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I. INTRODUCTION

Recent years have brought forward different models on how the brain
might encode heading from optic flow. Neurons in these models can encode
heading for a variety of self-motion conditions, while responding to optic
flow stimuli similarly as found in electrophysiological studies. Yet, little
attention has been given to the receptive field structure of neurons that
integrate local motion signals to analyse the optic flow. Intuitively, radial
structures might seem suited for the task of heading detection, since pure
observer translation causes flow to eminate from the point of heading (Figure
1a). However, rotational flow (Figure 1b) during simultaneous eye rotation
can cause the retinal flow to be shifted away from the heading (Figure 1c).
Moreover, variation in point distances with respect to the translating eye
results in retinal motion differences, called motion parallax, that can cause the
flow during eye rotation to deviate even more from being purely radial. This
poses the question what would be the optimal receptive field structure to deal
with complex flow fields for retrieving heading.

 

Figure 1. Flow during a) observer translation through a 3D-cloud of
dots, headed 10 degrees towards the left (filled circle), during b)
observer rotation about the vertical towards the right, and during c) the
combination of both. The dots indicate the start of motion vectors.



J.A. BEINTEMA, A.V. VAN DEN BERG AND M. LAPPE                     2

Research on neural mechanisms has focussed on a number of cortical areas
that contain cells responsive to optic flow, such as area MST (human V5a) but
also areas beyond such as VIP (Colby, Duhamel & Goldberg, 1993) or 7a
(Read & Siegel, 1997). MST neurons typically have large receptive fields that
cover more than a quarter of the visual field, and respond well to complex
motion patterns, such as expanding/contracting motion, clock-
wise/counterclockwise rotation (Tanaka, Fukada & Saito, 1989; Tanaka &
Saito, 1989), or combinations of rotation and expansion (Graziano, Andersen
& Snowden, 1994). Importantly, MST cells seem systematically tuned to the
location of foci of expansion or rotation (Duffy & Wurtz, 1995; Lappe,
Bremmer & Pekel, 1996). Convincing evidence for MST's involvement in
heading perception has been found from the covariation of MST activity with
the heading responses of trained monkeys (Britten & van Wezel, 1998). MST
cells acquire their selectivity to optic flow by integrating signals from local
motion sensors, found in area MT (human V5). MT neurons have smaller RFs
and typically respond to motion in one particular direction at a particular
speed (see review van Wezel & Britten, 2002). Still, relatively little is known
about the organisation of the MT neurons that form the receptive field (RF) of
an MST cell tuned for heading.
Several schemes have been proposed to recover heading from optic flow in
the presence of rotational flow (see review Lappe, 2000). Intuitively, one
might think that detectors for expansion would be ideal for detecting heading.
Radial receptive fields are for example assumed by differential motion models
that take local motion differences as to remove the effect of rotation
(Longuet-Higgins & Prazdny 1980; Hildreth 1992; Rieger & Lawton 1985),
for the remaining motion parallax vector field radiates from the heading
direction. Indeed, such approaches find some physiological support, as MT
cells have been found that respond well to motion differences in their center
and surround receptive field (Allman, Miezin & McGuinness, 1985), and a
heading detection scheme based on motion-opponent cells seems feasible
(Royden, 1997). The analysis of the remaining differential motion vectors
could be realised by pure translation detectors with radial receptive fields
(Hatsopoulos & Warren, 1991). But, differential motion parallax models can
only partly explain human psychophysics on heading perception. Importantly,
these models fail to detect heading in the absence of depth differences,
whereas humans still correctly can judge heading by relying on extra-retinal
rotation signals (Royden, Banks & Crowell, 1992), or given a sufficiently
large field of view (Grigo & Lappe, 1999).
Yet, the last decade has brought forward a number of physiologically inspired
models that detect heading in the presence of eye rotation for a variety of
conditions and are able to simulate response properties of MST cells
(Beintema & van den Berg, 1998; Lappe & Rauschecker, 1993b; Perrone &
Stone, 1994). As these models deal with eye rotation at the level beyond local
motion detection, the receptive field of their MST-like neurons must differ
from purely radial.
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So far, the receptive field structure using small field stimuli has only been
roughly been probed (Duffy & Wurtz, 1991b). Those results give little
support for simple RF structures such as radial motion or uni-circular motion
(clockwise or counterclockwise rotation). Another intriguing question is why
a large proportion of MST cells respond to clockwise or counterclockwise
rotation (Duffy & Wurtz 1991, a,b; Lappe et al., 1996; Tanaka & Saito, 1989)
at rotation speeds up to 80 deg/s not usually experienced in daily life.
These observations inspired us to examine the receptive fields predicted by
three physiologically inspired models. In the following, we first introduce the
RF structure assumed in templates of the velocity gain model (Beintema &
van den Berg, 1998). Then we present an analysis of the RF structures that
emerge under different restrictions of the population model (Lappe &
Rauschecker, 1993b). Finally, we consider the effective RF structure of the
template model (Perrone & Stone, 1994). Despite the different approaches, a
striking similarity is found. The preferred motion driving the neurons turns
out to be directed always along circles centered on the neuron's preferred
heading, thus perpendicular to the expected radial flow. Moreover, we find
similarities and differences in the substructures, such as bi-circularity and
motion-opponency, which might reveal different strategies on how the visual
system copes with eye rotation.

II. VELOCITY GAIN FIELD MODEL

The velocity gain field model  by Beintema and van den Berg (1998)
is based on the templates approach (Perrone, 1992; Perrone & Stone, 1994).
That approach aims to find the best matching template in a set of motion
templates tuned to different ego-motions. Each template evaluates the
evidence for a global match with its preferred flow by summating evidence
for local matches across different parts in the visual field. How these local
comparisons are done is not trivial, but by appropriate selection of the motion
sensors at a specific retinal location, templates can be constructed that
respond maximally only to flow corresponding to a particular heading in
combination with a particular ego-rotation, independent of the distances of
points.
The velocity gain field model differs from the template approach in two
important ways. First of all, invariance to rotation is obtained using explicit
estimates of rotation, allowing the use of rate-coded extra-retinal signals  and
reducing the dimensions of templates needed to represent all possible
combinations of heading direction and ego-rotations. Secondly, as to construct
templates insensitive to the translational velocity or distances of points, the
RF structure of templates in the velocity gain field model was assumed
constrained in an explicit non-radial way. These two steps in achieving
invariance to parameters other than heading will be explained below.
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II.I Basic scheme in Velocity Gain Field model

The basic scheme used by the velocity gain field model is given in Figure 2.
Heading is encoded by a collection of templates, each with their own
preferred heading 

† 

t  and output response 

† 

H t . The input to each template 

† 

H t
is a bundle of templates sharing the same preferred heading 

† 

t , but having
different preferred rotations. In principle, three pairs of templates tuned the
same heading, each pair having opposite preferred rotation (

† 

±w ) about one of
the cardinal axes of rotation, are sufficient to make the template 

† 

H t  invariant
to rotation magnitudes up to 

† 

w  (Beintema & van den Berg, 1998).
First of all, invariance for rotation about a given axis is obtained when the
template activity

† 

H t  equals the activity of a template that shifts its preferred
rotation dynamically as much as the actual rotation 

† 

e . Generally, a shift of a
Gaussian tuning function can be accomplished by a Taylor series, with first
and higher order Gaussian derivatives, each term appropriately scaled by first
and higher order powers of the desired shift. The response of a tem-
plate

† 

Ot,R -e , shifted in its preferred rotation by an amount 

† 

e , is given to first
approximation by 

† 

Ot - e ¥ ∂Ot /∂R  (Beintema & van den Berg, 1998). Note,
the signal 

† 

e  can be an extra-retinal or a visual estimate of rotation velocity.
The idea of dynamically shifting templates can also be understood in terms of
compensating activity. The activity

† 

H t  needs to be corrected for a change in
the activity of the pure translation template 

† 

Ot  in case of rotational flow.
Simply subtracting the rate-coded rotation velocity signal 

† 

e  would not suffice
to compensate. For this, 

† 

e  needs to be multiplied by a visual activity that tells
how 

† 

Ot  changes with a change in rotational flow, i.e. the so called derivative
template 

† 

∂O / ∂R . Since the compensation term 

† 

e ¥ ∂O / ∂R  has the property of
being gain-modulated by the extra-retinal velocity signal, this approach has
been called the velocity gain field model, analogue to eye position gain fields
as reported in area 7a (Andersen, Essick & Siegel, 1985).
The model does not require an explicit representation of the subunits as
suggested in the scheme. The output of the derivative template 

† 

∂O / ∂R  can be
approximated by the difference activity of two templates tuned to the same
heading, but opposite rotation (

† 

Ot,±w ). Alternatively, however, the derivative
template could also have been computed directly by summing local difference
signals from pairs of motion sensors, each sensor of the pair having equal but
oppositely directed preferred motion (Beintema & van den Berg, 1998).
Likewise, the pure translation template 

† 

Ot , tuned to heading but zero rotation,
need not be directly computed, but could also be derived from the average
response of two rotation-tuned templates with opposite preferred rotation
directions, hence the dotted lines feeding the template 

† 

Ot .
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To explain the second step of acquiring insensitivity to the distances of points
or the translational velocity, assume a polar coordinate system centered on the
direction of heading. Then, the retinal flow can be split into its radial and its
circular component (Figure 3). The radial component contains the transla-
tional component of the flow, and will vary with translational speed or point
distances. The circular component, in contrast, only depends on the rotational
component of the flow. This observation leads to the assumption implemented
in the velocity gain field model that templates should only measure the flow
along circles centered on the point of preferred heading. By assuming such
circular RF structure, the template strongly reduces sensitivity to variations in
depth structure or the translational speed, while preserving its tuning to
heading direction and the rotational component of flow (Beintema & van den
Berg, 1998).

Figure 2. Basic components in the velocity gain field model. The RF
structure of typical units, tuned to heading (open circle) and
simultaneous left- or rightward rotation about the vertical, is bi-
circular. Vectors indicate the preferred direction and velocity of the
input motion sensors.

Figure 3. The heading-centered circular (left) and radial (right)
component of the flow during combined translation and rotation as in
Figure 1c.
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II.II Receptive Fields in Velocity Gain Field model

Given templates measure only motion along circles centered on the
template's preferred heading, what does the RF structure look like for the
units in the velocity gain field model? The RF of a typical pair of templates
tuned to heading and opposite rotations about the vertical axis is shown in
Figure 2. Note, their preferred structure does not resemble uni-circular flow,
because the directions of preferred motion vectors reverse across the meridian
through the preferred heading and perpendicular to the preferred rotation axis
(in this case the horizontal meridian). It is for this reason that the structure has
been coined bi-circular (van den Berg, Beintema & Frens, 2001). Another
characteristic of the bi-circular structure is the gradient in motion magnitude
along the circle, vanishing at points along the meridian that is perpendicular to
the rotation axis. Generally, any unit tuned to rotation about an axis
perpendicular to the heading will have a bi-circular structure, modulo a
clockwise rotation. For rotation about the horizontal axis, for instance, the bi-
circular pattern will be 90 degrees rotated about the heading point.
A similar RF arises if the derivative template is not computed from the
difference activity of a pair of rotation-tuned templates, but computed
directly. In that case, the RF is expected to be closely related to that of the bi-
circular RF. Since the derivative template then is computed from the local
difference of the outputs of two motion template, the RF is represented by the
superposition of the two RFs. Interestingly, the receptive field then consists of
pairs of motion sensors with opponent-motion directions along circles
centered on the preferred heading, and with magnitude gradient as found for
the bi-circular RF structure.
An even more counterintuitive RF structure is expected for the pure
translation template 

† 

Ot , whose output is compensated by the rotation-tuned
units. This template is maximally excited when presented with zero motion
along its preferred motion directions, i.e. along circles centered on the
preferred heading. Such local responses could be accomplished by MT cells
that respond maximally to zero-motion while being inhibited by motion in
their preferred or anti-preferred direction. Alternatively, as stated before, a
pure translation tuned template might also sum the activities of template pairs
with opposite preferred rotations but identical heading. Stimulated with flow
corresponding to the preferred heading and zero rotation, the output of each
rotation-tuned template is balanced by its counterpart with opposite preferred
rotation, so that the mean activity will peak at the desired preferred heading.
In this case, the predicted RF structure locally consists of motion-opponent
pairs as well. But, in contrast to the derivative template, these motion-
opponent pairs do not compute the local difference activity of such pairs, but
their sum.
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III. POPULATION MODEL

The population model by Lappe and Rauschecker (1993b) takes a
very different approach to encode heading. The model is an implementation
of the subspace algorithm by Heeger and Jepson (1992b) that sets the
connection strengths and preferred directions of local motion inputs to
heading-specific flow units.
First, we recapitulate the basics of the subspace algorithm, and its neural
implementation. Then, we analytically derive the RF structure. Different
versions of the model have been proposed (Lappe & Rauschecker, 1995). In
the restricted version of the model, the eye movements are assumed to be
limited to tracking a stationary point in the scene during the observer
translation, without torsion about the line of sight. In the non-restricted
version, eye movements are assumed to be independent of the heading, and
free to rotate about any axis. The effect of both constraints we shall analyse.
Part of the results for restricted eye movements have been published in short
form (Beintema, van den Berg & Lappe, 2001). Here, we present the
mathematics and the extension to unrestricted eye movements as well.

III.I. Subspace Algorithm

The subspace algorithm resolves the unknown translation direction 

† 

T
from optic flow vectors without requiring knowledge of the three-dimensional
rotation vector 

† 

W  and depths 

† 

Zi  of 

† 

m  points. In this approach, each flow
vector at a given image location 

† 

(x,y )  is written as

† 

q( x,y ) =
1

Z(x ,y)
A(x ,y) + B(x ,y)W (0.1)

with the matrices 

† 

A  and 

† 

B depending on image positions 

† 

(x,y )  and focal
length 

† 

f (Heeger & Jepson 1992b):

† 

A(x ,y) =
- f 0 x
0 - f y

Ê 

Ë Á 
ˆ 

¯ ˜ and

† 

B(x,y ) =
xy / f - f - x 2 / f y

f + y 2 / f -xy / f -x
Ê 

Ë Á 
ˆ 

¯ ˜ (0.2)

By putting all flow components sequentially in a generalised flow vector 

† 

Q t ,
the 

† 

2m  flow equations can be written in matrix form by 

† 

Q t = C(T) ⋅ q . Here,

† 

C(T)  is a 

† 

2m ¥ (m + 3)  matrix depending on 

† 

n  image positions and the
translation vector 

† 

T
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† 

  

† 

C(T) =

A(x1,y1)T L 0 B(x1,y1)
M O M B(x2 ,y2)
0 0 A( xm ,ym) B(xm ,ym)

Ê 

Ë 

Á 
Á Á 

ˆ 

¯ 

˜ 
˜ ˜ 

(0.3)

and 

† 

q  is a 

† 

(m + 3) -dimensional vector containing the 

† 

m  unknown inverse
depths and the three-dimensional rotation vector. The unknown heading 

† 

Tj

can be solved least squares by minimizing a residual function

† 

R(Tj ) = Q t - C(T j) ⋅q
2
. This is equivalent to finding the translation vector

† 

Tj  that minimizes

† 

R(Tj ) = Q tC^ (T j)
2

(0.4)

where 

† 

C^(Tj )  is the orthogonal complement of 

† 

C(T j) (Heeger & Jepson,

1992b). For the general case of unrestricted eye movements, the columns of

† 

C(T j)  form a basis of an 

† 

m + 3 subspace of the 

† 

¬ 2m , called the range of

† 

C(T j) . The orthogonal complement is a matrix that spans the remaining

† 

(2m - (m + 3)) -dimensional subspace of 

† 

C(T j) . Its columns form the

nullspace of the 

† 

C(T j) . Each column is a nullvector and is orthogonal to

every row vector of 

† 

C(T j)  (Heeger & Jepson, 1992b).

III.II. Neural Implementation of the Subspace Algorithm

Lappe and Rauschecker (1993b) implemented the subspace algorithm
in a neural network to compute a priori the connections between MT and
MST neurons. Their model approach starts by representing the measured flow
vector 

† 

q i  by the activity of 

† 

n  local motion sensors 

† 

sik  with MT-like direction

tuning and velocity tuning functions so that 

† 

q i = sike ikk =1

nÂ . We represent the

motion vector by 4 mutually perpendicular preferred motion sensors in
directions 

† 

eik  with cosine-like direction tuning and linear velocity tuning
(Lappe & Rauschecker, 1993b, 1995). The measured motion vector could
equally well be represented by an extended set of activities based on motion
sensors with tuning to specific speeds (Lappe, 1998) without changing our
results.
The motion signals from different locations 

† 

i  are collected by second layer
neurons that compute the residual function. Their output is a sigmoidal
function 

† 

g of the weighted sum of the inputs 

† 

sik
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† 

u jl = g( J jl,ik
k =1

n

Â
i =1

m

Â sik - m) (0.5)

where 

† 

J jl,ik  is the synaptic strength between the l-th output neuron in second

layer population representing heading direction 

† 

Tj  and the k-th input neuron

in the first layer representing the optic flow vector 

† 

q i .
According to the subspace algorithm, the residual function is minimized when
all the measured flow vectors, described by vector 

† 

Q t , are perpendicular to
the l-th column of 

† 

C^(Tj ) . By requiring the input to the neuron to be

† 

Q tCl
^ (T j) , the synaptic strength for a single second layer neuron will need

to be (Eq. 20 in Lappe, 1998):

† 

J jl,ik = eik
t Cl,2i -1

^ (T j)
Cl ,2i

^ (Tj )
Ê 

Ë 
Á 

ˆ 

¯ 
˜ (0.6)

Finally, the population model computes the residual function in a distributed
way, partitioning the residual function 

† 

R(Tj )  into a sum of subresidues, each

computed by the l-th neuron. Heading is then represented by the sum of
neurons responses 

† 

U j = u jllÂ . Each l-th neuron, tuned to the correct

heading direction, exhibits a sigmoid surface with a rising ridge (not a
Gaussian blob) as function of the two-dimensional heading. Although each l-
th neuron may have a ridge of different orientation, its position is constrained
by the algorithm to pass through the preferred heading 

† 

Tj . Thus, the

population sum activity 

† 

U j  will peak at the preferred heading. To help ensure

that a peak is created, each sigmoid function in Eq. 5 is slightly offset by 

† 

m
(Lappe & Rauschecker, 1993b).

III.III. Receptive Fields in Population Model

What set of preferred motion directions and connections strengths
would be optimal to ensure that the residual function is minimized when
presented with the correct heading? According to Eq. 6, the synaptic strengths
at each location are given by the subvector in the l-th column of 

† 

C^(Tj ) . We

can map the preferred motion 

† 

v jl,i  by the vector sum of responses to equal

stimulation in the 

† 

n = 4  motion sensor directions.
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† 

v jl,i = J jl ,ik eik =
Cl,2i -1

^ (T j)
Cl ,2i

^ (T j)
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

k =1

n

Â (0.7)

Thus, we see that the preferred motion input (motion direction and synaptic
strength) are directly given by the two-dimensional subvectors (by the
orientation and length, respectively) that make up the orthogonal complement.
The population model divides the labour of computing the residual function
over different neurons 

† 

u jl  that can have arbitrary number of inputs. By taking

the minimum of flow inputs required to compute the orthogonal complement,
we can reduce the matrix 

† 

C(T j)  so that its orthogonal complement can be

solved analytically. Note, the set of motion vectors that is found this way is
forms a subset of the receptive field encoding a specific heading. The smallest
number of flow inputs for which the orthogonal component can be computed
given unrestricted eye movements is 

† 

m = 4 . For this case, 

† 

C^(Tj )  consists of

a single column 

† 

l = 1 with 

† 

8  elements. For restricted eye movements that are
constrained to null the flow at the center of the image, i.e. stabilize gaze on
the object at the fovea, without rotation about the line of sight, the rotation 

† 

W
can be expressed in terms of 

† 

T and the fixation distance 

† 

Zf . This assumption

reduces 

† 

C(T j)  to a 

† 

2m ¥ (m +1) -dimensional matrix, and 

† 

C^(Tj )  to a

† 

(m -1) ¥ 2m -dimensional matrix (Lappe & Rauschecker, 1993a). Then, for

† 

m = 2 flow vectors, the orthogonal complement 

† 

C^(Tj )  consists of only a

single column (

† 

l = 1) with length 4 and can be exactly solved. We will first
analyse the RF structure for the simplest case of tracking eye movements and
two input vectors. Then, we analyse results for the case of unconstrained eye
movements and arbitrary numbers of input vectors.

III.IV. Case of Restricted Eye Movements

First, we compute the matrix 

† 

C(T j)  for restricted eye movements.

We can choose the preferred heading 

† 

Tj  to be horizontal (

† 

Ty = 0 ) without

loss of generality because of symmetry in the xy-plane. Furthermore, we can
also set 

† 

Tz  and the focal distance 

† 

f  to unity, so that the heading vector
intersects the image plane at the point 

† 

f (Tx /Tz ,Ty /Tz ) =  (Tx ,  0) . Then

† 

C(T j)  becomes
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† 

C(T j) =

-Tx + x1 0 Tx(1+ x1
2 ) / Zf

y1 0 Txx1y1 / Zf

0 -Tx + x 2 Tx(1 + x2
2) / Z f

0 y 2 Tx x2y 2 / Z f

Ê 

Ë 

Á 
Á 
Á 
Á Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ ˜ 

(0.8)

The orthogonal complement was computed analytically. For this we used
Mathematica to solve the nullspace of the inverted matrix of 

† 

C(T j) . The

result  presented here is written short by transforming the image coordinates
to a system centered on the projection of the translation vector 

† 

(Tx ,Ty)  (i.e.

† 

˜ x i = xi - Tx ). Then, 

† 

C^(Tj )  becomes

† 

C^(Tj ) =

˜ y 2 / ˜ x 2
1 +Tx (Tx + ˜ x 2 )
1 +T x(Tx + ˜ x 1)

- ˜ y 2 ˜ x 1 / ( ˜ y 1 ˜ x 2 ) 1 +Tx (Tx + ˜ x 2 )

1 +T x(Tx + ˜ x 1)
- ˜ y 2 / ˜ x 2

1

Ê 

Ë 

Á 
Á 
Á 
Á 
Á 
Á Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ 
˜ 
˜ ˜ 

(0.9)

III.IV.I. Circular RF Structures

An example of the RF structure that emerges for arbitrarily chosen
pairs of neurons 

† 

u jl , whose summed responses encode the preferred heading,

is given in Figure 4. Most noticeably, the RF structure appears to be organised
circularly, and centered on the preferred heading. This would mean that the
preferred motion vector 

† 

vi  is oriented perpendicular to the vector that radiates
from the preferred heading and passes through the location of the motion
vector 

† 

( ˜ x i , ˜ y i) . Indeed, as can be seen from Eq. 9, 

† 

vi ⋅ ( ˜ x i , ˜ y i) = 0  for 

† 

i = 1 and

† 

i = 2.
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III.IV.II. Motion Opponent RF Structures

We then analysed in more detail how the preferred motion directions
and magnitudes relate to the relative position of motion inputs. First of all, we
found that for pairs of motion sensors at nearby locations, the vectors of each
pair tend to be opponent (pair A in Figure 5). Indeed, for two motion inputs
located infinitely close to each other (

† 

˜ x 2 = ˜ x 1 and 

† 

˜ y 2 = ˜ y 1), the orthogonal

complement simplifies to 

† 

C^(Tj ) = ( ˜ y 1 / ˜ x 1,-1,- ˜ y 1 / ˜ x 1,1) t . Denoting the

angular velocity of a vector 

† 

v  along the circle by scalar 

† 

v , we find the ratio
of preferred angular velocities is (

† 

v1 / v2 = -1 ). This proofs the preferred
directions in this case are always opposite and of equal magnitude.

To describe the preferred motion for pairs of motion sensors at different
locations, let us define the image location of points in a polar coordinate
system centered on the preferred heading. So, points on the same circle have
different polar angles, but constant eccentricity with respect to the heading.

Figure 4. Examples of RF structure of 30 pairs, each pair being input
to an ujl neuron with preferred heading 10 degrees towards the left
(open circle).

Figure 5. Examples of local direction preferences in a RF from a
population of 4 motion pairs (A-D). The MST neuron encodes
heading 10 degrees towards the left (open circle).



13 CIRCULAR RECEPTIVE FIELDS

We exemplify our observations by a few pairs of motion input in Figure 5.
First of all, the difference between motion magnitudes increases sinusoidally
with the polar angle difference between the two points (compare pair A, B
and C). Secondly, consider the meridian through the fixation and heading
point. The preferred motion directions are opponent if the pair is located on
the same side with respect to that meridian (pair A, B, C).

III.IV.III. Bi-circular RF Structures

We also found other interesting substructures under certain con-
straints on the locations of motion inputs. The preferred motion directions are
uni-directional if the pair is split across the meridian through fixation and
heading (Figure 5, pair D). Moreover the magnitudes are equal for positions
that mirror in the meridian (pair D). Also, eccentricity with respect to the
heading had no influence on the preferred motion vectors. In principle, this
would allow the construction of a uni-circular RF. Interestingly, we found that
if pairs of motion sensors have their partners at image locations 90 degrees
rotated about the heading point, a magnitude gradient appears, and a RF
structure can be constructed (Figure 6) that has great similarity to bi-circular
RF pattern predicted by the velocity gain field model (Figure 2).

III.V. Case of Unrestricted Eye Movements

We then computed analytically the orthogonal complement for the
minimum number of required motion inputs  in case of unrestricted eye
movements (

† 

m = 4 ). Again, we find only circular RFs structures. We
analysed the preferred motion magnitudes and directions for various spatial
arrangements. In Figure 7 we plotted three possible spatial arrangements. In
contrast to results for restricted eye movements, none of these structures
appeared to fit a uni-circular structure, nor the bi-directionality and magnitude

Figure 6. Distribution of pairs of neurons with preferred heading 10
deg left, arranged to make bi-circular RF.
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gradient expected for a bi-circular RF structure. We do find an influence of
eccentricity, and a strong degree of motion-opponency. In the special case
when pairs of motion vectors were located at exactly the same position, each
pair turns out to have equal but opposite preferred motions (Figure 7c).

III.V.I. General solution

Simulations showed the result of circularity applied to any number of
vectors inputs.  A similar result can actually be found in the proof of the
existence and uniqueness of solutions to the subalgorithm (Heeger & Jepson,
1990). From Eq. 3, one can see that any nullvector of 

† 

C(T j)  must be a linear

summation of 

† 

m  vectors 

† 

Fi  of the following form:

  

† 

Fi = (0,0,0,0,L ,F ix ,F iy ,L ,0,0)            (0.10)

These vectors are perpendicular to the first 

† 

m  columns of 

† 

C(T j)  and have

two non-zero elements given by 

† 

Fi ⋅ A(x i ,yi)T . Substituting
(

† 

Ty = 0 ,

† 

Tz =1 ,

† 

f = 1) for A in Eq. 2, the elements of each vector are related

by:

† 

F iy / F ix =
xi - Tx

-yi
=

˜ x i
- ˜ y i

           (0.11)

As each 

† 

Fi  is oriented along a circle centered on the heading point, any

weighted combination 

† 

ciFii =1

mÂ  will be oriented circularly as well. The

weights 

† 

ci  follow from the requirement of rotation invariance, i.e. the
weighted vectorsum must also be perpendicular to the remaining columns of

† 

C(T j)  made out of 

† 

B matrices (Eq. 2).

When the number of flow vector inputs is larger than the minimum required

Figure 7. Preferred motion vectors for neuron ujl in case of
unrestricted eye movements given four motion inputs. The motion
inputs are chosen on a circle centered on the heading direction (open
circle) and separated by 45 (a), 90 (b) and 180 degree (c).
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(2 for tracking eye movements, 4 for unrestricted eye movements), the
problem of computing the nullspace of 

† 

C(T j)  become underdetermined, so

that only a continuum of possible solutions exist, and the nullvector is just an
arbitrary pick among them. Nevertheless, we found that the directions in the
case of unrestricted eye movements were always balanced.

IV. TEMPLATE MODEL

The template model and the velocity gain field model both rely on
templates tuned to heading and a specific component of rotation. But, as to
make each local contribution to a template invariant to the distances of points,
the velocity gain field explicitly assumes only the component of flow along
the circular structure is measured, while the template approach (Perrone &
Stone, 1994) selects the maximum response of various motion sensors. Does
the template approach predict circular receptive fields as well?

IV.I. Receptive Fields in Template Model

In the template approach, at each location not one motion sensor is
read-out, but the most active one in a set of motion sensors tuned to different
depth planes but same preferred heading and rotation. Each motion sensor has
a preferred motion that is the vector sum of a radial vector, expected from a
translating point on a certain depth plane, combined with a motion vector
expected from the template's preferred rotation (Figure 8a). As one can see,
the expected vector sums 

† 

Ci  at one specific location, are constrained by a line
that runs parallel to the radial line. Motion parallel to this constraint line will
only change which sensor is maximal active, but not lead to a change in
maximal activity (unless the motion lies outside the range of each motion
sensor). Only motion perpendicular to the constraint line will change the
maximal activity. This motion is directed along the circle centered on the
preferred heading, and equals the expected motion from the template's
preferred rotation (

† 

R ), taken along the circle centered on the preferred
heading (

† 

Cc).
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Note, the most active motion sensors need not be directed along heading-
centered circles. This is clearly the case for the pure translation template. But,
also for a template with a preferred component of rotation, the contributing
motion sensor need not be oriented along the circle, for instance if the
expected rotational motion vector is not tangent to the circle. Then, the local
contribution would be determined by the directional tuning rather than the
velocity tuning of the most active sensor. Still, the effective motion vector
that drives the template's output is oriented along a circle centered on the
template's preferred heading (Figure 8b). Whereas the velocity gain field
model leaves unspecified how the velocity and direction tuning to motion
along the circle might be accomplished at MT level, the selection of
maximum activity from a set of constrained sensors, as proposed by the
template model, might be a way to realise such tuning.

V. DISCUSSION

V.I. Heading-centered Circular RF Structures: Intuitive or
Counterintuitive?

We looked at the structure of receptive fields for flow analysis in
three models for heading detection. The models apply different methods to
solve the heading. Nevertheless, we find in all three cases the directions of
preferred motion to be constrained along circles centered on the heading.
Circular RFs for heading detection seem rather counterintuitive, for the flow
expected from ego-translation is radial. Why would a circular structure be

Figure 8. a) Each template sums the responses of the most active
sensor at each location. This most active motion sensor is selected
from a pool of sensors tuned to different depth planes (Ca, Cb, etc).
These vectors are the vector sums of preferred rotation component R
and translational components Ta, Tb, etc. b) At each location the
effective motion vector driving the template is tangent to a circle,
centered on the template's preferred heading.
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optimal to detect heading? The important point to realise here is that only a
deviation from expected heading is of interest. Thus, only the component of
translation perpendicular to expected translation really is of importance to
sense heading, not the component in the expected heading direction. As the
components in the expected heading direction are radial, what is left to be
analysed are components of flow along the circles centered on the expected
heading.
How can circular RFs still measure heading? This can be understood by
examining the effects of components of translational and rotational flow
separately. As shown in Figure 9, a heading-centered circular RF only
measures the translational flow caused by translation perpendicular to the
preferred heading. By measuring the evidence for zero motion along its
preferred circular structure, a neuron can sense a deviation from its preferred
heading direction, while not being too sensitive to variations in translational
speed along the preferred heading and distances of points.

Circular receptive field structures could explain why area MST is found to be
not only selective for expanding motion patterns, but also has a significant
proportion of cells are selective to rotation patterns (Duffy & Wurtz, 1991a, b;
Lappe et al., 1996; Tanaka et al., 1989; Tanaka & Saito, 1989). The link
between selectivity for circular flow structures and heading detection
mechanisms also suggests that testing selectivity for expanding motion might
be a bad indicator for determining a cell's preferred heading. This point has
been noted before, as MST seems to be systematically tuned to the focus of
rotation, exactly like model neurons the population model (Lappe et al.,
1996). Another way to test for circular RF structure might be to look at
sensitivity to the variations in translational speed or in the speed gradient,
when radial flow is centered on the cell's preferred heading. Indeed, early
studies suggest that expansion cells are not sensitive to the speed gradient
(Tanaka et al., 1989; Orban, Lagae & Raiguel, 1995) or speed itself (Duffy &
Wurtz, 1991a). Recent studies do suggest speed sensitivity in MST (Duffy &
Wurtz, 1997, Upadhyay, Page & Duffy, 2000) and area 7a (Phinney & Siegel,
2000). However, critical would still be to know whether the expanding motion

Figure 9. Circular component of flow (solid inner vectors) resulting
from pure translation through a 3D cloud in three different directions
(filled circle in each plot), measured along the preferred circular RF
structure (gray outer vectors) centered on preferred heading (open
circle).
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was presented exactly centered on the cell's preferred heading.

V.II. RF Structures and Rotation Invariance

Given neurons measure the evidence for zero-motion along their cir-
cular structure, how do they acquire invariance to rotation and what
substructures might arise?
In both the velocity gain field model (Beintema & van den Berg, 1998), as
well as the template model (Perrone & Stone, 1994), the evidence for zero-
motion along the circular structure is measured by a pure translation template.
Its activity (

† 

Ot  in the velocity gain field model) is computed by summing the
outputs of motion sensor, where each local motion sensors is oriented along
the circular structure and assumed to be tuned to zero-motion. However,
because each pure translation template will be influenced by a component of
rotation, some trick must be applied to assure the correct template is maximal
active.
In the template model, the rotation problem is simply solved by assuming an
array of templates that includes all possible combinations of two-dimensional
heading and three-dimensional rotations. Such approach requires many
rotation-tuned templates per rotation axis, although one can reduce the
dimensions when assuming the eye movements are restricted (Perrone &
Stone, 1994). An alternative solution to the rotation problem is used in the
velocity gain field approach (Beintema & van den Berg, 1998). Any change in
activity of a pure translation template 

† 

Ot  due to a component of rotation is
compensated by subtracting an appropriate derivative template activity,
multiplied by a measure of the evidence for rotation about that axis 

† 

e , i.e.

† 

e ¥ ∂O / ∂R . The range of rotation velocities is limited by the preferred
rotation of the templates, but can be expanded by assuming also pairs tuned to
larger rotation velocities.
Thus, both the template and velocity gain field model predict templates
specially tuned to heading and zero-preferred rotation (zero-preferred motion
along circles). Their receptive field would consist of motion detectors directed
along the circular structure, but with zero-preferred motion. But, even more
abundantly represented might be templates tuned to heading and a component
of rotation about a given axis, especially about an axis perpendicular to the
heading, giving rise of bi-circular RF structures. Units tuned to rotation about
the heading axis would have a uni-circular RF structure.
The population model acquires invariance to rotation and depths of points in a
different way. Given the locations (image coordinates) of motion inputs to the
neuron 

† 

u , the subspace algorithm is used to generate sets of preferred motion
vectors 

† 

vi  whose summed inproducts with the presented motion vectors must

always be zero 

† 

vi ⋅q i = 0
i =1

mÂ  (i.e. the residual function 

† 

R(T)  when the

preferred heading is presented. The subspace algorithm splits the flow
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equations into a part related to translation and a part related to the rotation.
The requirement of invariance to translational speed and distances of points
constrains all preferred motion vectors to lie on along circles centered on the
preferred heading. Given that the sum of vector inproducts along the circles
must be zero also in case of rotation, this additionally constrains the directions
(clockwise or counterclockwise) and magnitudes of preferred motion vectors.
Taken the results from our analysis, we can interpret how the RF structure
plays its role in obtaining invariance to rotation. The simplest case occurs for
arrangements in local pairs, in which case the preferred motion vectors of
pairs were found to be opponent and equal of magnitude. Such arrangement
evidently will exclude any contribution from rotational flow to the residual
function, because rotation causes two point to move exactly in same direction
at same speed. Since one motion vector excites one of the motion sensors, and
the same motion inhibits the response of the other motion sensor, their
contributions exactly cancel. That the model is able to detect heading for such
local motion-opponent pairs, relies on the fact differential motion will be
presented as soon as the heading deviates from the preferred heading.
Obviously, such local pair arrangements makes heading detection rely on the
presence of depth differences along the same visual direction (edges, etc.).
For more spatially separated motion inputs, the results for restricted eye
movement results are helpful to interpret how invariance to rotation is
obtained, for then only one possible axis of rotation was assumed. In that
case, we found that the preferred motion magnitude varied sinusoidally as
function of the position on the circles (Figure 5), such that is small when the
motion vector expected from rotation is large, and vice versa. This way the
sum of two motion responses will cancel during rotation about the vertical
axis.
More difficult to analyse is the receptive field structure for unrestricted eye
movements, in which case a minimum of four motion vectors is required as
input to a 

† 

u jl  neuron. The receptive field structure turned out to be opponent

on average. This can be interpreted as a consequence of assumed invariance to
rotation about all possible axes. Because the motion directions are balanced in
clockwise and counterclockwise direction, flow caused by a rotation about the
line of sight does not give a net motion input to the residual function. Also,
because the four vectors are balanced vertically and horizontally, the
contributions of flow caused by rotation perpendicular to the heading axis also
cancel.
In summary, we find that the population arrives at rotation-invariance in a
way essentially different from template approaches. It relies on zero-motion
parallax detection, rather than on zero motion detection as assumed in the
velocity gain field model or template model. This difference leads to different
expected substructures within the circular RF. Receptive fields meant to
measure zero uniform motion require additional RFs that provide estimates of
ego-rotation.
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V.III. Opponent-motion RF Structures

Especially, when the motion inputs are arranged in pairs of local
neighbouring motion inputs, a clear opponent motion RF structure emerges in
the population model. This property of the subspace algorithm was also noted
by Heeger and Jepson (1992a), who proposed a center-surround motion-
opponent structure to measure heading. The population model's reliance on
motion-parallax to obtain rotation invariant heading estimates has great
analogue to Longuet-Higgins & Prazdny's (1980) original use of differential
motion parallax. Their approach exploited the fact that local difference motion
vectors are constrained to be oriented radially and intersect at the heading
direction. As this approach relies on the presence of motion parallax in one
visual direction, it requires scenes with depth edges. The differential motion
approach can be improved by computing motion differences within a larger
visual area, therefore not requiring the presence of depth edges (Rieger &
Lawton, 1985; Hildreth, 1992; Royden, 1997). Indeed, a physiological
implementation of this idea assumes the local motion-opponency outputs are
summed by a MST-like template which measure the evidence for non-zero
differential motion along the radial structure centered on the cell's preferred
heading (Royden, 1997). The downside of exploiting motion differences this
way, however, is that radial flow detectors are still sensitive to variations in
distances of points or to translational velocity.
In contrast, the population model arrangement in local motion-opponent pairs
analyses the heading by MST-like cells that detect the evidence for zero
motion-opponency along their preferred circular structure. This approach is
invariant to the translational velocities and distances of points. In that respect,
the population model approach is an improvement over traditional motion-
parallax theories. Furthermore, the opponent character of pairs in the
population model is not restricted to locally near sensors, but is also seen for
motion sensors further apart.

Figure 10. Circular component of flow (solid inner vectors) resulting
from rotation combined with observer translation in three different
directions (filled circle in each plot), compared with the preferred bi-
circular RF structure (gray outer vectors) centered on the preferred
heading (open circle).
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Do the receptive fields of templates also exploit motion-parallax by pairs of
opponent-motion sensors? The derivative template response, computed by
locally subtracting the responses of a pair of templates with opposite preferred
rotation, does predict such an opponent structure. However, this local
subtraction of motion activities is meant to give a local estimate of the
rotation, not an estimate of a local motion difference. Thus, motion parallax is
considered noise by these templates.
The velocity gain field model, however, included an extension to allow pure
visual solutions (Beintema & van den Berg, 1998) that might be the analogue
for the detection of zero-motion parallax. The added feature was the
suppression of those 

† 

H t  templates that use false estimates of the rotation.
Such wrong estimates occur for derivative template activities that are
contaminated by components of translational flow along their preferred
circular structure. As shown in Figure 10 this occurs for non-preferred
headings. To get around this problem, the authors theorised that some
measure of variance in the presented flow along the circular structure due to
motion parallax might be exploited for suppression in case of a non-preferred
heading. To this end they used the variance of local estimates of the flow
along the circular structure, each scaled with the preferred local flow of a
rotation-tuned template. This measure of variance in local rotational gain is
not sensitive to rotation about the preferred axis, but does rise with increased
motion parallax along the preferred circular structure. Suppressing the output
of a template 

† 

H t  when the variance is high due to the presence of motion
parallax seems similar to reducing the response of neuron 

† 

u jl  in the

population model when it measures evidence for non-zero-motion parallax.
Therefore, this extension to the velocity gain field model might also be based
on a motion-opponent structure that truly measures differences in motion.
In summary, motion opponency seems to emerge in models encoding heading
at the level of MST as well, except for the template approach (Perrone &
Stone, 1994)  which does not exploit the use of motion-parallax cues. So far
opponent-motion detectors have only been found at the level of MT cells. Our
analysis suggests to look for such opponent-motion structures, at the level of
at a higher level as well, be it along circular RF structures.

V.IV. Bi-circular RF Structures

A typical substructure in circular receptive fields predicted by the
velocity gain field model and the template model is bi-circularity.
Interestingly, for the restricted version of the population model that assumes
tracking eye movements, we were able to construct a uni-circular RF and bi-
circular RF for specific spatial arrangements of the motion inputs. In terms of
velocity gain field templates, these two substructures would be optimally
tuned to a rotation about the line of sight, and about an fronto-parallel axis
parallel to the heading axis, respectively. Such sensitivity to rotation is
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perfectly in line with the assumption of tracking eye movements, because this
only assumes invariance for rotation about the axis perpendicular to the
heading axis and the line of sight. However, for unrestricted eye movements,
we found no possible arrangement of points that would fit a bi-circular  or
uni-circular RF. Therefore, these substructures are unlikely an essential
feature of the population model.
Bi-circular receptive fields might play a role as visual rotation estimators.
Visual estimates of rotation can only be reliable made at the level of global
flow analysis. Such visual rotation estimates could, for instance, be important
to gauge extra-retinal signals about rotation of the eye. Bi-circular RFs would
also allow the use extra-retinal signals at a more global level of motion
analysis (Beintema & van den Berg, 1998). The population model can also be
extended to use extra-retinal signals, but at a more local level (Lappe, 1998).
So far, clear evidence for an interaction between visual and extra-retinal
signals has only been found at the level of MST responses (Bradley, Maxwell,
& Andersen, 1996; Shenoy, Bradley & Andersen, 1999). Moreover,
psychophysical experiments on perceived heading suggest that extra-retinal
signals must interact beyond the level at which neurons analyse the local flow
(Beintema & van den Berg, 2001). A direct comparison of the extra-retinal
and visual estimates of rotation allows one model (Beintema & van den Berg,
1998) to explain on one side the benefit of extra-retinal signals during real eye
rotations for judging heading when motion parallax cues are absent (Royden
et al., 1992), and on the other side the benefit of motion-parallax cues during
simulated eye rotation (van den Berg, 1992; Warren & Hannon, 1990).
Thus, bi-circular  RF structures seem important substructures of receptive
fields to look for. MST responses to uni-circular motion, where the focus of
rotation is presented outside the visual field (Duffy & Wurtz 1995) (Duffy &
Wurtz, 1995; Graziano et al., 1994), might be in line with bi-circular RFs,
because then only part of uni-circular flow matches bi-circular flow. But
whether MST cells truly have such substructures still remains to be
investigated.

V.V. Conclusion

The analysis of the receptive field structure in neurophysiologically
inspired models provides new insights into how the brain might detect
heading most effectively. The most important conclusion is that the models
predict a circular, not radial, receptive field, centered on the neuron's
preferred heading. Different strategies to arrive at rotation invariance lead to
different predicted substructures. To exploit motion parallax cues, detectors
might be organised in motion-opponent pairs and measure the evidence for
null motion-opponency along the circular structure. Explicit representations of
visual evidence for rotation would predict bi-circular structures. Seeking
evidence for circular and more refined structures offer challenging directions
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for future research.
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