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Abstract: - Image entropy as prior in Bayesian inference was applied to the restoration of X-ray digital 
images with additive zero mean Gaussian distributed noise. An iterative algorithm based on a conjugate 
gradient method with numerical evaluation of partial derivatives was developed to efficiently minimize the 
potential function associated to any positive, additive distribution. The correlation matrix of the errors, both 
in the data acquisition and the modeling process, was built up and used as prior in Bayesian approach. 
Digitized and digitally acquired X-ray mammograms were subject of comparative analyses before and after 
running the algorithm. All output images displayed better overall quality as compared with their input 
counterparts in terms of contrast, signal to noise ratio, and visibility of details. No artifacts were detected by 
all means as being introduced by the entropic method, which theoretically ensures the least biased and 
structureless output image restoration.  
 
Key-Words: - Bayesian inference, Maximum entropy principle, Inverse problem, X-ray digital image 

 
1 Introduction 
In many areas like data analysis, signal processing, 
and neural networks, a common task is to find an 
adequate representation of multivariate data for 
subsequent processing and interpretation. Linear 
transforms are often invoked due to their 
computational and conceptual simplicity. Despite 
of their sophistication and diversity, the numerical 
methods generally used to convert experimental 
data into interpretable images and spectra heavily 
rely on straightforward transforms, such as the 
Fourier transform, or quite elaborated emerging 
classes of transforms like wavelets [1] [2], 
wedgelets [3], ridgelets [4], and so forth. Yet 
experimental data are necessarily incomplete and 
noisy due to the limiting constraints of digital data 
recording and the finite acquisition time. The main 
drawback of these transforms is that defects in the 
data are directly transferred into the transform 
domain along with the genuine signals. The 
traditional approach to data processing in the 
transform domain is to ignore any known 
imperfections in the data, set to zero any 
unmeasured data points, and then proceed as if 
data were perfect. A different approach based on 
maximum entropy (ME) principle is to proceed 
from the frequency domain to the time domain. In 
data analysis, ME techniques are generally used to 
restore positive distributions, such as images and 
spectra, from blurred, corrupted or, generally, 
from imperfect data. ME methods may be 
developed on axiomatic foundations based on the 

probability calculus, which itself has a special 
status as the only internally consistent language of 
inference [5]. Within its framework, positive 
distributions ought to be assigned probabilities that 
are based on the entropy of these distributions. 

2 The Inverse Problem of Image 
Restoration 
The methods used in image restoration are oriented 
towards modeling the image degradations and 
applying an inverse procedure to obtain a reliable 
approximation of the original scene.  
If a digital image made out of N pixels is 
represented as sequence of positive numbers 
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are satisfied. Since the configurational struc ture of 
the images satisfies these axioms then the concept of 
image entropy may be introduced [6]. If we consider 
a complete collection of images corresponding to all 
possible intensity distributions, then measurements 
act as a filter over the collection by restricting our 
attention to the images that satisfy the data with any 
conceivable constraints (noise). Among these, a 
natural choice may be the one that could have arisen 
in the maximum number of ways, depending on our 
counting rule. By maximizing the entropy, the 
smoothest and most uniform distribution among the 
set of all admissible distributions is selected as the 
most featureless possible image. ME restoration 
allows to associate error bars on the retrieved 



images which provides means to assess 
quantitatively and objectively the reliability of the 
extracted features. Furthermore, we are able to 
assess different variants of ME and give quantitative 
comparison [7]. 

The methods used in image restoration are 
oriented towards modeling the image degradations 
and applying an inverse procedure to obtain a 
reliable approximation of the original scene. Linear 
transforms encompass a large class of physical 
experiments [8]. In general, for an image with true 
continuous light intensity distribution ( )tf , the 
measured image light intensity distribution ( )sg  is 
given by the convolution equation 
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where ( )ts ,r  is the space invariant blurring function 
(PSF) of the imaging system. It is nevertheless 
assumed that the observed noise e is independent of 
the function f. The inverse problem may be stated as 
to determine a unique and stable solution, say ( )t

~
f , 

representing the unknown function ( )tf  by using 
the measured values ( )sg  of the data. This is a 
typically ill-posed problem, in the sense that, 
generally, there are infinitely many solutions ( )tf  
consistent with the same data ( )sg  and comply with 
the errors.  

Practically, in a physical experiment ( )sg  is 
observed on a finite set of isolated points 
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Furthermore, the statement should be correct only if 
the discretization is performed properly, i.e., each 
component ,...M2,1, mg m =  of ( )sg  measures a 
distinct aspect ,...,N2,1, nfn =  of ( )tf  through its 
own linear response kernel ( ) M21m,rm ,...,,t =  , 
and with its own additive measuring error 

M21mem ,...,,, = . For a dense set of N discrete 
points ,...,N2,1 ,  ntn = , which are sufficiently 
evenly spaced so that neither ( )tf  nor 

( ) M21mrm ,...,,t =  ,  vary significantly between 1nt −  
and  1nt + , the components mg  may be put in a 
quadrature-like form 
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The above expression can be put in a matrix form 
efg += R , where R is a matrix of size NM ×  

having the components ( ) ( ) 2tttrR 1n1nnmmn −+ −⋅= .  
Though the number N of unknown pixel values, 
which we wish to determine, may equal to the 
number M of the observed values, the direct 
solution of the problem by inverting the matrix R 
rarely works. This is the consequence of either R 
being singular or ill-conditioned, or else, because 
the solution may include negative pixel values due 
to the unknown noise e]. In fact, the finer the 
discretization of the continuous functions is, the 
more ill-conditioned R [9]. 

Regularization theory deals with solving ill-
posed or ill-conditioned problems through the 
analysis of an associated well-posed problem, 
whose solution is supposed to yield meaningful 
answers and approximations to the ill-posed 
problem. The well-posed inverse problem of image 
restoration may be formulated by asking for some 
reliable estimate f~  to the exact solution f, given 
the measured sample data g, the space invariant PSF 
of the imaging system R, and some information 
about the errors e, such as their covariance matrix 

M21jiijC
,...,,, =

=C . 

 
2.1  Image entropy 
 
Any positive, additive image can be directly 
identified with a probability distribution. However, 
the correct definition of the entropy associated to an 
image and the particular mathematical function to 
describe it is still a question of debate [10]. 

As a prerequisite to apply Bayes’ theorem, we 
must first use some other principle to translate the 
available information into numerical values. By 
applying the ME principle we mean assigning a 
probability distribution { } { }N21n pppp ,...,,=  on 
some hypothesis space (i.e., all admissible images) 
by the criterion that it shall maximize some form of 
entropy, subject to constraints that express 
properties we wish the distribution to have, but are 
not sufficient to determine it. Entropy is used as the 
criterion for resolving the ambiguity remaining 
when we have stated all the constraints we are 
aware of. ME methods do not require for input 
numerical values of any probabilities on the image 
space, rather they assign numerical values to our 
information as expressed by our choices of image 
space and constraints. Among the probability 



distributions that satisfy these constraints, the ME 
principle selects the one that maximizes the 
entropy. In our approach, we derived the image 
entropy form based on the fair reason that each 
quanta had an equal a priori chance of being in any 
pixel and counting the ways for getting a particular 
image configuration f , which lead to 
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where U stands for all recorded quanta that form the 
image. The above expression stands for the entropy 
of an image, which is not the same as the 
thermodynamic entropy of a beam of photons, nor is 
the same as the information entropy introduced by 
Shannon [11] in statistics! 
 
 
2.2 Bayesian Inference 
Bayesian approach does not specify any particular 
choice of prior. The entropic prior was argued by 
Skilling [18]. Given some background knowledge I, 
then Bayesian ME prior ( )|IPr f  for a macroscopic 
state f with entropy ( )fS  is postulated as 
proportional to ( )fSexp , that is 
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Whatever prior is used, it clearly affects the amount 
by which the restoration is offset from the true 
image. The extent of this biasing effect depends on 
the relative weights of the prior ( )|IPr f  and 
likelihood ( )I|Pr fg  in the expression of the 
posterior probability ( )I|Pr gf . Bayes’ theorem 
combines the first two knowledge states and yields 
the posterior probability distribution law 
representing our updated state of knowledge of the 
solution 

( ) ( ) ( )
( )|IPr

|IPrI|PrI|Pr
g

ffggf ⋅=        (6) 

where the evidence ( )|IPr g  plays merely the role 
of a normalization constant of no significance in 
any variational problem, yet meaningful in model 
ranking.  
 
 
2.3 The potential function 
For the widely spread case of linear experiments 
with additive Gaussian noise efg += R  the 
likelihood is identical to the probability law of the 

noise. For such experiments, Gull and Daniell [6] 
suggested the ME principle as appropriate to assign 
a probability distribution to any image along with a 

2χ -constraint for handling the errors 
M21mem ,...,,, =  . The chi-squared distribution 

2χ , also called the statistical misfit, measures how 
well a model f  agrees with the measured data g 

( ) ( ) ( )fgfg RCR −−= −1T2 fχ        (7) 

An approximate equality holds if neglecting the off-
diagonal covariances in C, which is actually true if 
the noise is not correlated among pixels. Then the 
covariance matrix becomes diagonal and after a set 
of M measurements, the likelihood is 
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where the squares of standard deviations are the 
diagonal covariances M21mCmm

2
m ,...,,=  ,=σ .  

Solving the inverse problem of image 
restoration consists in choosing the optimal 
estimator f

~  of the unknown function f. This 
requires adopting an estimation rule, such as 
posterior mean or maximum a posteriori (MAP), in 
order to select an optimal, unique and stable 
solution. The power of the Bayesian approach lies 
in the steadfast use of the posterior probability. If 
we had to produce just one single image as the “best 
restoration”, we would naturally give the most 
probable one that maximizes ( )I|Pr gf , along with 
some statement of reliability derived from the 
spread of all reasonably probable images. Bayesian 
approach aims to maximize the posterior probability 

( )I|Pr gf  derived by replacing the prior (5) and the 
likelihood (8) in Bayes’ theorem (6).  

Consistent with the ME requirements, the 
Lagrangean associated with the MAP procedure 
must also contain the linear transform and the total 
flux constraints, which leads to the expression of the 
potential function Z of the image, which here is 
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where ρλλλ ,,...,, M21  are the Lagrange multipliers 

and Ω  stands for the mean of the 2χ  function. 
Ultimately, the task reduces to finding the proper 
values of the Lagrange multipliers reaching the 
extremum of the potential function Z.  



3 Results and Discussion 
3.1  X-ray imaging 
The production of X-ray images is heavily based on 
the assumption that the X-ray photons are passing 
through the imaged object along rectilinear paths. 
The absorption coefficient µ  is defined by the rate 
of decreasing number N of recorded quanta 

dx
N
dN ⋅−= µ . The total attenuation rate depends on 

the individual rates associated with all the 
interactions that may occur while the photons are 
passing through a sample. Assuming a homogeneous 
imaged object, we get the attenuation equation by 
integration of  

( ) ( )( ) ( ) 
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The mass attenuation coefficient 
ρ
µ  depends on the 

material composition and the energy of the incident 
photons. We considered a simple approximation of 
the mass absorption coefficients for low Z matrices 
(sample) such as  

( ) 864022
KN

624283 ZE82ZEZE6420 .... .. ⋅⋅+⋅+⋅= −− σ
ρ
µ  

where ( )EKNσ  is the Klein-Nishina cross section 
and Z  is the effective atomic number of the sample. 
Based on the above, the package GEANT 3.21 
(http://wwwinfo.cern.ch/asd/geant) from CERN was 
used to simulate the average breast tissue scattering 
and to define the imaging system response. 
 
 
3.2  Computational Aspects 
The above derivation of the potential function Z  is 
nevertheless effective only if reliable estimates of 
the noise standard deviations ,...,M2,1m,m =σ  that 
determine the severity of blurring are a priori 
selected on some theoretical and/or experimental 
base. The major source of noise in X-ray imaging is 
the random distribution of photons over the surface 
of the image. The standard deviation of the photon 
concentrations is the best quantitative estimator of 
the noise in an image. Therefore, we set the standard 
deviation mσ  in each pixel equal the square root of 
the recorded quanta mg  in agreement with Poisson's 
law 

M21mgmm ,...,,, ==   ασ       (12) 

The model parameter α  sets down the proper 

scattering range of the signal-to-noise ratios in each 
pixel around some common level and ensures 
convergence of the algorithm [12].  

The minimization method of the potential 
function Z  was based on Fletcher-Reeves’ conjugate 
gradient algorithm for non-linear minimization with 
Polak-Ribière’s ingredient for smoother transitions 
to further iterations required by not exactly quadratic 
forms. An original extension of Neville’s algorithm 
for computing numerical derivatives was 
implemented to provide gradient information for any 
given functional procedure. The algorithm was 
implemented in MS Visual C++ and run on purpose 
under Windows 95 on a low-priced PC Pentium III. 
Processing time of 512512 ×  pixel size images was 
in the range of 1 to 2 minutes, significantly 
depending on the texture richness. Pixel depth was 
set to 8 bits. LView Pro 1.D2/32 freeware software 
was used for graphics file format conversions, image 
display, and file import-export. 
 
 
3.3 Image Processing 
In order to ensure algorithm convergence, we 
simulated various opacities embedded in breast-like 
tissue (Fig. 1) and set the value of our model 
parameter for achieving the best restoration of the 
simulated opacities. Tests were carried out on both 
optically scanned X-ray mammograms and samples 
from various databases available on the web.  
 

a) b) c)

 

Fig. 1 Simulated microcalcification of 22 ×  pixel size 
embedded in a homogeneous mammalian-like tissue;       
a) simulated microcalcification,  
b) simulated tissue including the microcalcification,  
c) microcalcification image after the restoration process. 
 
Some clinically relevant digital restorations of raw 
X-ray images are presented in Fig. 2. The main steps 
in our tests focused on detecting false positives are 
displayed in Fig. 3. Quality assessment was 
performed on the basis of Contrast-Detail (CD) 
phantoms as fostered by the University Hospital in 
Nijmegen [13]. There were detected neither spurious 
patterns nor any suspect forms. 



    
 

    
 

    
 
Fig. 2 Full breast mammograms; left column: raw 
digitized X-ray images by optical scanning; right column: 
digitally restored images; top: Fundeni Hospital, Romania 
(http://fpce4.fizica.unibuc.ro) - normal breast; middle: 
Case mdb032, MIAS, UK (http://marathon.csee.usf.edu/) 
- benign ill-defined masses, fatty-glandular tissue; 
bottom: Case mdb005, MIAS - benign circumscribed 
masses - fatty tissue. 
 
 
4. Conclusion 
Our approach highlighted the power of ME methods 
in solving the inverse problem of digital image 
restoration in the framework of Bayesian statistics. 
Whether it might be for spectral analysis of time 
series, radio astronomy, optical X-ray astronomy 
and tomography, or for any reconstruction of 
positive, additive images, the ME principle assigns a 
prior probability in Bayesian sense to a given image.  

Theoretically, no artifacts should pop up after 
data processing, since the entropy maximization 
produces the most unbiased and featureless solution, 
which is consistent with the data and complies with 
the errors in measurements and modeling.  

The algorithm developed may apply to virtually 

any type of data assuming that the PSF of the 
measuring equipment is adequately known and a 

−2χ constraint for the errors in the input data holds 
reasonably . 
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Fig. 3 Test pattern for detecting artifacts in 
mammalian-like tissue (average diameters of grains in 
millimeters);  
a) arrangement of various size marble grains;  
b) X-ray image of the grains; 
c) X-ray image of the grains embedded in the tissue;  
d) Image c) after the restoration process. 
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