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Abstract: - Our contribution highlights the statistical properties and biological interpretation of the basis 
vectors (filters) that result from applying topographic independent component analysis (ICA) to feature 
extraction from patches of natural images. The consistency of the feature sets obtained from various 
collections of natural image data sets applying topographical ICA (TICA) supports the opinion that the 
statistical properties of the environmental stimuli enforce a process according to some optimization criterion, 
which provides a good computational model for the response properties of sensory neurons. However, the 
basis vector set differs statistically meaningful from one image collection to the other, making the ICA 
decomposition of natural images unsuitable for a novel approach to image compression. 
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1 Introduction 
It has widely been accepted that the sensory neurons 
have adapted by means of both evolutionary and 
developmental processes to the statistical properties 
of the stimuli that have mostly often been 
encountered in the environment. The importance of 
determining precise quantitative relationships 
between environmental statistics and neural 
processing is manifold. Better understanding of 
functional properties of neurons and neural systems, 
and the design of new computational models based 
on environmental statistics are two main issues. 
Secondly, finely tuned experimental designs and 
protocols for probing biological systems can be 
conceived and, last but not least, improved 
interfaces between human beings and artificial 
systems can be designed, with major benefits in our 
interaction with the environment.  

In a neurobiological context, Barlow [1] 
suggested that a main role of early sensor neurons is 
to remove statistical redundancy in the sensory 
input by performing an “efficient coding” of 
stimuli. Such a task requires the specification of the 
environment, which amounts to a probability 
distribution over the space of input signals. One 
straightforward approach is studying the statistical 
properties of neural responses to natural 
stimulations conditions. An alternative way is to 
conceive statistical generative models of the input 
data. If the parameters of the model are estimated 
from natural input data, they are likely to provide 
deeper insight on the computational properties of 

the sensory neurons. There is some evidence that 
out of all visual images possible we see only a very 
small fraction [2]. If decomposing an image into 
independent components is one of the principal 
tasks of simple cells in the primary visual cortex, it 
would entail that the distribution of their properties 
to be determined by the statistics of the visual 
environment. Olshausen and Field [3] modeling 
visual data with a simple linear generative model 
showed that the principle of maximizing sparseness 
(or supergaussianity) of the underlying image 
components explain the emergence of Gabor-like 
filters that resemble the receptive fields of simple 
cells. Running ICA on a large set of calibrated 
images, and comparing a series of properties of the 
resulting receptive fields with those of receptive 
fields measured in simple cells, Hateren and van der 
Schaaf reported a good similarity [4]. 

In our simulations, we adopted a similar 
methodology and employed the TICA model 
introduced by Hyvärinen et al. [5]. TICA relaxes 
the independence assumption by replacing the 
conventional topologic ordering based on Euclidian 
distances of the basis vectors with a new 
topographic organization based on the dependence 
in higher-order statistics. The higher-order 
dependencies, which linear ICA does not remove, 
are used to define a topographic order such that 
nearby cells tend to be active (or inactive) at the 
same time. In this contribution we report our results 
in applying TICA to feature extraction from natural 
images. We analyzed statistically the properties of 
the TICA basis vectors that resulted from different 



sets of natural images by performing TICA 
decomposition. By analogy, it was conjectured to a 
certain extent that the topographic neighborhoods 
exhibit properties specific to the complex cells in 
the mammalian primary visual cortex (V1). Apart 
from emulating the features of simple cells, like the 
distributions for spatial frequency bandwidth, 
orientation tuning bandwidth, aspect ratio, and 
receptive field length, the topological organization 
allows the emergence of phase and (partial) shift 
invariance that characterize complex cells. 
 

2 The ICA Model for Image Data 
The basic stationary noiseless linear ICA model 
assumes that ( )∈ts ÑM and ( )∈tx ÑN are two random 
(column) vectors with zero mean and finite 
covariance, with the components of ( )ts  being 
statistically independent and at most one gaussian, 
A is a rectangular constant full column rank MN ×  
matrix with at least as many rows as columns 
( MN ≥ ), and t is the sample index (e.g. time or 
point) assumed to take discrete values T21t ,...,,= : 
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The columns { }ia , M,...,2,1i =  of A are the ICA 
basis vectors. Then the ICA problem can be 
formulated as follows: given T realizations of ( )tx , 
estimate both the matrix A and the corresponding 
realizations of ( )ts . In an alternative context, the 
ICA decomposition (1) is equivalent with sparse 
coding [6]. Most ICA algorithms are searching for a 
separation matrix W to demix data on the basis of 
various estimation principles of independence. 

There is clear evidence that the distribution of 
natural images is nongaussian [7]. Hence it seems 
reasonable to consider a static monochrome image 

( )yxI ,  as a linear superposition of some features or 
basis functions ( ){ }yxa i , , M21i ,...,,=   
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where each image ( )yxI ,  has different stochastic 
coefficients is , M21i ,...,,= . In order to comply 
with the underlying ICA assumptions, the 
coefficients { }is  are assumed nongaussian and 
mutually independent. Estimating the model 
amounts to determining the values of is  and 

( )yxai ,  for all indexes i and points ( )yx , , given a 
sufficient number of observations of images, such 
as image patches ( )yxI , . If we restrict the study to 

the case where ( )yxai ,  form an invertible linear 
system, then Iws ii ,= , where ( )yxwi , , 

M21i ,...,,= denote the inverse filters and 
( ) ( )∑=

y,x
ii y,xIy,xwI,w   stands for the dot product. 

The inverse filters ( )yxwi ,  can be identified as the 
receptive fields of the model simple cells, and the 
coefficients is  as their activities when presented 
with a given image patch ( )yxI , . When this model 
is estimated with input data consisting of patches of 
natural scenes, the obtained filters ( )yxwi ,  exhibit 
the three principal properties of simple cells in V1: 
they are spatially localized, oriented, and band-pass 
in different spatial frequency bands Quantitative 
comparison of obtained filters ( ){ }yxwi ,  with those 
measured by single-cell recordings of the macaque 
cortex showed a close match for most of the 
parameters [7]. 
 
 
3 The Topographic ICA Model 
The model (2) is nevertheless inappropriate to 
describe the response of complex cells due to their 
properties of phase and (limited) shift invariance 
[Pollen and Ronner, 1983]. In classic ICA, the latent 
variables { }is  have no particular order and no 
relationship between them is assumed whatsoever. 
This is in compliance with the assumption of 
complete statistical independence of the latent 
variables. However, there are applications in which 
ICA does not completely remove the dependence 
between components, which may be quite 
informative. Since many ICA estimation methods 
constrain the components to be uncorrelated, it 
seems reasonable to preserve the uncorrelatedness 
in any further extension of ICA. Hyvärinen and 
Hoyer [9] proposed a higher-order correlation based 
on energies, which can be intuitively interpreted as 
a simultaneous activation of the units 
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if is  and js  are close in topography. In the 
generative model Asx =  of TICA, the central issue 
is to define the joint density of s based on the 
topography (e.g. simultaneous activation or 
inactivation of the nearby cells). The topography is 
generally defined by specifying a neighborhood 
function ( )jih ,  that express the proximity between 
the components i and j. Its common form is a 
monotonically decreasing function of some distance 



measure, so that ( )jih ,  comes out as a matrix of 
hyperparameters of the model. Hereafter ( )jih ,  is 
assumed known and fixed. The components { }is  of 

s are defined by means of their variances { }2
iσ , 

which are assumed random variables generated 
according to a model specified on the basis of 
topography. Then the variables { }is  are generated 
mutually independent using some conditional 
distributions. So the dependence among the is ’s is 
implied by the dependence of their variances 
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with { }ku  the higher-order independent components 
used to generate the variances, φ  a scalar 
nonlinearity, and iz  is a random variable with the 

same distribution as is , if 2
iσ  is fixed to unity. The 

variables iu  and iz  are mutually independent.  
The properties of the TICA model are discussed 

in detail by Hyvärinen, Hoyer, and Inki in [4]. The 
model is a missing variables model in which its 
likelihood cannot be obtained in a closed form. An 
approximation for the likelihood of the model 
results if following the derivation as in ICA [10]. 
An analytical approximation was derived by 
assuming further simplifications, namely constant 
marginal densities for { }iu  and constant conditional 
densities for { }is  as a gaussian, and the nonlinearity 
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hence the log likelihood (actually an approximation 
of its lower bound) becomes [4] 
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where ( ) 1T
N21

−== AwwwW ,...,, , and ( )tx , 
T21t ,...,,=  are the observations of x. Practically, if 

data are sparse, convergence is achieved for almost 
any function G that is convex for some nonnegative 
argument. 

The model can be solved by maximizing 
( )WLlog . The data, which are assumed zero-mean, 

are first whitened VAsVxz == . If VA is 
invertible, the new separating matrix becomes 

( ) 1−= VAW  and we can constrain its rows { }T
iw  to 

form an orthonormal system [5], [11]. The 
orthonormal basis in the whitened space amounts to 
decorrelating the estimated components, so that 
their dependency in higher-order statistics remains. 
A simple gradient algorithm can be derived for 
updating the (weight) vectors { }iw  [4]  
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modulation factor and the function g is the 
derivative of a convex function such as 

( ) βα +−= yyG . The scaling constant α  and the 
normalizing constant β  are determined so as to 
produce a probability density in compliance with 
the constraints imposed on { }iw . Actually, the 
vectors { }iw  must be normalized to unit variance 
and orthogonalized after every step in (6). If we 
denote the matrix ( )TM21 ,..., wwwW ,= , the 
method involving matrix square roots can be used 

following ( ) WWWW 2
1

T −
← . The original mixing 

matrix of the unwhitened data can be computed 
after learning { }iw  such as ( ) 1−= WVA . The rows 

of 1−A  provide the filters (weight vectors) in the 
original, not whitened space. 
 
 
4 Experimental 
Previous experiments with natural images were 
missing basically three pictorial elements that are 
routinely present in common environments at 
various scales: (i) square and oblique corners of 
buildings, rooms, miscellaneous technical 
equipment, etc.; (ii) humans and human faces, (iii) 
text (letters and figures). Our main interest was to 
extract the underlying features of surrounding 
images and not to simulate the long-lasting natural 
conditions responsible for the functioning of visual 
simple and complex nervous cells. 

We built up, accordingly, 5 distinct sets of 24 
digital images each as different as possible in terms 
of subject, texture, and scales, selected from 
FreeFoto.com [12], which is a large database 
featuring 50 main sections with over 1000 sub-
headings of free photographs on the Internet. The 
selected images were first auto equalized, then 
converted to monochrome uncompressed TIFF 
format with 8-bit pixel depth (i.e., 256 gray levels), 
and subsequently cropped down to size 256256 ×  
pixels, with a resolution of 150 pixel/inch. Original 



images were randomly rotated in order to avoid any 
bias caused by camera orientation and/or light 
source position, and then square 1616 ×  pixel 
image patches were randomly cropped. We selected 
images with both unimodal and multimodal 
histograms, out of which 48,000 image patches were 
randomly extracted from each set and stored as 
columns of a matrix X of size 48000256 × . The 
mean gray scale value of the patches was 
substracted and the matrix X was normalized to unit 
variance. Then, the dimensionality was reduced (i.e., 
low -pass filtering) by running principal component 
analysis (PCA) and retaining the principal 192 
components in decreasing order of mean projected 
variance in the data space. Subsequently to PCA, the 
data were sphered by zero-phase whitening filter, 
which equated as a multiplication of the data by the 
inverse of its squared covariance matrix. Now data 
were contained in a 192-dimensional subspace 
spanned by the 192 most energetic basis vectors that 
formed an orthonormal system, but not for the 
original data space. For visualization purposes and 
in order to avoid border effects, the topography was 
chosen as 2D torus lattice as suggested first by 
Kohonen [13]. We used only one neighborhood size 

mS of a 33 ×  square around each unit. It meant that 
the neighborhood function could be expressed as 

( ) mSm:  i,j1jih ∈∃=  if  ,  and zero otherwise. The 
form of function G was the simplest possible 
amended with a small constant ε  for numerical 

stability ( ) βεα ++−= yyG  [4]. Then the 
gradient method was used to maximize the 
approximation of the likelihood (5) over the 48,000 
image patches under the constraint of 
orthonormality of the 192 filters in the whitened 
space. Each running of the algorithm on a PC with 
Pentium 4 processor at 1.5 GHz took around 40 
hours until reaching a similar value of the objective 
function in all cases. 
 
 
5 Results and Discussion 
We used 5 sets of 24 different images each 
containing as general as possible natural images (i.e. 
landscapes, animals, mountains, etc), as well as 
human made objects that are frequently encountered 
in common living environments (Fig. 1). The point 
was to generate a faithful representation of image 
statistics that is continuously influencing our visual 
system in daily life (though not realistic at the 
human evolution scale). 

   
 
Fig. 1 Samples from a natural image set.  
Left: common landscape. Right – group of buildings. 
 

A typical topographic ICA vector basis (i.e., a 
subset of 192 image features) and the corresponding 
spatial ICA filters are presented in Fig. 2 for one of 
the experimental image set. 
 

 
 

 
 

Fig. 2 Top: typical feature decomposition of natural 
images in topographic order (the columns of the mixing 
matrix). Bottom: the corresponding spatial filters (the 
rows of the separation matrix). The image features (i.e., 
the basis vectors) are the patterns that optimally 
stimulate their corresponding ICA filters, while 
minimally stimulating any other ICA filter. 
 



Among the statistical characteristics of natural 
images, particularly important are their 
nongaussianity and statistical redundancy [14]. The 
covariance properties of natural images can be used 
to derive basis functions that are similar to receptive 
fields found physiologically in primary visual 
cortex (i.e., oriented band-pass filters). 
Alternatively, a quantitative study of the 
topographic organization can be carried out by 
computing the correlations of the energies between 
components of the entire data space. The model 
predicts a gradually vanishing of the correlations 
with the distance on the topographic grid. The 
analysis may fail because of two reasons: (i) if the 
basis vector system is underdetermined, the 
neighborhoods are two small, and/or there are not 
enough data, (ii) if the image patches do not comply 
entirely with the model (i.e., they are not a linear 
superposition of invariant features). We expect that 
for larger neighborhoods, the preponderance of 
spatial frequency to decrease in favor of orientation 
and location.  
 

 
 
Fig. 3 The characteristics of the basis vectors for 
natural images as a function of a relative position on the 
topographic grid. 
 

The similarity between the neighborhoods in 
TICA and the receptive fields of complex cells in 
the primary visual cortex of mammalians is 
supported by the tendency of nearby basis vectors 
(simple cells) in the topographic map to be of 
similar orientation and frequency but having very 
different phases (Fig. 3). Maximizing the 
independence (e.g. the sparseness) of linear filter 
outputs, the model provides simple cell properties. 
Maximizing the independence of the norms of the 
projections on linear subspaces, the model yields 
complex cell properties. Both cases stand for the 
importance of dependence reduction as a strategy 
for sensory information processing. It was argued 
that sparse coding simplifies further processes in the 

visual system since it comes out with a 
representation of the stimulus that help detection of 
coincidences [15]. As the cells preferentially 
respond to oriented edges or lines, they may be 
interpreted as edge or line detectors. Then the 
oriented edge features can be interpreted as a sparse 
representation of the image. It means that over an 
ensemble of images a particular feature will seldom 
be significantly active. 

We applied nonparametric statistics to assess the 
statistical significance of the feature sets produced 
by topographic ICA for 5 distinct collections of 
images. The ICA basis vectors were sorted in 
decreasing order of their mean variance. Then the 
Kruskal-Wallis analysis of ranks was applied to test 
the statistical significance of the basis vector sets 
under the null hypothesis that the features are drawn 
from the same distribution. The results indicated 
statistically distinct populations from which the 
features were extracted given the size of the 
collection, the size of images, the number of image 
patches considered. 
 
6 Conclusion 
All variants of ICA are seeking for some form of 
statistical independence of the estimates and 
describe the images in terms of linear superposition. 
Yet natural images are not formed by sums of 
independent components since image formation 
often obeys the rules of occlusion rather than 
addition of light. Analysis of statistical relationships 
in images reveals nonlinear dependencies across 
space as well as across scale and orientation [16]. 
Still image decomposition by various forms of ICA 
performs image invariant-feature extraction, which 
we proved to be statistically relevant.  

The main utility of topography is visualization 
[13], which shows the connections between 
components and possibly adding some information. 
Classic ICA applied to natural images yields a linear 
decomposition into Gabor-like linear features that 
resemble the receptive fields of simple cells. 
Topographic ICA organizes image features in 
compliance with the defined topography. The basic 
conclusion drawn from running ICA on natural 
image patches is that ICA filters are localized and 
oriented, whereas the ICA basis functions are 
oriented and not clearly localized, which makes 
difficult to notice any multiscale properties. The 
ICA filters come out with more sparsely distributed 
(kurtotic) outputs when applied to an ensemble of 
natural scenes in comparison with other filters like 
PCA or zero-phase whitening filters (ZCA) [17]. 
Moreover, the topographic neighborhoods resemble 



complex cells in their response by exhibiting phase 
and shift invariance [18]. In this way TICA shows 
simultaneous emergence of complex cell properties 
and topographic organization following the same 
principle of defining topography by simultaneous 
activation (or inactivation) of neighbors. 

Though informative, the basic ICA model is 
essentially linear and non-adaptive, ignoring 
phenomena that commonly occur in human visual 
system, like contrast adaptation, contrast 
normalization, nonlinearities involved in orientation 
tuning, adaptation to various stimulus statistics, to 
cite the main issues only. In feature extraction from 
patches of natural images, ICA comes out with 
feature sets that statistically belong to different 
distributions distinct if different image collections 
are subject of analysis. Although our results reported 
herein are qualitatively rejecting the uniqueness of 
feature extraction from natural image patches by 
topographic ICA decomposition, the lack of image 
calibration and the amount of processed data are the 
main limiting factors to a full quantitative 
comparison. 
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