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Abstract

A theory of early motion processing in the human and primate visual system is presented which is based on the idea that spatio-

temporal retinal image data is represented in primary visual cortex by a truncated 3D Taylor expansion that we refer to as a jet

vector. This representation allows all the concepts of differential geometry to be applied to the analysis of visual information

processing. We show in particular how the generalised Stokes theorem can be used to move from the calculation of derivatives of

image brightness at a point to the calculation of image brightness differences on the boundary of a volume in space–time and how

this can be generalised to apply to integrals of products of derivatives. We also provide novel interpretations of the roles of direction

selective, bi-directional and pan-directional cells and of type I and type II cells in V5/MT.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Three basic strategies have guided the development of

models of motion computation in biological vision sys-

tems––the spatio-temporal correlation strategy [1], the

motion energy strategy [2] and the spatio-temporal

gradient strategy [3–5]. The first two are essentially

template schemes. The aim is to construct a biological

mechanism that will respond best to its target feature. In

this case the target feature is image motion in a partic-
ular direction at a particular velocity. Ideally the re-

sponse should reflect the quality of the match between

the stimulus and the motion template, but typically the

response of correlation and energy models also depends

on image contrast unless there is an additional stage of

contrast normalisation [2,6]. Because the output of any

detector does not indicate speed of motion but rather

the degree of correlation with the template, speed
computation proceeds by interpreting, via some further

computational strategy, the population response of a

range of detectors varying in their tuning characteristics

[7,8]. The third strategy is different in that speed is cal-
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culated directly from the ratio of the temporal and

spatial derivatives at each point in space and time. Since
speed is computed as a ratio of the outputs of spatio-

temporal filters, both of which vary with contrast, the

calculation delivers contrast invariance at no additional

cost [5,9]. Although perceived speed is not linearly re-

lated to contrast, contrast can influence perceived speed,

particularly at low temporal and low spatial frequencies

[10]. Johnston et al. [11] discuss how these effects of

perceived speed may be explained with reference to the
threshold behaviour of a population of differentiating

filters. Johnston et al. [12] show that all three of these

strategies have difficulty in computing image speed in

the presence of static noise.

The aim of this paper is to introduce a fourth strategy

for motion computation in biological systems, based on

the computation of flow of some quantity over a closed

boundary in the image in some time interval. First we
need to draw a distinction between the computation of

the motion of objects, a property attached to an object,

and the motion sensed or measured at a particular locus

in visual space. We are taught that the motion of an

object is computed as its change in position for some

time interval. However it is unlikely that this is done

explicitly, i.e. we do not have clear biological models of

how we measure distance between two points, measure a
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temporal interval associated with the translation, or at-
tach the ratio of these measures to each object in the field

of view. An alternative is to define a region in the image

and measure the flow of material in and out of the region.

The region can be identified with the receptive field of a

neurone at some point in the visual pathway.

We have described the operation of this approach in a

procedural way in previous reports [5,12–14]. The aim of

this paper is to express the mathematical operations in a
geometrical form, which will allow a more pictorial view

of the operations in the model, and which will make

explicit the idea of motion computation from flow. The

geometrical approach will provide a clearer path to-

wards the generalisation of the model to higher dimen-

sional inputs [15]. Since we will be estimating

information on a space–time boundary by integrating

image derivatives, the most appropriate geometrical
tools to use are differential forms and exterior differen-

tiation, as these naturally accommodate the generalised

Stokes theorem, which expresses the relationship be-

tween integrals of derivatives over a volume and inte-

grals over the boundary of the volume [16]. Since in a

biological model, we cannot have access to multiple

temporal samples simultaneously, will use Taylor’s

theorem to estimate values within the space–time vol-
ume from derivatives taken at a point. Because the de-

sire to express the model in a more general form

inevitable leads to greater abstraction, we will also in-

dicate, where appropriate, how the model might be

implemented neurophysiologically.
Fig. 1. (A) The input to the visual system as a space–time solid. T0 indicates th
over (a) generates the plane S–T. (B) A space–time plot showing a bright regio

image brightness of the normalised integral on the vertical boundaries is 1.

horizontal boundary is )0.5. Thus the speed is )0.5, which is computed from
time interval to the amount of light flowing out of the region minus the amo

over the one-form in (i) gives the number of contours cut in the spatial directio

the speed. The one-form is indicated by a line with an arrow showing the d
First we consider how to compute motion from the
flow of image brightness as a means of introducing

differential forms and the notation we will use which

follows Weintraub [16]. We will then introduce the

truncated Taylor expansion as a means of representing

image brightness. Once we have described the extraction

of the basic measures of image speed for a particular

reference frame we will rotate the reference frame to

derive vectors of speed measures for each image point in
2D space–time. These measures will then be combined

to give separate estimates of image speed and direction

[12].
2. Flow of image brightness

Consider the bounding contour of a rectangular re-
gion in the image. As the image flows over a segment of

the contour, it can be considered to develop a spatio-

temporal trace in a plane orthogonal to the image plane

(Fig. 1A). The total flow of light over this segment of the

contour can be calculated by integrating the function

over the spatio-temporal trace shown as S–T in Fig. 1.

The difference between the flow over opposite sides of

the rectangular region delivers the flow out of the box
minus the flow into the box for the selected direction––

the net flow in a particular direction. We can attribute a

different sign to flow from out-to-in and flow from in-to-

out so that the sum of the flow over the rectangular

contour will be zero in the case of uniform laminar flow.
e first frame of the sequence and T1 is the last frame. Flow of image data
n moving to the right with a speed of 0.5 pixels/frame. The difference in

The difference in image brightness of the normalised integral on the

the ratio of the net change in the amount of light in the region over the

unt flowing in over the spatial boundary of the region. (C) Integrating

n. This divides the number of contours cut in the time direction to give

irection of the gradient.
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In the case of images this corresponds to the movement
of a uniform grey field.

From the fundamental theorem of calculus we have

f ðb; y; tÞ � f ða; y; tÞ ¼
Z b

a
f;xðx; y; tÞdVx

¼
Z b

a
xðiÞdVx ð1Þ

where x ¼ df ¼ f;x dxþ f;y dy þ f;t dt is the gradient of
the image brightness, a one-form. The expression xðiÞ
indicates the contraction (inner product) of the one-

form, x, on the unit vector i ¼ ½1; 0; 0�T. The comma
subscript in (1) denotes partial differentiation of the

image brightness f ðx; y; tÞ. The basis one-forms and
basis vectors combine to give dxðiÞ ¼ 1, dyðjÞ ¼ 1, and

dtðkÞ ¼ 1. All other combinations are equal to zero. The

unit one-forms dx, dy and dt are basis one-forms and are
to be distinguished from dVx which indicates the ordin-
ary integral taken in the direction x. In other treatments
[17] the vector gradient is set to zero. Here the brightness

gradient is more properly identified as a one-form and

one-forms and vectors are combined via contraction to

give scalar values e.g. xðiÞ ¼ f;xðx; y; tÞ. The picture one
has in mind when thinking about the contraction of a

vector on a one-form is the action of walking up a hill in

the direction of the vector [18]. The height of the hill can
be represented by a field of one-forms, which form a

contour map of the hill. The contraction of the vector on

the one-form gives the number of contour lines cut by

the vector, which is the height gained (Fig. 1C). If the

image brightness is being represented then the contrac-

tion gives the brightness difference between the tip and

the tail of the vector. The fundamental theorem is the

simplest version of the Generalised Stokes Theorem,
which relates differences on boundaries of a region to

integrals over the derivative of a function defined on the

region.

The calculation in (1) gives the brightness difference

at a single point in y and time taken over an interval of x
stretching from a to b. Integrating over one face of the
box ½c . . . d, e . . . f � delivers the integral of the two-form
[16,18] describing the flow of image brightness per unit
spatio-temporal area over the segment ½c . . . d� in the
time interval ½e . . . f �

Ady dt ¼
Z f

e

Z d

c

Z b

a
xðiÞdVx

� �
dVy;t ð2Þ

The other components of the two-form, u, are re-
covered from xðjÞ and xðkÞ, giving

u ¼ Ady dt þ Bdtdxþ Cdxdy ð3Þ

with C representing the difference in the total image

intensity over the region at time f minus that at time e.
Speed can be computed from the change in the amount
of light over the temporal interval divided by the change
in the amount of light over some spatial interval (Fig. 1B

and C). Hence speed can be calculated as C=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
,

although this ratio is ill-conditioned when the denomi-

nator is zero. More intuitively, if light is conserved, as it

is in rigid motion, one relates the change in brightness in

a region over time to the change in brightness over a

spatial interval. This is conceptually similar to the gra-

dient approach but the computation is done on differ-
ences over extended intervals rather than on gradients at

a point (Fig. 1B and C). Procedurally, if the integration

is eliminated the technique defaults to the standard

gradient method [12].

Gupta and Kanal [19] have recently developed an

effective computer vision algorithm for velocity field

computation based on the constraint outlined above.

They explicitly compute integrals of image brightness
over the boundaries of local space–time volumes. They

then construct a series of equations which are solved to

recover the parameters of an affine model assumed to

describe the local flow. However, in a biological system

one does not have access to a space–time block of raw

image values since the visual system does not have a

temporal buffer within which to keep a record of

brightness values in over an extended period of time.
Information about brightness values on the boundary of

a space–time volume would need to be constructed from

the activity of neural assemblies in visual cortex. This

can be accomplished by representing the local image

structure by a local Taylor expansion, differentiating this

representation and then integrating over a local space–

time volume [5,12]. We also need to generalise the

approach to computation of flow outlined above to
accommodate the Taylor representation and to deliver

robust well-conditioned computation.
3. The jet representation in the visual cortex

Following Koenderink and Van Doorn [20–22],

Young [23] and Johnston [5], we consider simple cells in
primary visual cortex to approximate Gaussian deriva-

tives of various orders, allowing a truncated Taylor

approximation of the image about a point in space–

time––a k-order jet. This allows all the machinery of
differential geometry to be applied to visual computa-

tion. Bruce et al. [24] discusses the neurophysiological

and psychophysical evidence in favour of this view of

neural spatial processing and Johnston and Clifford [25]
show that the temporal filters of the human visual sys-

tem can be characterised as differentials of Gaussians in

log time. Both Werkhoven and Koenderink [26] and

Otte and Nagel [27] have used Taylor expansions of the

image to compute motion but these techniques involve

inversion of large matrices, which we would like to avoid

in a biological model.
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We choose a primary direction and then construct a
‘‘jet vector’’ containing the values of the nth-order ap-
proximation, which has been truncated by eliminating

terms above first-order in time and above first-order in
Fig. 2. (A) A space–time faceted cylinder representing the spatio-

temporal scope of the calculations in the model. (B) The input

sequence is represented as a space–time volume. One slab of the space–

time cylinder represents the scope of a single direction/orientation

column in A. The space–time volume is sampled by a bank of linear

spatio-temporal filters which form a representation of the image. Only

a few of the 24 filters used in the simulations are shown. The sine

gratings on the side of the box represent a history of the flow over the

horizontal sides generated by a moving grating. (C) The filter outputs

are grouped to form a vector representation of a truncated Taylor

series expansion of the image. The basic vectors shown are orthogonal

and form a three-dimensional space but this is simply for purposes of

illustration. By changing the parameters of this jet vector we can draw

curves in the jet space and then differentiate with respect to parameters

to give tangent vectors to the curves. For 1D stimuli the curves are

coincident. The one-forms corresponding to tangent vectors are indi-

cated by parallel lines with an arrow to indicate direction. (D) To in-

tegrate the one-form field along the curves the one-forms are ‘‘pulled

back’’ to the input space to provide a variable one-form field. The

number of planes pierced by vectors parallel to the coordinate vectors

delivers the integral. (E) Speed and inverse speed measures are ex-

tracted for each of the slabs in A. For 1D patterns the radial functions

are sinusoidal and are shown here as linear and polar plots. The polar

plots show positive values only. (F) Combination of the radial func-

tions of speed and inverse speed, measured in primary and orthogonal

directions at each point in the image, delivers the velocity field map.
the direction orthogonal to the primary direction (Fig.
2A and B). First-order derivatives provide the minimum

differential structure that we need to allow prediction of

the image structure at adjacent locations in space or at

different points in time.

We can approximate the brightness about the point,

P ¼ ðx; y; tÞ, from the Taylor expansion at that point in

space–time.

f ðPþHÞ ¼ f ðPÞ þ g1ðHÞ þ g2ðHÞ þ g3ðHÞ þ 	 	 	 þ Rr

ð4Þ
where

gn ¼
1

n!
ðH 	 rÞnf ðPÞ

is the polynomial approximation of degree n [28], and H
is the position vector H ¼ ðp; q; rÞ. Introducing coordi-
nates, and writing out the first two terms explicitly, we

have

f ðxþ p; y þ q; t þ rÞ ¼ f ðx; y; tÞ þ ½f;xðx; y; tÞp
þ f;yðx; y; tÞqþ f;tðx; y; tÞr�
þ g2ðp; q; rÞ þ 	 	 	 ð5Þ

Notice one gets the same result if we differentiate the

equation in (5) with respect to x, y, t or p, q, r. We can
think of the vector associated with the Taylor expansion

as a function which maps the point ðp; q; rÞ in the

parameter space (Fig. 2B), which has the standard
Cartesian basis vectors ði; j; kÞ, onto a point in an n-di-
mensional space in which each coordinate axis delimit-

ing the space serves to represent the value of the

nth-order derivative of the local structure of the image
intensity surface (Fig. 2C). Since the space contains a

representation of a truncated Taylor expansion of the

image we will refer to it as the jet space.

Let

ða1; a2; a3; . . . ; anÞ
¼ kðp; q; rÞ
¼ ðc; g1ðp; q; rÞ; g2ðp; q; rÞ; . . . ; gnðp; q; rÞÞ ð6Þ

be a vector associated with the Taylor expansion, where

k is a vector valued function of p, q and r and

c ¼ f ðx; y; tÞ. By varying the parameters p, q and r we
can draw curves in the jet space. The tangent vectors to

the curves in the jet space, induced by the push forward

of the basis vectors in the parameter space, are given by

k�ðiÞ ¼ k;pðp; q; rÞ
¼ ð0; g1;pðp; q; rÞ; g2;pðp; q; rÞ; . . . ; gn;pðp; q; rÞÞ

k�ðjÞ ¼ k;qðp; q; rÞ
¼ ð0; g1;qðp; q; rÞ; g2;qðp; q; rÞ; . . . ; gn;qðp; q; rÞÞ

k�ðkÞ ¼ k;rðp; q; rÞ
¼ ð0; g1;rðp; q; rÞ; g2;rðp; q; rÞ; . . . ; gn;rðp; q; rÞÞ

ð7Þ
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respectively. The subscripted star denotes the push for-
ward operation. Push forward refers to a mapping from

the parameter space onto the jet space. The process is

complemented by the pull back operation, which en-

ables differential forms in the jet space to be mapped

back to the parameter space.

The tangent vectors in the jet space (Fig. 2C) indicate

the change in the representation induced by a change in

spatial position in the image or a change in time. The
dimensionality of the tangent space depends upon the

image structure. For the rigid motion of one-dimen-

sional patterns, such as sine-wave gratings, the differ-

ential structure changes in the same way, but at different

rates, for increments in the p, q and r parameter values.
Thus the tangent vectors induced by increments in the

parameter space lie along the same curve in the jet space

but typically have different lengths. The rigid motion of
two-dimensional images gives rise to a two-dimensional

surface in the jet space. In the case of non-rigid motion,

the space is three-dimensional. The tangent vectors are

linearly independent and they therefore form a local

frame parallel to the parameter lines induced by incre-

ments of p, q and r, respectively. Given this variability,
dependent upon the image structure, we need to develop

a method for recovering motion that does not rely on
assumptions about the dimensionality of the space.

The advantages of moving to this higher dimensional

space (Fig. 2C) compared to simply using the image

brightness gradient is that at points at which the

brightness partial derivatives are zero, which occurs at

peaks, troughs and points of inflection in the image

brightness surface one of the components of the tangent

vectors is set to zero. However the relative lengths of the
tangent vectors in the now n� 1-dimensional space re-
main the same. Consider two parallel vectors in three

space, the relative lengths of the shadows they cast on

any two-dimensional plane remain the same. Computa-

tion can only break down when all the components of the

jet vector are zero, in which case the image structure

must be uniformly grey and motion cannot be computed.

However we need to return to ordinary 2D space–time to
implement the integration over the 2D space–time region

that forms part of our flow calculation. This can be ac-

complished by ‘‘pulling back’’ the information from the

jet space by projection on tangent vectors.
4. Pullbacks of one-forms in the jet space

A general one-form in the tangent space can be

written as

x ¼ A1da1 þ A2da2 þ A3da3 þ 	 	 	 þ Andan ð8Þ

where An are coefficients. We can convert a tangent

vector in the jet space to a one-form (Fig. 2C) using the

sharp operator, #.
/ ¼ #ðk�ðkÞÞ ð9Þ

where k is the function defined in (5) and k is a unit
vector. In this case the use of the sharp operator is lar-
gely a semantic exercise since the coefficients of / are the
same as those of k�ðkÞ.
The pullback of this one-form under the mapping

kðp; q; rÞ is indicated by the one-form k�ð/Þ, which has
components

A ¼ k�ð/ÞðiÞdp; B ¼ k�ð/ÞðjÞdq; C ¼ k�ð/ÞðkÞdr:

A one-form in 2D space–time can be visualised as par-

allel planar sheets with an associated direction (Fig. 2D).
Contraction of a vector on a one-form delivers a value

depending upon the number of sheets pierced by the

vector, the sign of which depends upon whether the di-

rections of the one form and vector agree (+) or are

opposed ()). We will call the one-forms corresponding
to the tangent vectors generated by the pushforward of

the i and j unit vectors w and v respectively.
Since these one-forms are in ordinary 2D space–time

we can integrate over a volume as before. Consider the

integral of M , a vector of one-forms, which we use in
place of the gradient in the flow calculations in Section

2,

M ¼
k�ðwÞðiÞ k�ðwÞðjÞ k�ðwÞðkÞ
k�ðvÞðiÞ k�ðvÞðjÞ k�ðvÞðkÞ
k�ðwÞðiÞ k�ðwÞðjÞ k�ðwÞðkÞ

2
4

3
5 dp

dq
dr

2
4

3
5 ð10Þ

over the volume R. This integral delivers a vector of two
forms

Z
R
M � ði; j; kÞdVx;y;t ¼

A1 B1 C1
A2 B2 C2
A3 B3 C3

2
4

3
5 dqdr

drdp
dpdq

2
4

3
5; ð11Þ

The outer product, �, with ði; j; kÞ indicates integra-
tion in the p, q, and r direction respectively. Thus A1 is
the integral of the first one-form taken in the direction

indicated by i. The resulting vector of two-forms can be

used to compute the components of velocity and inverse

velocity with reference to the frame ði; j;kÞ.
5. Flow of an implicit potential field

The variable one-form field generated by the pullback

of the one-form corresponding to the tangent in the p
direction can be envisaged as composed of local parallel

planes in the parameter space (Fig. 2D). The sign of

these one-forms depends upon the direction of motion

rather than image structure, unlike the brightness gra-

dient, the sign of which depends upon whether image
intensity is increasing or decreasing. Speed can be

computed by relating the number of planes cut by vec-

tors in the spatial and temporal coordinate directions,
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e.g. integrating over r gives the number of planes pierced
by a vector whose length is that of the temporal di-

mension of the integration zone. The p component of
the flow over an image segment parallel to the one-form

field can be calculated from these three measures as

detailed below. The q component of the flow can be

calculated in an analogous way from the second two-

form field.

If there is a potential field corresponding to one of the
one-forms in (10), integrating terms in the first row over

p, q and r respectively should give the same function
which we will call hðHÞ. To find this function requires
some straightforward but tedious analysis that was ac-

complished with the aid of the Maple symbolic mathe-

matics package. For f ðHÞ ¼ f ðv 	HÞ; v ¼ ða; b; cÞ ¼
f ðap þ bqþ crÞ where v is a vector specifying the speed
and direction of rigid motion, we compute the first three
terms of the series

hðHÞ ¼aDf ðv 	 PÞ2ðv 	 ðH� PÞÞ þ 1
3
aD2f ðv 	 PÞ2

 ðv 	 ðH� PÞÞ3 þ 1

20
aD3f ðv 	 PÞ2ðv 	 ðH� PÞÞ5

ð12Þ

where Dn is the nth-order differential operator. In the
specific example of a moving sine grating, P ¼ 0; f ¼ sin

gives us hðHÞ ¼ aðap þ bqþ crÞ þ 1
20
aðap þ bqþ crÞ5.

Hence, in this case, we have an implicit function, the

flow of which is computed, which is an increasing

function in the direction of motion modified by squared

derivatives of the image brightness at the point of in-

terest.

If we were to compute image motion directly by in-
tegrating the image brightness on the boundary of a 2D

space–time volume difficulties can arise. To take our

example of a moving sine-wave grating, if the period of

the sine function is the width of the region and it moves

one cycle in the temporal window then the net change on

the boundaries is zero. However, notice that we are not

integrating over the one-forms representing the bright-

ness gradient. Since the calculation we are using is
equivalent to integrating over a function, which is po-

sitive and always increasing, the method does not suffer

from this form of ill-conditioning.
6. Extracting speed and inverse speed

Now we consider computing these measures con-
currently for a range of primary directions corre-

sponding to a range of orientation/direction columns

[29,30] in the primate visual system. It is convenient to

introduce a notation for speed and inverse speed vec-

tors. The speed, s
_
for a coordinate system with orien-

tation h is given by
s
_ðhÞ ¼ C1ðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA21ðhÞ þ B21ðhÞÞ
p cosð/Þ;
"

C2ðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA22ðhÞ þ B22ðhÞÞ

p sinð/Þ
#

ð13Þ

where / is orientation of local image contours with re-

spect to the coordinate frame h. This can be re-written in
a way that allows well-conditioned calculation.

s
_ðhÞ¼ C1ðhÞ

A1ðhÞ
1

1þ B1ðhÞ
A1ðhÞ

� 2
0
B@

1
CA;

C2ðhÞ
B2ðhÞ

1

1þ A2ðhÞ
B2ðhÞ

� 2
0
B@

1
CA

2
64

3
75
ð14Þ

We will denote the first column vector as s
_

k and the
second as s

_
? to indicate the speed measures taken in the

principle and orthogonal directions respectively. We can

also calculate inverse speed, s
^
from the third two-form,

which after some manipulation gives us.

s
^ðhÞ ¼ A3ðhÞ

C3ðhÞ
;
B3ðhÞ
C3ðhÞ

� �
ð15Þ

Radial functions are calculated over 2p radians. Fig.
2E illustrates that, for a translating grating, the func-

tions are sinusoidal. In general, the translation compo-

nent is antisymmetric with a period of 2p radians. Local
divergence components simply add to the mean level of

the radial function. To recover the translation compo-

nent and remove any divergence we force the integrals of

the radial functions to be zero. This can be accomplished
by extracting the fundamental Fourier coefficients by

projecting onto fiducial sine and cosine functions. We

construct normalised cosine and sine vectors

FðhÞ ¼ ðFkðhÞ; F?ðhÞÞ ¼
ffiffiffi
2

n

r
cosðhÞ; sinðhÞ½ �: ð16Þ

This matrix both forms a reference frame for the

computation of direction of motion and extracts the

fundamental Fourier coefficients of the radial functions.
Speed is computed as

S2 ¼

s
_
k 	 Fk s

_
k 	 F?

s
_

? 	 Fk s
_
? 	 F?

 !�����
�����

s
_
k 	 s

^
k s

_
k 	 s

^
?

s
_
? 	 s^k s

_
? 	 s^?

 !�����
�����

ð17Þ

where, for example s
_
k 	 Fk is the scalar product first

column of s
_
and the first column of F. Direction is given

by

direction ¼ tan�1
ð s_k þ s

^
kÞ 	 Fk � ð s_? þ s

^
?Þ 	 F?

ð s_k þ s
^
kÞ 	 F? þ ð s_? þ s

^
?Þ 	 Fk

 !

ð18Þ
Speed and direction are represented separately but can

combined to deliver the local vector field (Fig. 2F).
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Speed is computed as a ratio of determinants or a ratio
of areas. Ratios of scalars are straightforward. For

vectors relative projective lengths serve in place of

standard ratios as in u	v
v	v, or equivalently xðuÞ when ex-

pressed as the contraction of a vector on a one-form. Eq.

(17) can be interpreted as a relative projected area. It can

also be written as the contraction of a bivector on a two-

form ðx ^ bÞðu; vÞ where

x ¼ ½ s^k 	 s
_

k; s
^
k 	 s

_
?�; b ¼ ½ s_? 	 s^k; s

_
? 	 s^?�;

u ¼
s
_

k 	 Fk
s
_
k 	 F?

" #
; v ¼

s
_
? 	 Fk

s
_

? 	 F?

" #
:

ð19Þ
Fig. 4. Compression and sheer boundaries for sine gratings illustrating

the presence of sharp boundaries even though the blur kernel is defined

over a 23 · 23 pixel region (128 · 128 pixel images). The leftmost pic-
tures show a frame from the sequence. The central pictures shows

speed coded in terms of brightness and the third pair of images shows

direction. Differences in the contrast of the stimulus pattern have no

effect on the computed velocity.
7. Simulations

In contrast with approaches which introduce addi-

tional constants or rely on noise to condition equations

[6,31,32] the model provides accurate speed measures for

both 1D and 2D spatial patterns. For a grating moving

at 2�/s the direction indicated is orthogonal to motion
contours, the average speed is correct to two significant

figures with zero variance. Turning to the aperture
problem. Fig. 3A and B shows the results of the model

for a translating Gaussian patch. One can see that mo-

tion parallel to image contours can be recovered for 2D

spatial patterns reasonably well, without an additional

regularisation stage [4]. The model also provides an

implicit solution to the recovery of plaid motion and
Fig. 3. The figure shows dense direction and speed images computed for an

shown on the left. In the centre a speed map is displayed which is scaled to

direction map is plotted, with direction coded by colour which should be rea

and to the right. (B) A vector plot of the data in A. (C) Computed speed (m

Component speed is constant and plaid speed is manipulated by varying the
speed [33]. We measured computed speed for symmetric
plaids in which component speed was held constant.

Pattern speed was manipulated by changing the angle

between the components. The model gives the correct

direction of motion and the correct IOC speed (Fig. 3C).

Since the model does not resort to regularisation in

order to solve the aperture problem, we should expect to
arbitrarily chosen frame in a motion sequence. The stimulus frame is

the full brightness range. In the rightmost column the corresponding

d with reference to the colour wheel. (A) A Gaussian patch moving up

aximum speed) for a symmetric plaid as a function of the IOC speed.

angular difference between the components.
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be able to generate well defined motion boundaries.
Fig. 4 illustrates the results for shearing and compres-

sion boundaries. Boundaries are well defined, which

would allow subsequent mechanisms to segment the

scene. The precision of the boundary is almost the res-

olution of the input array, calibrated at 30
00
/pixel, even

though the linear filters at the first stage of analysis are

defined in a 23 · 23 pixel kernel.
8. Mapping the model onto the physiology

The identification of early filtering operations, and

what we have characterised here as the pullback of

tangent vectors in the jet space, with directionally se-

lective simple and complex cells has been made in earlier

work [5]. Individual cells in visual cortex may have
many roles depending upon the goal of the system to

which they are recruited. In addition to the variable

number of differentiating filters in the primary direction,

three temporal filters and no, mono-lateral and bi-lateral

end inhibition provide the minimum neural substrate

which will allow the calculation of image gradients in the

spatio-temporal neighbourhood about the centre of the

aggregate receptive field.
The theory predicts the existence of cells encoding

inverse speed. Evidence for inverse speed coding exists in

a number of reports of directionally selective neurones

that are ‘‘low pass’’ in relation to speed i.e. they reduce

their firing rate with increased image speed [34–37]. To

our knowledge the functional role of these cells has not

received much attention prior to this. The model also

envisages that speed and inverse speed is rate coded. The
observation that most cells in V5 and V4 are ‘‘tuned’’ to

image speeds of 64�/s and that very few are tuned to

velocities under 4�/s [38] suggests a rate coding scheme
for speed, particularly if one takes into account the

upper temporal frequency cut-off of the visual system, at

around 60 Hz, [39] will limit the response range of speed

coded cells.

It is proposed that the radial functions in Fig. 2E are
represented by the responses of V5/MT cells tuned to

different directions and that these outputs are combined

to give a rate coded velocity signal. Albright [30] clas-

sified V5/MT neurones as type I if the optimal direction

of motion was orthogonal to their preferred orientation,

measured with flashing bars, and as type II if the pre-

ferred direction of motion was parallel to their preferred

orientation. Here, motion in the primary direction, s
_
k &

s
^

k in (14) and (15), is computed by spatial differentiation

in a direction orthogonal to orientation tuning and

motion in the orthogonal direction is computed via ‘‘end

stopped’’ units, s
_
? & s

^
? in (14) and (15), filters in which

additional spatial derivatives are taken parallel to the

preferred orientation of the filter. In practice, the pre-

ferred direction of motion will be slightly offset from the
preferred orientation. Thus filters computing motion in
the primary direction appear to correspond to Albright’s

type I cells and those in the orthogonal direction to type

II. In Fig. 5 we plot the response of speed coded units,

which measure speed in the principle and orthogonal

directions, as a function of the direction of motion of

gratings and plaids. Both classical pattern cell behaviour

and component cell behaviour could be elicited from the

same directionally selective primary or orthogonal units
(Fig. 5C–F). There is considerable variability in the ra-

dial functions for plaid stimuli dependent upon the

chosen position on the plaid, which is consistent with the

variability found in physiological data [40]. The ob-

served behaviour does not require the combination of

signals from different ‘‘direction columns’’. Albright,

Desimone and Gross [30] report a small percentage of

V5/MT cells with bi-directional and pan-directional
tuning functions. No clear functional role has been at-

tributed to these neurons. Simulations of direction

tuning functions (Fig. 5B) for the pairs of products in

the two determinants in (17) delivered two bi-directional

units (upper determinant) and two pan-directional cells

(lower determinant). Pan and Bi are in equal propor-

tions as predicted here (�45 of each type in their sam-
ple). If we assume a direction column separation of 15
degrees, the population data of Albright et al. indicate a

ratio of 2:2:1 relating the total number of pan-direc-

tional and bi-directional cells to the number of direc-

tionally selective cells (around 20 for each orientation) in

a single direction column. Since we have four types of

units in each column (primary/speed, primary/inverse

speed, orthogonal/speed, orthogonal/inverse speed), we

would have predicted a ratio of 2:2:4. It is possible that
30 degree separations for direction columns might be

more appropriate or that some classes of cells (inverse

speed or orthogonal direction) may have been missed

due to the choice of stimulus, or the excess numbers of

Bi and Pan cells in the population data indicate addi-

tional pooling of directional cells not present in the

current model. Further work will be needed to deter-

mine the relationship between Bi and Pan cells and di-
rectional cells.

We have not, as yet, incorporated the changes in re-

ceptive field size seen between V1 and V5/MT. However,

we envisage the later stage of the theory to provide a

model of information processing in area V5/MT. It is

this level that provides for the encoding of plaid speed

and direction, well-specified motion defined boundaries

and resistance to static noise [12]. Support for a late
stage of noise reduction comes from neuropsychological

evidence that neurological damage to V5 results in se-

vere degradation of the capacity to report both the di-

rection of movement of random dots [41] and the ability

to detect the presence of biological motion from point

light displays [42] in the presence of static noise dots.

Lesioning of macaque V5 leads to raised motion co-
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Fig. 5. (A) Polar plots of direction tuning curves for units computing speed in primary and orthogonal directions for gratings. Both units are tuned to

rightward motion. Curves for the orthogonal unit are rotated by 90�. (B) Directional tuning curves for products in the upper determinant of the speed
quotient (bi-directional) and lower determinant (pan-directional). For gratings one of the pan-directional cells would give a zero-response. (C–F)

Varieties of directional tuning curves for plaids showing component type and pattern type behaviour. In each case the units compute the same

function––the variation is due to change in position on the plaid.
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herence thresholds, defined as the percentage of dots in a

random dynamic display moving in the same direction

necessary to support direction discrimination [43], and
impairment in the ability to use motion defined

boundaries as a cue to form discrimination [44].
9. Conclusion

A model based on the computation of image flow

over a bounded region of the image identified with an
aggregate receptive field can account for many aspects

of 2D motion perception in a computationally robust

way. The model recovers accurate optic flow in-

formation without recourse to regularisation and is

noise resistant. The theory requires a hierarchy of

computational components that map well onto the

known properties of motion sensitive neurones and the

computational architecture of the primate visual system.
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