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Abstract. Early cognitive vision can be related to the segment of per-
ceptual vision that takes care of reducing the uncertainty on visual mea-
sures through a visual context analysis, by capturing regularities over
large, overlapping retinal locations, a step that precedes the true under-
standing of the scene. In this perspective, we defined a general framework
to specify context sensitive motion filters based on elementary descrip-
tive components of optic flow fields. The resulting regularized patch-
based motion estimation obtained in real-world sequences validated the
approach.

1 Introduction

Computer vision procedes through several stages, ranging from low-level (early
vision) processes, mainly devoted to feature extraction, to high-level (visual cog-
nitive) processes, dedicated to recognition and dynamic 3D shape inference, up
to the extraction of spatio-temporal relationships between the perceptual agent
and the scene’s objects. In general, there is a gap between early and cognitive
vision paradigms. This gap is not only due to their different position in the hier-
archical bottom-up scheme of visual processing, but also relates to the different
computational paradigms they adopt. Early vision processes are usually based
on distributed computation (cf. parallel distributed processing), that can be di-
rectly associated to neuronal mechanisms (cf. neuromorphic approach). On the
other hand, cognitive processes are traditionally associated to the AI approach,
based on symbolic processing and logic, operating in terms of symbols and propo-
sitions, and aimed to the understanding of the scene. This leads to systems in
which visual feature (like edges, depth, motion, etc.) are computed from early-
vision algorithms and those features are then subjected to a relational analysis.
In this way, there is a risk of “jumping to conclusions”, leaving a distributed
representation of visual features too fast, for an hazardous integrated descrip-
tion of cognitive entities. Considering that visual features computed from early
vision algorithms are usually error-ridden, it is rather complicated to subject
them directly to a relational analysis. Each measure of an observable property
of the visual stimulus is, indeed, affected by an uncertainty (not only due to



the additive noise, but also to the fact that the visual properties are themselves
random processes) that can be removed, or, better, reduced by making use of
additional information (context information, a priori knowledge, etc.). Early cog-
nitive vision can be related to the segment of perceptual vision that takes care of
reducing the uncertainty on visual measures through a visual context analysis,
that is by capturing coherent properties (regularities) over large, overlapping
retinal locations (Gestalts 1), a step that precedes the true understanding of the
scene. Following a conventional AI approach, the use of contextual information
occurs through the application of specific knowledge-based rules to establish con-
sistency relationships among the extracted visual features. By contrast, in visual
cortex, contextual modulation of the sensorial input occurs through dense intra-
and inter-area feedback interconnections that integrate context information by
modulating cells responses, adapting their tuning and refining their selectivity.
We challenged the goal of mimicking cortical computational paradigms to de-
velop parallel distributed processing systems to implement adaptive visual filters,
which are fully data-driven and avoid explicit use of AI rules. This would allow
to define context-sensitive filters (CSFs) based on structural computation rather
than on mere calculus. It is important to stress the necessity of re-thinking about
cognitive aspects in structural terms, by evidencing novel strategies to allow a
more direct (i.e., structural) interaction between early vision and cognitive pro-
cesses, that can be employed by new artificial vision systems. In this perspective,
we defined a general framework to specify context sensitive motion filters based
on deterministic (i.e., geometric) spatial motion Gestalts. In particular, the ge-
ometric properties of the optic flow field have been described through a specific
set of elementary gradient-type patterns, as cardinal components of a linear de-
formation space. By checking the presence of such Gestalts in optic flow fields,
we make the interpretation of visual motion more confident. Given motion in-
formation represented by an optic flow field, we recognize if a group of velocity
vectors belong to a specific pattern, on the basis of their relationships in a spa-
tial neighborhood. Casting the problem as a Kalman filer (KF), the detection
occurs through a spatial recurrent filter that checks the consistency between the
spatial structural properties of the input flow field pattern and a structural rule
expressed by the process equation of the Kalman filter.

2 A Kalman filtering approach to early-cognitive vision

Basic concepts Perception can be viewed as an inference process to gather
properties of real-world, or distal, stimuli (e.g., an object in space) given the
observations of proximal stimuli (e.g., the object’s retinal image). In this per-
spective, early cognitive vision can be cast as an adaptive filter in which some
kind of early-cognitive algorithm plays the role of the adaptive process. A gen-
eral adaptive filtering system is shown in Fig. 1, where x∗[k] is the unknown

1 In this paper, Gestalts are defined as pixel groups with a shared and persistent
properties in space and/or time. This concept goes beyond that of a visual “feature”,
because Gestalts capture the relationships existing among features.



stimulus (the state) at time step k, y[k] is the observation of the stimulus (the
measure), x̂[k] is the estimated stimulus, and x[k] is the reference signal (i.e.,
what we know about x∗[k]). The purpose of a general adaptive system is to filter
the input signal y[k] (measure) to invert (in some sense) the measure operator
and gain an estimation of x∗[k] by making use of the knowledge x[k]. Such a
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Fig. 1. Schematic representation of an adaptive early vision filter.

knowledge can be provided by:

1. the visual context
– the relationships among the feature values of a single modality in a spa-

tial neighborhood (e.g., responses outside the early vision filter): spatial
context;

– the relationships among the feature values of a single modality in a
(spatio-)temporal neighborhood (e.g., the constraints posed by rigid body
motion): (spatio-)temporal context;

– the interdependences of punctual/local feature values from different modal-
ities: multimodal context;

2. the state of the perceptual agent (e.g., alert state, task dependency, expecta-
tion, etc.)

3. a priori information (e.g., cognitive models such as shading, familiarity, per-
spective, etc.)

In this paper we focus only on data-driven (exogenous) information provided
by the visual context, disregarding the other two model-driven (endogenous)
components.

Kalman estimator The Kalman Filter is an optimal recursive linear estimator
[1], in the sense that it can iteratively process new measures as they arrive, on the
basis of the knowledge about the system accrued by previous measurements. Ac-
cordingly, a recursive process equation is required to describe the reference signal



(the model). Due to its recurrent formalization it appears particularly promising
to design context-sensitive filters based on recurrent cortical-like interconnection
architectures. Formally, the two inputs to the filter are:

the process equation

x[k] = Φ[k, k − 1] x[k − 1] + S[k − 1] s[k − 1] + n1[k − 1] (1)

and the measurement equation

y[k] = C[k] x[k] + n2[k] (2)

The matrix Φ[k, k−1] is a known state transition matrix that relates the state at
the previous time step k− 1 to the state at the current step k. The matrix S[k]
takes into the account an optional control input to the state. The matrix C[k]
is a known measurement matrix. The process and measurement uncertainty are
represented by n1[k] = N(0,Λ1[k]) and n2[k] = N(0,Λ2[k]). The space spanned
by the observations y[1],y[2], · · · ,y[k − 1] is denoted by Yk−1.

Casting Let us interpret the meaning of the input/output signals of the KF in
relation with our perceptual problem.

Measurement equation - The linear operator C represents a general “early-
vision filter” providing a noisy measure of an observable property of the visual
stimulus.

Process equation - Assuming x a vector containing the values of a bunch of
visual features over a fixed spatial region, Eq. 1 models the temporal evolution
of the relationships among such features, according to specific rules embedded
in the transition matrix Φ. By example, if we consider just one feature (e.g.,
motion velocity), x[k] will represent the “model” optic flow values at time step
k, for all the (discrete) locations of the considered spatial regions (the veloc-
ity state). If Φ has a diagonal structure, the process equation will describe the
“model” temporal evolution of punctual velocities, independently of the spatial
neighborhood values (temporal context). On the other hand, if Φ shows a non-
diagonal structure, the process equation models a “model” temporal evolution
of the state that takes into account also spatial relationships (spatio-temporal
context). More generally, if we build a state vector that collects more multi-
ple features (e.g., motion, stereo, etc.), by proper specification of the transition
matrix Φ, the process equation can potentially model any type of multimodal
spatio-temporal relationships (multimodal context).

Filter output - Apart from the KF output x̂, we could be interested in making
the measurements more confident. Accordingly, the output will be ŷ[k|Yk], to
be compared with y[k]. The additional (contextual) information will be provided
by Kalman innovation. We expect that, if the model is correct, the uncertainty
associated to the a posteriori estimate of the actual measure ŷ[k|Yk] is inferior
to the uncertainty associated to the actual measure itself y[k].



3 Motion Gestalts

Local spatial features around a given location of a flow field, can be of two types:
(1) the average flow velocity at that location, and (2) the structure of the lo-
cal variation in a the neighborhood of that locality [2]. The former relates to
the smoothness constraint or structural uniformity. The latter relates to linear-

ity constraint or structural gradients. Velocity gradients provide important cues
about the 3-D layout of the visual scene. Formally, they can be described as
linear deformations by a 2× 2 velocity gradient tensor

T =

[

T11 T12

T21 T22

]

=

[

∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

]

. (3)

Hence, if x = (x, y) is a point in a spatial image domain, the linear proper-
ties of a motion field v(x, y) = (vx, vy) around the point x0 = (x0, y0) can be
characterized by a Taylor expansion, truncated at the first order:

v = v̄ + T̄x (4)

where v̄ = v(x0, y0) = (v̄x, v̄y) and T̄ = T|x0
. By breaking down the tensor in

its dyadic components, the motion field can be locally described through 2-D
maps representing elementary flow components (EFCs):
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where αx : (x, y) 7→ (1, 0), αy : (x, y) 7→ (0, 1) are pure translations and
dx

x : (x, y) 7→ (x, 0), dx
y : (x, y) 7→ (y, 0), dy

x : (x, y) 7→ (0, x), dy
y : (x, y) 7→ (0, y)

represent cardinal deformations, basis of the linear deformation space.
It is worthy to note that the components of pure translations could be incor-

porated in the corresponding deformation components, thus obtaining general-
ized deformation components in which motion boundaries are shifted or totally
absent. Although this does not affect the significance of the Taylor expansion
in Eq. 5, the so-modified elementary components, present very different struc-
tural properties. Since a template-based approach cannot be used to extract
single components, but only to perform pattern matching operations, the lin-
ear decomposition of the motion field has significance only for the definition
of a proper representation space. Specific templates would be designed to opti-
mally sample that representation space. In this work, we consider two different
classes of deformation templates (opponent and non-opponent), each character-
ized by two gradient types (stretching and shearing), see Fig. 2. Due to their
ability to detect the presence and the orientation of velocity gradients and ki-
netic boundaries, such cardinal EFCs and proper combinations of them resemble
the characteristics of the cell in the Middle Temporal visual area (MT) [3] [4].
It is straightforward to derive that these MT-like components are well suited
to provide the building blocks for the more complex receptive field properties
encountered in the Medial Superior Temporal visual area (MST) [5] [6]:
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Fig. 2. Basic gradient type Gestalts considered. In stretching-type components (a,c)
velocity varies along the direction of motion; in shearing-type components (b,d) velocity
gradient is oriented perpendicularly to the direction of motion. Non-opponent patterns
are obtained from the opponent ones by a linear combination of pure translations and
cardinal deformations: di

j + mαi, where m is a proper positive scalar constant.

where E = (T̄11 + T̄22)/2, ω = (T̄12 − T̄21)/2, S1 = (T̄11 − T̄22)/2, S2 =
(T̄12 + T̄21)/2 are the divergence, the curl and the two components of shear
deformation, respectively (cf. [2]). These mixed EFCs constitute, together with
the pure translations, an equivalent representation basis for the linear properties
of the velocity field (see Fig. 3). Yet, they are rather complex since not only the
speed, but also the direction of feature motion varies as a function of spatial
position. Rigid body motion often generates simpler flow fields characterized by
unidirectional patterns, as the cardinal EFCs considered in this study.

4 The context sensitive filter

On the basis of the considerations presented in Section 2, the problem of evi-
dencing the presence of a certain complex feature in the optic flow on the basis of
both local and contextual information, is posed as an adaptive filtering problem.
Local information act as the input measurements and the context acts as the
reference signal, e.g., representing a specific motion Gestalt.

4.1 Measurement equation

For each spatial position (i, j) and at time step k, let us assume the optic flow
ṽ(i, j)[k] as the corrupted measure of the actual velocity field v(i, j)[k]. For
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Fig. 3. (a) Two deformation subspaces obtained by the set of cardinal EFCs with
different values of the parameter m. The quadrants of each subspace characterize an
elementary deformation, as evidenced in (b) for expansion (E > 0), horizontal positive
shear (S1 > 0), oblique positive shear (S2), and counterclockwise rotation (ω > 0).

the sake of notation, we drop the spatial indices (i, j) to indicate the vector
that represents the whole spatial distribution of a given variable. The difference
between these two variables can be represented as a noise term ε(i, j)[k]:

ṽ[k] = v[k] + ε[k] . (6)

Due to the intrinsic noise of the nervous system, the neural representation of the
optic flow v[k] can be expressed by a measurement equation:

v[k] = ṽ[k] + n1[k] = v[k] + ε[k] + n1[k] (7)

where n1 represents the uncertainty associated with a neuron’s response. In this
case the measurement matrix C is the identity operator. The approach can be
straightforwardly generalized to consider indirect motion information, e.g., by
the gradient equation [7] −It[k] = ∇T I[k]ṽ[k] + n1[k] where ∇T I and It are
the spatial image gradient and temporal derivative, respectively, of the image
at a given spatial location and time. It is worthy to note that here the linear
operator relating the quantity to be estimated to the measurement It is also a
measurement [8].



4.2 Process equation

In the present case, the reference signal should reflect spatio-temporal structural
regularities of the input optic flow. These structural regularities can be described
statistically and/or geometrically. In any case, they can be defined by a process
equation that models spatial relationships by the transition matrix Φ:

v[k] = Φ[k, k − 1]v[k − 1] + n2[k − 1] + s . (8)

The state transition matrix Φ is de facto a spatial interconnection matrix that
implements a specific Gestalt rule (i.e., a specific EFC); s is a constant driv-
ing input; n2 represents the process uncertainty. The space spanned by the
observations v[1], v[2],. . . , v[k − 1] is denoted by Vk−1 and represents the in-
ternal noisy representation of the optic flow. We assume that both n1 and n2

are independent, zero-mean and normally distributed: n1[k] = N(0,Λ1) and
n2[k] = N(0,Λ2). More precisely, Φ models space-invariant nearest-neighbor
interactions within a finite region Ω in the (i, j) plane that is bounded by a
piece-wise smooth contour. Interactions occur, separately for each component of
the velocity vectors (vx, vy), through anisotropic interconnection schemes:

vx/y(i, j)[k] = w
x/y
N vx/y(i, j − 1)[k − 1] + w

x/y
S vx/y(i, j + 1)[k − 1] +

w
x/y
W vx/y(i− 1, j)[k − 1] + w

x/y
E vx/y(i+ 1, j)[k − 1] +

w
x/y
T vx/y(i, j)[k − 1] + n

x/y
1

(i, j)[k − 1] + sx/y(i, j) (9)

where (sx, sy) is a steady additional control input, which models the bound-
ary conditions. In this way, the structural constraints necessary to model car-
dinal deformations are embedded in the lattice interconnection scheme of the
process equation. The resulting lattice network has a structuring effect con-
strained by the boundary conditions that yields to structural equilibrium con-
figurations, characterized by specific first-order EFCs. The resulting pattern de-
pends on the anisotropy of the interaction scheme and on the boundary condi-
tions. By example, considering, for the sake of simplicity, a rectangular domain
Ω = [−L,L]× [−L,L], the cardinal EFC dx

x can be obtained through:

wx
N = wx

S = 0 wy
N = wy

S = 0
wx

W = wx
E = 0.5 wy

W = wy
E = 0

sx(i, j) =







−λ if i = −L
λ if i = L
0 otherwise

sy(i, j) = 0

where the boundary value λ controls the gradient slope. In a similar way we can
obtain the other components. Given Eqs. (7) and (8), we may write the optimal
filter for optic flow Gestalts. The filter allows to detect, in noisy flows, intrinsic
correlations, as those related to EFCs, by checking, through spatial recurrent
interactions, that the spatial context of the observed velocities conform to the
Gestalt rules, embedded in Φ.



5 Results

To understand how the CSF works, we define the a priori state estimate at step
k given knowledge of the process at step k − 1, v̂[k|Vk−1], and the a posteriori

state estimate at step k given the measurement at the step k, v̂[k|Vk]. The aim
of the CSF is to compute an a posteriori estimate by using an a priori estimate
and a weighted difference between the current and the predicted measurement:

v̂[k|Vk] = v̂[k|Vk−1] +G[k] (v[k]− v̂[k|Vk−1]) (10)

The difference term in Eq. (10) is the innovation α[k] that takes into account
the discrepancy between the current measurement v[k] and the predicted mea-
surement v̂[k|Vk−1]. The matrix G[k] is the Kalman gain that minimizes the a
posteriori error covariance:

K[k] = E
{

(v[k]− v̂[k|Vk])(v[k]− v̂[k|Vk])
T
}

. (11)

Eqs. 10 and 11 represent the mean and covariance expressions of the CSF output.

The covariance matrix K[k] provides us only information about the proper-
ties of convergence of the KF and not whether it converges to the correct values.
Hence, we have to check the consistency between the innovation and the model
(i.e., between observed and predicted values) in statistical terms. A measure of
the reliability of the KF output is the Normalized Innovation Squared (NIS):

NISk = αT [k] Σ−1[k] α[k] (12)

where Σ is the covariance of the innovation. It is possible to exploit Eq. (12)
to detect if the current observations are an instance of the model embedded in
the KF [9]. Fig. 4 shows the responses of the CSF in the deformation subspaces
(E − S1, ω − S2) for two different input flows. Twentyfour EFC models have
been used to span the deformation subspaces shown in Fig. 3a. The grey level
in the CSF output maps represents the probability of a given Gestalt according
to the NIS criterion: lightest grey indicates the most probable Gestalt. Besides
Gestalt detection, context information reduces the uncertainty on the measured
velocities, as evidenced, for the circled vectors, by the Gaussian densities, plotted
over the space of image velocity.

To assess the performance of the approach to obtain regularized patch-based
motion estimation, we applied CSFs to optic flows of real-world driving se-
quences. Fig. 5 shows a road scene taken by a rear-view mirror of a moving
car under an overtaking situations. A “classical” algorithm [10] has been used
to extract the optic flow. Regularized motion estimation has been performed
on overlapping local regions of the optic flow on the basis of the elementary
flow components. In this way, we can compute a dense distribution of the local
Gestalt probabilities for the overall optic flow. Thence, we obtain, according to
the NIS criterion, the most reliable (i.e. regularized) local velocity patterns,
e.g., the patterns of local Gestalts that characterize the sequence (see Fig. 5).
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Fig. 4. Example of Gestalt detection in noisy flows.

6 Discussion and conclusions

Measured optic flow fields are always somewhat erroneous and/or ambiguous.
First, we cannot compute the actual spatial or temporal derivatives, but only
their estimates, which are corrupted by image noise. Second, optic flow is intrin-
sically an image-based measurement of the relative motion between the observer
and the environment, but we are interested in estimating the actual motion
field. However, real-world motion field patterns contain intrinsic properties that
allow to define Gestalts as groups of pixels sharing the same motion property.
By checking the presence of such Gestalts in optic flow fields we obtain context-
based regularized patch motion estimation and make the interpretation of the
optic flow more confident. We propose an optimal recurrent filter capable of
evidencing motion Gestalts corresponding to 1st-order spatial derivatives or el-
ementary flow components. A Gestalt emerges from a noisy flow as a solution
of an iterative process of spatially interacting nodes that correlates the proper-
ties of the visual context with that of a structural model of the Gestalt. The
CSF behaves as a template model. Yet, its specificity lies in the fact that the
template character is not built by highly specific feed-forward connections, but
emerges by stereotyped recurrent interactions (cf. the process equation). Fur-
thermore, the approach can be straightforwardly extended to consider adaptive
cross-modal templates (e.g, motion and stereo). By proper specification of the
matrix Φ, the process equation can, indeed, potentially model any type of multi-
modal spatio-temporal relationships (i.e., multimodal spatio-temporal context).
The presented approach can be compared with Bayesian inference and Markov
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Fig. 5. Results on a driving sequence showing a road scene taken by a rear-view mirror
of a moving car under an overtaking situations: Gestalt detection in noisy flows and
the resulting motion segmentation (context information reduces the uncertainty on the
measured velocities). Each symbol indicates a kind of EFC and its size represents the
probability of the given EFC. The absence of symbols indicates that, for the considered
region, the reliability of the segmentation is below a given threshold.



Random Fields (MRFs). Concerning Bayesian inference, KF represents a recur-
sive solution to an inverse problem of determing the distal stimulus based on the
proximal stimulus, in case we assume: (1) a stochastic version of the regulariza-
tion theory involving Bayes’ rule, (2) Markovianity, (3) linearity and Gaussian
normal densities. Concerning MRFs, they are used in visual/image processing to
model context dependent entities such as image pixels and correlated features.
If one assumes to have not the direct accessibility to the “system”, we can refer
to dynamic state space models [11] [12] [13] (cf. also Hidden MRF), given by the
system’s observations and an underlying stochastic process, which is included to
describe the distribution of the observation process properly. In this perspective,
Kalman’s process equation can be related to a MRF. The presence of the mea-
surement equation (observations) makes more evident the distinction between
the feed-forward and feed-back components of our CSFs.
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