. =12.m "
2.1 Image entropy

Any postive, additive image can be directly
identified with a probability distribution. However,
the correct definition of the entropy associated to an
image and the particular mathematica function to
describeit is ill a question of debate [10].

As a prerequisite to apply Bayes theorem, we
must first use some other principle to trandate the
avalable information into numericd vaues. By
applying the ME principle we mean asigning a
probability distribution  {p.}={p,. p,.....on} ON
some hypothesis space (i.e, dl admissible images)
by the criterion that it shall maximize some form of
etropy, subject to condraints that express
properties we wish the distribution to have, but are
not sufficient to determine it. Entropy is used asthe
criterion for resolving the ambiguity remaining
when we have stated al the constraints we are
aware of. ME methods do not require for input
numerica vaues of any probabilities on the image
space, rather they assign numerical vaues to our
information as expressed by our choices of image
gpace and congraints. Among the probability



distributions that satisfy these consraints, the ME
principle sdects the one tha maximizes the
entropy. In our approach, we derived the image
entropy form based on the far reason that esch
quanta had an equa a priori chance of being in any
pixel and counting the ways for getting a particular
image configuration f , which lead to

-gfnﬂhLZ-ngnﬂnpn=S(f) (4)
n=1 U n=1

where U stands for al recorded quanta that form the
image. The above expression stands for the entropy
of an image, which is not the same as the
thermodynamic entropy of a beam of photons, nor is
the same as the information entropy introduced by
Shannon [11] in statistics!

2.2 Bayesian I nference

Bayesan gpproach does not specify any particular
choice of prior. The entropic prior was argued by
Skilling [18]. Given some background knowledge |,
then Bayesian ME prior Pr(f |I) for a macroscopic
sate f with entropy S(f) is postulated as
proportional to exp S(f ), thet is

Pr(f|1)p exps(f) expé af npd  ©
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Whatever prior is used, it clearly affects the amount
by which the restoration is offset from the true
image. The extent of this biasing effect depends on
the relative weights of the prior Pr(f 1) and
likdihood Pr(g|f1) in the expression of the
posterior  probebility Pr(f|gl). Bayes theorem
combines the first two knowledge states and yields
the  poserior  probability  digtribution  law
representing our updated State of knowledge of the
solution

(flg ) Pr(Q';:(LTIID)r(f“) (6)

where the evidence Pr(g|l) plays merdly the role
of a normalization constant of no dgnificance in
any variationd problem, yet mesningful in mode
ranking.

2.3 The potential function
For the widely spread case of linear experiments
with additive Gaussan noise g=R f+e the

likdihood is identicd to the probebility law of the

noise. For such experiments, Gull and Daniell [6]

suggested the ME principle as gppropriate to assign
a probability didribution to any image dong with a
c?-condrant  for  handling the  errors
e, m=12,.. M. The chi-squared distribution
c?, dso cdled the dtatistical misfit, measures how
well amodd f agreeswith the measured data g

c?(f)=(g-Rf)CHg-RT) (7)

An gpproximate equdity holds if neglecting the off-
diagona covariances in C, which is actudly true if
the noise is not corrdlated among pixels. Then the
covariance matrix becomes diagona and after a st
of M measurements, thelikelihood is

éN 1 )

Pr(g| f I)=§O(2ps ) u>exp A~ =C (f)ﬂ (8)
S g 2 u

where the squares of standard deviations are the

diagond covariances s 2 =C,,, Mm=12,., M .

Solving the inverse problem of image
resoration condsts in choosing the optima
estimaor f of the unknown function f. This

requires adopting an edimation rule, such as
posterior mean or maximum a poseriori (MAP), in
order to sdect an optimal, unique and dable
solution. The power of the Bayesan gpproach lies
in the seadfast use of the posterior probability. If
we had to produce just one single image as the “best
regoration’, we would naurdly give the mogt
probable one that maximizes Pr(f|gl), dong with
some dsatement of reliability derived from the
spread of dl reasonably probable images. Bayesan
gpproach ams to maximize the pogterior probability
Pr(f|g1) derived by replacing the prior (5) and the
likelihood (8) in Bayes theorem (6).

Consgent with the ME requirements, the
Lagrangean associated with the MAP procedure
must aso contain the linear transform and the tota
flux congtraints, which leads to the expression of the
potential function Z of theimage, which hereis

ey Y U
z(|1,...1M,r):-u>tnéaexp§ a! wRunil-
R O

where | ;I ,,.., 1, ,r ae the Lagrange multipliers

ad W stands for the mean of the ¢? function.
Ultimately, the task reduces to finding the proper
vaues of the Lagrange multipliers reaching the
extremum of the potential function Z.



3 Resultsand Discussion

3.1 X-ray imaging

The production of X-ray images is heavily based on
the assumption that the X-ray photons are passng
through the imaged object dong rectilinear paths.
The absorption coefficient n is defined by the rate
of decreessng number N of recorded quanta
dWN =-mxdx. The totd atenuation rate depends on
the individud raes associated with dl  the
interactions that may occur while the photons are
passing through a sample. Assuming a homogeneous
imaged object, we get the attenuation eguation by
integration of

%?zexp(—n‘(E)xXFexpg—?u(E)xX% (10)

The mass attenuation coefficient depends on the
r

material composition and the energy of the incident
photons. We considered a $mple approximetion of
the mass absorption coefficients for low Z matrices
(sample) such as

rr_n = 2064 sE 3287462 4 o - (E) X7 + D X 202 57486

where s (E) is the Klein-Nishina cross section

and Z is the effective atomic number of the sample.
Based on the above, the package GEANT 3.21
(http://wwwinfo.cern.ch/asd/geant) from CERN was
used to smulate the average breast tissue scattering
and to define the imaging system response.

3.2 Computational Aspects

The above derivation of the potentia function Z is
nevertheless effective only if reliable etimates of
the noise standard deviaions s, m=12,..M that

determine the severity of blurring are a priori
sdected on some theoreticd and/or experimentd
base. The mgjor source of noise in X-ray imaging is
the random digtribution of photons over the surface
of the image. The standard deviaion of the photon
concentretions is the best quantitative estimator of
the noise in an image. Therefore, we set the standard
deviation s ,, in each pixel equa the square root of

the recorded quanta g, in agreement with Poisson's
law

S, =ayg,, m=12,..M (12)

The model parameter a sets down the proper

scattering range of the signal-to-noise retios in each
pixd aound some common level and ensures
convergence of the agorithm [12].

The minimization method of the potentid
function Z was based on Fletcher-Reeves conjugate
gradient agorithm for non-lineear minimization with
Polak-Ribiere's ingredient for smoother transtions
to further iterations required by not exactly quadratic
forms. An origind extension of Nevill€'s agorithm
for computing numericd  derivatives was
implemented to provide gradient information for any
given functional procedure. The dgorithm was
implemented in MS Visud C++ and run on purpose
under Windows 95 on a low-priced PC Pentium I11.
Processing time of 512" 512 pixd Sze images was
in the range of 1 to 2 minutes, dgnificantly
depending on the texture richness. Pixd depth was
set to 8 bits. LView Pro 1.D2/32 freeware software
was used for graphics file format conversions, image
display, and file import-export.

3.3Image Processing

In order to ensure agorithm convergence, we
smulated various opecities embedded in breedt-like
tissue (Fig. 1) and sat the vdue of our modd
parameter for achieving the best restoration of the
smulated opacities. Tests were carried out on both
opticaly scanned X-ray mammograms and samples
from various databases available on the web.

a) b) C)

Fig.1 Smulated microcdcification of 2”2 pixd sdze
embedded in a homogeneous mammdianlike tissug
&) smulated microcacification,

b) smulated tissue including the microcalcification,

¢) microcacification image after the retoration process.

Some dinicaly relevant digita restorations of raw
X-ray images are presented in Fig. 2. The main steps
in our tests focused on detecting fase postives are
displayed in Fig. 3. Quality assessment was
performed on the basis of Contrast-Detail (CD)
phantoms as fostered by the University Hospitd in
Nijmegen [13]. There were detected neither spurious
patterns nor any suspect forms.



left  column:  raw

Fig.2 Full
digitized X-ray images by opticd scanning; right column:
digitaly restored images; top: Fundeni Hospita, Romania

breesst  mammograms,

(http://fpced.fizica.unibuc.ro) norma bresst; middle
Case mdb032, MIAS, UK (http://marathon.csee.usf.edu/)
- benign ill-defined masses, fatty-glandular  tissug;
bottom: Case mdb005 MIAS - benign dircumscribed
masses - fatty tissue.

4. Conclusion
Our approach highlighted the power of ME methods
in solving the inverse problem of digitd imege
retoration in the framework of Bayesian datigtics.
Whether it might be for spectra andyss of time
series, radio astronomy, opticad X-ray astronomy
and tomography, or for any reconstruction of
positive, additive images, the ME principle assigns a
prior probability in Bayesan sense to a given image.

Theoreticaly, no artifacts should pop up after
data processing, since the entropy maximizaion
produces the most unbiased and featureless solution,
which is consistent with the data and complies with
the errors in measurements and modeling.

The dgorithm developed may goply to virtuadly

any type of data assuming that the PSF of the
measuring equipment is adequately known and a
c? - congraint for the errors in the input data holds
ressonably .

.““'"l
""'ll."-

d)

Fig.3 Test patern for detecting atifacts in
mammdiartlike tissue (average diameters of grans in
millimeters);

g arangement of variousSze marble grains;

b X-ayimageof thegrains,

0 X-ayimageof the grainsembedded in thetissue;

d Imagec) fter the restoration process.
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